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PREFACE

I am very pleased to announce the publication of the fifth volume of the Journal of Condensed Matter Nuclear
Science. The present volume comprises 11 papers and most of them being theoretical. I hope that in the near future
more experimental papers will be available for publication.

After more than 22 years of international research in the field of Low-energy Nuclear Reactions (LENR), it seems that
major breakthroughs are in view. The original work by Stan Pons and Martin Fleischmann considered the palladium–
deuterium couple; however, it seems that the future relies on the much less expensive nickel–hydrogen system. If this
is the case, then soon an unexpected breakthrough will occur.

.
The announcement on 23 March 1989 happened the day before the Exxon Valdez accident in Alaska. After

Fukushima nuclear disaster in Japan on 11 March 2011, the long awaited Cold Fusion became successful for producing
energy; finally, it has come in reality in our lives.

Jean-Paul Biberian
June 2011
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Modification of Pd–H2 and Pd–D2 Thin Films Processed
by He–Ne Laser

V. Nassisi∗, G. Caretto and A. Lorusso
Laboratory of Applied Electronics, Department of Physics, I.N.F.N.,University of Lecce, Lecce-I, Italy

D. Manno, L. Famà, G. Buccolieri and A. Buccolieri
Department of Material Science, University of Lecce, Lecce-I, Italy

U. Mastromatteo
STMicroelectronics, via Tolomeo, 1 200010 Cornaredo, Milano-I, Italy

Abstract

In this work, we performed experiments of absorption of hydrogen and deuterium gas by Pd thin films, and we compared the behavior
of these samples to unprocessed films. We also employed a continuous wave He–Ne laser to irradiate the samples inside the chamber
during the treatment, in order to increase the gas absorption. Using a scanning electron microscope (SEM) and an electron probe
micro-analyzer (EDX), we observed structures like spots on the surface of the treated samples. Inside the spots, elements other than
Pd were found. Based on these results, we determined that gas loading is an effective way to transmute elements, and the laser action
has been a very effective way to increase morphological changes in the treated samples.
© 2011 ISCMNS. All rights reserved.

Keywords: Cold fusion, Laser, Palladium thin film, Silicon, Transmutation

1. Introduction

In March 1989, Fleischmann and Pons [1] reported a large amount of excess enthalpy, and a weak level of radioactivity,
from electrolytic cells with Pd cathodes during the electrolysis of D2O. The effect only occurred when a critical threshold
of the stoichiometric ratio x = [D]/[Pd] of deuterium in palladium is achieved. The main point at issue was that the
claimed excesses of enthalpy were consistent only with a nuclear process (deuterium fusion) and that such a process at
ambient temperature and without the emission of a commensurate number of neutrons was considered to be inconsistent
with modern nuclear science.

∗E-mail: vincenzo.nassisi@le.infn.it, Tel.: +39-832-297495, Fax.: +39-832-297482

© 2011 ISCMNS. All rights reserved.
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Figure 1. Boron ion distribution vs. target depth.

In the years following the announcement, many replications of excess heat and helium have been published [2,3],
and many new methods to improve the stoichiometric ratio x have been studied [4]. Possible theoretical explanations
of the reported phenomena were proposed [5,6] but they are still far from explaining all results.

Recently the gas loading method became a very effective tool to obtain high absorption of D or H gases inside Pd
metallic lattice, while at the same time keeping the level of contamination low [7]. Important results were achieved by
this method and particular attention has been paid to reproducing transmutation effects [8].

In this work, our attention was devoted to the transmutation phenomenon utilizing Pd film samples treated by gas
loading. We also implanted B in these samples in order control the nuclear processes the way Iwamura et al. have done.
The treatment of the samples was combined with a continuous wave He–Ne laser light to enhance gas loading inside
Pd thin films, as in previous studies [9].

2. Experimental Set-up and Results

Using the thermal evaporation technique, we fabricated Pd thin films of 500 nm thickness deposited on Si wafers of
about 1 cm2 surface area. A 50 nm Ti layer was used to improve the adhesion between the substrate and the Pd layer.

Figure 2. Photo of experimental set-up showing the irradiated chamber.
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Figure 3. Schematic drawing of the experimental set-up. D2: Deuterium gas at 4 bar pressure; T: Target; W: Quartz window; L:Convergent lens;
Laser: CW He–Ne λ = 648 nm and Power density = 2 mW/cm2.

These samples were implanted with B ions; a 150 keV accelerating voltage produced a maximum ion concentration at
158 nm depth in the palladium layer. Figure 1 shows the distribution of B ions versus target depth.

The thin film samples were placed in cylindrical stainless steel chambers of about 250 cm3 in volume. Figure 2
shows a photo of the experimental set-up.

The chambers were equipped with at least one quartz window to allow the laser beam to irradiate the samples. To
avoid contamination, the chambers were carefully cleaned with acetone and dried in nitrogen flux before the experiment.
Subsequently a pair of Pd/Si samples has been placed inside the chambers filled with H2 or D2 gas to a maximum pressure
of 4 bar. In Fig. 3, we have a schematic drawing of a chamber.

Figure 4. Spots on the surface of a sample with 76 days of treatment (by D2 gas only).
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Figure 5. EDX spectrum of a sample with 76 days of treatment (by D2 gas only). We can observe the presence of the following elements: C, O,
Ca, Al, S, Mg, K, Na.

The samples were gas loaded, and one sample for each chamber was irradiated by a CW He–Ne laser
(λ = 648 nm) from 16 July to 29 September 2004, at a laser power density of about 2 mW/cm2.

After the treatment ending, the samples were analyzed by a Scanning Electron Microscope (SEM) and
an EDX micro-analyzer. Different behaviors were revealed for samples kept in air, laser treated and with-
out laser treatment. With the samples kept in air, the film surface was smooth, with a mirror-finish. The

Figure 6. Spots on the surface of a sample with 76 days of treatment (by H2 gas and by He–Ne laser action).
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Figure 7. EDX spectrum of a sample with 76 days of treatment (by H2 gas and He–Ne laser). We can observe the presence of the following
elements: C, O, Ca, Fe, Al, S, Mg, K, Na, F, Cr, Mn, Co, Ni.

samples placed in deuterium gas but not treated with lasers showed morphological modifications of the Pd-
film due to the gas absorption. Those treated with lasers showed even more morphological modifications.
The modifications consisted of the formation of spots with dimension of 1–50 µm after gas loading.
Figure 4 shows an example of spots on the surface of a sample of palladium implanted with boron, loaded by D2
gas, but not laser irradiated.

Table 1. The principal detected elements in every experiment.

H2 D2
Laser No-laser Laser No-laser
Si Si Si Si
Pd Pd Pd Pd

Ti Ti Ti Ti
C C C
O O O
Ca Ca Ca
K K K
Na Na Na
Al Al Al
Cr Mg Mg
Fe S
CO
Ni
Mn
S
F
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By EDX analyser, we investigated inside the spots and found the presence of new elements such as C, O, Ca, Fe,
Al, S, Mg, K and Na. In Fig. 5, an example of the EDX spectrum of a Pd sample with 76 days of treatment is shown.
It is possible to observe the presence of many “new” elements which were not present before the treatment.

In addition, by He–Ne laser action, we found a larger number of spots and a larger number of new elements.
Figure 6 shows a SEM micrograph of a sample processed by H2 gas and laser; Fig. 7 shows EDX spectrum obtained
from one spots of the sample: the new elements were: C, O, Ca, Fe, Al, S, Mg, K, Na, F, Cr, Mn, Fe, Co, and Ni.

Table 1 shows the new elements reported in the experiments. We observe that the combination between H2 gas
loading and laser action on the treatment of the samples is an effective method of producing many transmutation
elements. The results with D2 gas loading alone, without laser irradiation, also produce new elements, and there are
no evident differences between the number and type of elements produced with and without the laser. The laser action
increases the spot density on the surface of the treated samples, but it does not change the nature of the reaction. All new
elements were found inside the spots. None of them seems to be generated from a particular nuclear reaction between
B and D2 and H2. These experiments confirm the reproducibility of the transmutation phenomenon but we are still far
from clarifying the mechanism inside the crystalline lattice of Pd samples that causes the transmutations.
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Study on the Phenomenon Reported “Neutron Generation at Room
Temperature in a Cylinder Packed with Titanium Shavings and

Pressurized Deuterium Gas”

Takayoshi Asami ∗
Research Institute of Innovative Technology for the Earth (retired), 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan

Abstract

This paper describes the analysis and study of the neutron generation experiment performed under pressurized and/or evacuated
conditions between room temperature and liquid nitrogen temperature, using titanium shavings and deuterium gas packed in a
cylinder. To clarify the mechanism of this phenomenon, the author has studied the experiment taking into account the characteristics
of the phase equilibrium, the metal crystal construction, the theory of chemical bond and the first principle molecular orbital
calculation. From the result of this study, it seems that the same phenomenon will happen in a similar experiment performed using
another electron deficient metal with a suitable crystal construction.
© 2011 ISCMNS. All rights reserved.

Keywords: Crystal lattice, Deuterium, Neutron generation, Octahedron cage, Tetrahedoron cage, Titanium

1. Introduction

There are many reports on deuterium nuclear fusion at room temperature. However, some of them have not had sufficient
plausible evidence to prove them and the others are doubtful.

Out of these reports, the experiments performed by ENEA, etc. appear to have been performed by suitable devices
and measurement methods [1–3]. Although it is preferable that more reproducible experiments will be executed, we
cannot deny the experimental results. It seems that they achieved neutron generation using titanium shavings and
deuterium, which is performed in a process similar to that of deuterium adsorption and desorption.

The author has intended to study the behavior of deuterium in each process of the experiment, and has studied
the conditions for deuterium atoms or deuterons to collide and the possibility of nuclear fusion occurring at room
temperature, applying both the theory of chemical bond and the first principle molecular orbital calculation.

∗E-mail: takaysami@yahoo.co.jp

© 2011 ISCMNS. All rights reserved.
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2. The Main Process, the Conditions of the Experiment and Explanation of Each Step

According to the experiment performed by ENEA [1] and LANL [2], neutrons are generated during the course of
warming the cylinder containing pressurized deuterium and titanium shavings with adsorbed and/or combined deu-
terium, and at the condition of nonequiliblium such as a change of particular temperature and pressure in the process
of adsorption/desorption of deuterium in titanium.

The main process of the experiment and the conditions of the experiment are as follows:

Step 1: It is the generation process of the combined material of titanium and deuterium (from here on we will call
it “combined material”) by adsorption, etc., under the pressurized condition in the cylinder made of stainless steel.
Pressure: 2–5 MPa, Temperature: room temperature

Step 2: It is the process of the cooling of the cylinder (Ca. 80 K) in the liquid nitrogen bath.

Step 3: It is the process of removing the cylinder from the liquid nitrogen bath and leaving the cylinder to warm until
it reaches room temperature (we assume it is Ca. 300 K).

3. Generally Predictable Behavior of Deuterium Inside and/or on the Titanium Shavings in Each Step

In Step 1, deuterium will enter and subsequently diffuse throughout the crystal lattice of titanium metal, forming the
combined material.

According to other experiments dealing with the characteristics of adsorption and desorption, the deuterium behavior
in this process is similar to the graphical curve of pressure-composition isotherm adsorption with the parameter,
temperature. In particular, it is similar to the characteristics of substances that also show hysteresis as shown in Fig. 1
[4].

The type of titanium crystal has a hexagonal close-packed (hcp) structure. It is said that there are three locations,
where deuterium atoms or deuterons are able to be located in titanium crystal. The locations where deuterium atoms are
able to locate under the suitable condition are in the tetrahedral interstice (T-site), in the octahedral interstice (O-site)
formed by titanium atoms, and in the location between two titanium atoms in the c-axes of the crystal in Fig. 2 [5].

Figure 2 simply shows the structure of titanium crystal lattice and the inferred location of deuterium.
In Step 2 (the cooling of the cylinder) the saturated region of deuterium in titanium metal that expresses the length

of the plateau region in the phase diagram indicated in Fig. 1, will become greater than that of room temperature, by
the formation of combined material. In this step, it seems that deuterium atoms will go further into the titanium and
diffuse into the lattice of titanium metal.

In Step 3, because of the temperature rise, in accordance with the characteristics of phase equilibrium, some portion
of the deuterium must exit from the constrained state in titanium and the length of the plateau region in the phase
diagram becomes less than that at liquid nitrogen temperature. It indicates that some portion of deuterium in the
combined material is released to the gaseous phase over the course of the temperature rise, relating to adsorption phase
change as written standard book.

When we compare the strength of constrained deuterium in T-site and O-site and deuterium in another site, it appears
that trapping potential depth in the different sites differs with each other because the combined condition with titanium
atoms differs.

According to the experimental results [1,2], it is said that substantial bursts of neutron counts (Ca. 70 and Ca. 100,
respectively) were observed after the cylinder was removed from the liquid nitrogen bath. In the one experiment, it
says that the average count in the active period run (at desorption phase from liquid nitrogen temperature warming to
room temperature) was much higher than the previous run (at pressurized condition with thawing terms and cooling
cycles). In the other experiment, the pressurized cylinder had to experience several thermal cycles before neutrons were
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Figure 1. Pressure-composition isotherm adsorption with the parameter, temperature [4].

detected. About 1 h into the warm up cycle, when the pressurized cylinder was at –30◦C, high neutron counts (∼85)
were observed, followed by smaller bursts.

It is inferred that any reaction must occur in a condition of nonequilibrium, such as a change of pressure and/or
temperature.

4. The State and Behavior of Deuterium Atoms in Titanium Crystal

4.1. Analysis of the state of deuterium atoms in titanium crystal based on the theory of chemical bond

4.1.1. Bonding state of the deuterium atoms and the titanium atoms in the tetrahedron cage

In the following, the author will study the mechanism of the bonding of deuterium atoms with titanium atoms in
accordance with the theory of chemical bond, taking into account the electron orbits of titanium.

The reason why the deuterium atoms are stable in that location must be because they combine with the titanium
atoms by a specified chemical bond. As an example of an electron-deficient substance, when boron forms diborane
(B2H6), the boron atoms cause adjacent hydrogen atoms to have ligancy (number of stable positions (potential well)
for H(D)) 2 as indicated in Fig. 3 [6,7].

It seems that a deuterium atom and the titanium atoms jointly own the valence electron located outside the argon
shell in the electron orbits of the titanium atom; the deuterium atom and titanium atoms form a coordinate bond. In the
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Figure 2. The location of deuterons in the titanium crystal lattice [5].

following, we will study why this combination is formed.
By the same process as the formation of diborane, it seems that the titanium atoms forming the cage can also cause

the entering deuterium atom to have ligancy 2. The reason why it is deemed so is because the electron orbits and their
respective number of electrons regarding a titanium and argon atom are as follows:

Titanium: (1s2 2s2 2p6 3s2 3p6) 3d2 4s2

Argon: (1s2 2s2 2p6 3s2 3p6)

According to the theory of chemical bond explained by Pauling [8], there are nine stable orbits, 3d54s4p3, outside
this shell. Even if these nine orbits are occupied by nine electrons, 0.72 is allocated as metallic orbit, leaving 8.28 for
occupancy by bonding electrons and unshared electron pairs.

On the other hand, the titanium atom has four electrons outside the saturated orbits (argon shell). As compared
to the number of electrons, four, in the part of the titanium electron orbits outside the argon shell and nine, the total

Figure 3. The configuration of atoms in diborane, B2 H6 [6, 7].
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Figure 4. Ti cage models with two bridged deuterium atoms.

number of electrons outside the argon shell is far less than the preferred number of electrons to be stable, which is nine.
As a result, it seems that the electrons left from the deuterium atoms that entered the titanium metal will move

toward the titanium orbits side. On the other hand, to get to a stable condition, deuterons will have a tendency to jointly
own the electron with the titanium atoms.

As an example of diborane, Ti atom also is electron-deficient substance. So we can easily guess Ti atoms cause
two deuterium atoms to have ligancy 2 as in the case of diborane. So it seems the adsorbed two deuterium atoms will
also form ligancy 2. In this condition, it seems that two Ti atoms will prepare two bridged deuterium atoms indicated
in Fig. 4a. If two orthogonal pairs of two Ti atoms in the T-site will prepare two bridged deuterium atoms per each Ti
pair, the classical model will be indicated as in Fig. 4b.

This form is equivalent to the Tetrahedral Symmetric Condensate (TSC) model which is presented by Takahashi
[9]. It seems that four electrons that have left from each deuterium atom may form bosonized pair [9] in the outer
orbit of each Ti atom forming two orthogonal edges of the tetrahedron cage of which the edge is composed of two Ti
atoms. According to hypothesis of Takahashi, it says that strong central squeezing force may happen by TSC plus four
spin-regulated (bosonized) electrons. However, the author’s model is a form of combined material produced just after
deuterium atoms entered into Ti crystal. On the other hand, Takahashi’s model is the form with very short life assuming
when the reaction happens in transient state under the special condition. So, the author thinks that his model is different
from the author’s model, and is a model which is a work in progress.

4.1.2. Geometrical relation of the deuterium atoms in the tetrahedron cage

In the case of titanium, its crystal is in the form of a hcp structure including cages as mentioned above.
Assuming that one of the cages is a regular tetrahedron and the titanium atoms are sphere like shape, the diam-

eter of the inscribed sphere, between the three spheres of titanium atoms and within the regular triangular surface
formed by the centers of three titanium atoms, is approximately 0.502 Å indicated in Fig. 5a. As the diameter of a
deuterium atom is approximately 1.06 Å, if the deuterium atom intends to enter the tetrahedron cage, it must not be
as a deuterium atom (D) but as a deuteron (d) having lost an electron. In the case of deuterons, it seems that each of
them will be able to pass through the inlet of the cage provided that Coulomb repulsion is shielded, as its diameter is
approximately 10−4 Å.
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Figure 5. Conceptual figure of the tetrahedron cage in titanium crystal. (a) and (b): the diameter of the inscribed sphere.

4.1.3. Deuterons able to exist in the tetrahedron cage

Inside of the tetrahedron cage, the diameter of the inscribed sphere is approximately 0.709 Å indicated in Fig. 5b. So
the distance from the center of this inscribed sphere to the center of the titanium atom is approximately 1.81 Å. On the
other hand, using the average covalent radius of hydrogen, 0.3 Å [10], the estimated Ti–D distance is approximately
1.78 Å, assuming that both Ti–D and Ti–H distances are equal. Regarding the bridged Ti–D(-Ti) distance, it may
slightly be longer than that of a single bond of Ti–D which is similar to the example of the distance of B–H
(Ca. 1.19 Å) and bridged B–H(-B) (Ca. 1.33 Å) of diborane [6]. Anyhow, the estimated Ti–D distance coincides
well with the distance from the center of the inscribed sphere to the center of the contacting spheres, Ti atoms.

4.1.4. Plausible behavior and possibility of collision of deuterons in the tetrahedron cage

As it is said, in the case of the tetrahedron cage, the location where a deuterium atom or deuteron is able to locate is in
the cage.

As previously mentioned, we can infer that combined material as indicated in Fig. 4 will be formed. After that, as
there is a stable location in the cage, it seems that the deuterium atom or deuteron in the state may intend to get to the
stable location as indicated in Fig. 6 if the condition of nonequilibrium state occurs, such as changing of deuterium

Figure 6. Ti cage models with the bridged deuterium atom in the T-site.



Takayoshi Asami / Journal of Condensed Matter Nuclear Science 5 (2011) 7–16 13

Figure 7. The heavy protons model in the O-site. (a), (b): a pair of counter side (plan), and (c), (d): a pair of diagonal side (plan), (e): a pair of
diagonal side (perspective).

pressure and/or temperature in the cylinder.
If plural deuterium atoms or deuterons will enter the cage, collision may occur in the cage.
The constrained two deuterium atoms at the edge of the cage without a strong Coulomb repulsion by the bridging

bond of ligancy 2 are electrically neutral. It may be that under this condition, deuterons do not need an enormous
amount of energy to collide.

If we estimate the kinetic energy of a free deuterium atom at 80 and 300 K, the energy of each is 6.9 and 25.9 meV,
respectively.

4.1.5. The state of the deuterium atoms combined with the octahedron cage formed by titanium atoms

As in the case of the tetrahedron cage, it is said that there is a location where a deuterium atom or a deuteron is able to
locate in the octahedron cage.

If we take out a quadrilateral pyramid cross section from the octahedron cage that is formed by titanium atoms, and
set our eyes to the square part composed of two titanium atoms and a summit atom, both the diameters of the inscribed
sphere within the top half pyramid and the inscribed sphere within the square cross section are Ca. 1.27 Å. So if the
deuterium or deuteron is located in these locations of O-site, there is more space than in that of the T-site. As it is said,
if the heavy proton is located in the center of the O-site, the location is that of the latter of the case mentioned above.
In this cross section of the square area formed by four titanium atoms, two titanium atoms must be selected to get to
the stable condition of deuterium atoms by forming the bridging bond of ligancy 2. Geometrically, there is a total of
six possible independent Ti pairs of chemical combinations with a bridged deuterium atom in this part. These pairs are
selected from the side parts and diagonal line parts in the square which is formed by Ti atoms indicated in Fig. 7.

If we assume the two heavy protons are constrained by two diagonally opposite titanium atom pairs indicated in
Fig. 7c–e, both heavy protons in the cage will be localized along the centerline of the square, and move near the
center point of the square. If the collision of caged heavy protons occurs, chances are that it will occur by the heavy
protons constrained by two diagonally opposite titanium atom pairs of the different diagonal. However, the length of
the diagonal is Ca. 4.18 Å and it is slightly longer than two times the estimated Ti–d distance, 3.56Å.

It seems that it is difficult to more precisely estimate the condition for the deuterium to locate by only the theory of
chemical bond.
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Figure 8. The distribution of charge density for (2–203) plane of Ti H3 (7.69 at.% H) cluster [11].

4.1.6. The state of the deuterium atoms on the c-axis of titanium crystal

The c-axis length of titanium crystal is Ca. 4.74 Å and it is said that two deuterium atoms can be located on the c-axis
between titanium atoms [5]. The nearest titanium atom from the deuterium atom is at the end of this axis. If a deuterium
atom combines with a titanium atom, it will be the titanium atom located at the end of the c-axis. Under this condition,
we cannot find special condition for deuterium atoms to collide.

4.2. Analysis based on the first principle molecular orbital calculation

At present, there are not only the analysis based on the theory of chemical bond but on the first principles calculations.
By comparison an analysis basing on a different stand point, it seems that we will be able to deduce a more precise
state of deuterium in titanium crystal.

As there is the research of electronic structure of the Ti–H solid solution by a first principle molecular orbital
calculation, the author cites in Figs. 8 and 9 [11]. Figure 8 shows the distribution of charge density around a hydrogen
atom on Ti–H solid solution cluster.

Essentially, both the distance and the bonding force between Ti atom and H atom in the symmetrical location can
be the same as each other. The bond between the second nearest Ti atoms (Ti(b)) from the H atom in the center is
strongly formed with each other. However, there is clear difference in the bond between the first nearest Ti atoms (Ti(a))
and Ti(b). In diagonally face side Ti atom pairs surrounding H atom, there is a slight difference in the distribution of
charge density between vertical and horizontal bonds of Ti and H atom in Fig. 8. It seems that there is a possibility the
horizontal 2 face side Ti atoms pair may cause the hydrogen to have ligancy 2, although, of course, the resonance will
occur between these pairs .

Figure 9 [11] shows the density of states of solid solution. In Fig. 9, density of state of 3d orbital of titanium
decreases with increasing of hydrogen content and that of 4s orbital of titanium also slightly decreases with increasing
of hydrogen content. It means that the electrons of 3d orbital of metallic bond is used for bonding between Ti atoms
and the hydrogen atom.

In a regular octahedron cage, each orthogonal plane including the center line and the diagonal line of the square
to (2–203) plane also has two diagonally face side Ti atom pairs. So it means that another Ti pair in the other planes
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can cause hydrogen to have ligancy 2 if there is a hydrogen atom between them. On the other hand, there is only one
location where H is stable is in the octahedron cage.

So, in a condition of nonequilibrium state inside and/or outside Ti metal, such as changing deuterium pressure
and/or temperature, if deuterium atoms or deuterons scramble the location of each other, collision may occur near the
center of octahedron cage.

As another inference of this analysis, in Ti metal composed of dense crystal, it seems that it may be difficult for two
deuterium atoms in ligancy 2 to exist as indicated in Fig. 4. except Ti atom pair at cleavage plane and/or metal surface.

In other chance, the author would like to also analyze the tetrahedron cage, from both the theory of chemical bond
and the first principles calculations.

5. Discussion and Conclusion

To clarify the mechanism of neutron generation experiment, the author analyzed the site and state of adsorbed deuterium
into titanium metal, basing on both the theory of chemical bond and the first principle molecular orbital calculation.

As a result, it seems that the titanium atoms forming the cage cause the deuterium atom to have ligancy 2, especially
at diagonally 2 face side Ti atoms in octahedron cage, from both the theory of chemical bond and the first principle
molecular orbital calculation.

If two bridged deuterium atoms combine with two Ti atoms as “combined material”, as same as that of diborane
and bosonized electrons are produced in the orthogonal Ti pairs of the tetrahedron cage, its form is equivalent to TSC
form presented by Takahashi. However, their images of each concept are different from each other.

On the other hand, taking into account of the result of the first principle molecular orbital calculation, it seems that
the driving force for deuterium to collide may be scrambling force to get to the stable location by the deuterium atoms
between different diagonally two face side Ti atom pairs in the octahedron cage. This situation may occur in a condition
of nonequilibrium state, such as the change of temperature and/or pressure.

Figure 9. Density of states from (a) Ti, (b) TiH1 (2.70 at.% H), and (c) TiH2 (5.26 at.% H) cluster [11].
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If the above-mentioned concept on the room temperature nuclear fusion is right, the observed phenomenon may
also occur in an experiment under the condition of nonequilibrium state, such as changing pressure and/or temperature
even with another element which is electron deficient, has suitable crystal construction and adsorbs the deuterium.
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Abstract

The PdO-coated layer of Pd-nano-particle may arrange fractal nano-dips on its surface when D(H)-gas is charged and de-oxidation
molecules (D2O or H2O) are released. Fractal nano-dips may make local deep adsorption potentials, through which rapid penetration
of D-atoms (ions) into deeper Pd-local lattice (Bloch potential) O-sites of nano-particle may be induced, to realize full or over-full
D(H) loaded state (x >1.0) of PdDx in a short time of the Phase-I process. Formation of D-clusters, such as 4D/TSC on surface
may be enhanced at nano-dips. A phenomenological model of quasi-free D-motion under constraint of the Bloch potential within a
global mesoscopic potential well is proposed for the Phase-II phenomena, where nuclear heating by 4D fusion reactions may rather
steadily take place. Generation of collective mesoscopic potential well (CMPW) will make a Pd nano-particle with PdO working as
“mesoscopic catalyst” which realizes very large D(H)-loading ratios and anomalously large chemical heat releases both for H-gas
and D-gas loading.
© 2011 ISCMNS. All rights reserved.

Keywords: Anomalous heat, Collective mesoscopic potential, D-gas loading, Mesoscopic catalyst, Over-full D/Pd loading, Pd
nano-particle, Phenomenological model, Role of PdO, Sub-nano dip

1. Introduction

We of the Kobe Group have reported newer results on anomalous D(H) absorption and excess heat by nano-Pd/Metal-
Oxide dispersed samples in the JCF10 meeting 1,2 , 5–6 March 2010, Tokyo, and also in the ACS-2010 NET Sympo-
sium7, 21–22 March 2010, San Francisco.

∗Note: This paper is submittal to the 9th International Workshop on Anomalies in Hydrogen/Deuterium Gas Loaded Metals, 17–19 September 2010,
Siena, Italy.
†E-mail: akito@sutv.zaq.ne.jp
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Figure 1. Experimental procedure of D(H)-gas charging to Pd/ZrO2 powder samples and reduction of PdO.

Two new findings were reported there: (1) Forced oxidation of used Pd/ZrO2 samples showed remarkable recovery
effects on D(H)-loading ratios and heat release rates in the Phase-I interval of D(H)-charging experiments. (2) By
time-resolved (time-dependent) measurements of D(H)-loading ratios, we have found the “new second phase” after the
Phase-I. At the end of Phase-I, D(H)/Pd ratios became 1.1–1.2 with integrated specific heat-energy 0.83–2.0 eV/atom-
Pd. At the end of new second phase (Phase-II) with slower change of D(H)-absorption, additional low level heats were
recorded. The third phase (Phase-III) was redefined for the time-period after D(H)/Pd ratios were saturated in Phase-II.
We discuss on what kind of underlying physics is there, by proposing a phenomenological model which may relates to
the TSC theory [3–5], for the emerging condensed matter nuclear effects (CMNE).

Reduction process of PdO in samples under D(H) charging is first discussed briefly in this paper. Secondly and
mainly, the role of PdO surface coating of Pd nano-particle is discussed using a phenomenological (speculative) model
on what happens under D(H) charging to induce a mesoscopic catalyst potential and the D-cluster formation and 4D/TSC
fusion. We summarize discussions as;

(1) The de-oxidation of PdO may be made mostly during the baking processes between D(H)-loading runs, because
of high level D(H)-density under degassing process at relatively high (473 K) temperature which may enhance
D2O (H2O) chemical formation.

(2) The PdO-coated layer of Pd-nano-particle may arrange fractal sub-nano-dips (sub-nano-holes; SNH) on its
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surface when D(H)-gas is charged and de-oxidation molecules (D2O or H2O) are released to vacuum.
(3) Fractal sub-nano-dips may make local deep adsorption potentials, through which rapid penetration of D-atoms

(ions) into deeper Pd-local lattice (Bloch potential) O-sites of nano-particle may be induced, to realize full or
over-full D(H) loaded state (x >1.0) of PdDx in a short time of the Phase-I process.

(4) Formation of D-clusters, such as predicted by the TSC theory [3–5] on surface may be enhanced at sub-nano-dips
already in the beginning of Phase-I D(H)-loading process and 4D/TSC fusion may take place with considerable
probability.

(5) D-motion in a “mesoscopic deep collective potential” of the nano-PdDx system may be quasi-free to enhance
transient D-cluster (4D/TSC [3–5]) formation probability around tetrahedral sites of local Bloch (periodical-
lattice) potential inside a PdD nano-particle. This state can be modeled by the non-linear combination of two
oscillations, i.e., one (longer pendulum in approximation) by the deep (about 1.5 eV deep) well-type collective
potential and the other (shorter pendulum) by the lattice-type periodical three dimensional Bloch potential
(about 0.22 eV deep). The shorter pendulum may have “high excited energy” to realize very mobile D-motion
under the constraint of three-dimensional local PdD lattice arrangement, within the mesoscopic global deep
potential well.

(6) Generation of collective mesoscopic potential well (CMPW) will make a Pd nano-particle working as “meso-

Figure 2. Comparison of typical heat evolution data for PP (0.1 µm diam. Pd powder), PB (300 mesh Pd-black powder) and PZ(10 nm-Pd-nano-
powder dispersed in ZrO2 flakes).
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scopic catalyst” which realizes very large D(H)-loading ratios and anomalously large chemical heat releases
both for H-gas and D-gas loading.

2. Formation and Reduction of PdO Surface Layer of Pd-nano-particles

Virgin samples of Pd/ZrO2 (PZ in abbreviation) as provided from the maker (Santoku Co., Kobe, Japan) contained
oxygen in the form of PdO/ZrO2 with 100% PdO and ZrO2.

Before the first D(H)-charging runs (by the twin system [1,2,7]), we set up PZ samples in reaction chambers of the
twin system, evacuated the chambers and baked samples at 200◦C to remove “already absorbed” impurity gases. Since
samples have been reserved in air for a few months, Pd-particles (PdO) would have absorbed a considerable amount of
hydrogen in air (0.01% of air is H2 gas, 1015 H2 molecules per cc air). During a baking process, significant portion of
PdO would have been de-oxidized by forming D2O (H2O) vapors to be evacuated. PZ samples may be a composite of
(PdO)yPdx /ZrO2 with x+ y = 1.0. We have then made the first D(H)-charging runs to observe D(H)/Pd loading ratios
and heat–power evolution in Phases I–III. Before the second D(H)-charging runs for used PZ samples, we have made
evacuation and baking. In this second baking stage, we speculate that almost 100% reduction of PdO would have been
done by “water-formation” reactions between out-going D(H) atoms and oxygen atoms in PZ sample under the elevated
temperature (200◦C) which enhanced chemical reaction rates. Such an experimental procedure as above mentioned is
flow-charted in Fig. 1.

We refer an essential results of Kitamura et al. PLA 2009 paper [6], for heat–power evolution data under D(H)-gas
charging to three kinds of Pd powder samples (PP, PB and PZ), as shown in Fig. 2.

How can we explain the results of anomalously enhanced heat–power evolutions for PZ samples both for D- and

Figure 3. Definition of phases I and II intervals for the D(H)-gas loading experiment [6,7]).
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Figure 4. An atomic scale cross sectional image of PdO-layer coated (30%, y = 0.3) Pd nano-particle (5 nm diameter); here we used relative sizes
of ionic radii and D2 molecule, and fractal surface structure is supposed to make a role enhancing deeper adsorption potential for D(H)-gas.

H-charging, and why D-charging gave significantly larger heat–power in Phase-I and only gave positive heat–power
level in Phase-II? What is a role of PdO component, since the second D(H)-charging runs with used samples (without
PdO component) gave very reduced D(H)/Pd-loading ratios and heat? Experiments with forced oxidation [1,2] (4–8%
of total Pd amounts) to used PZ and PNZ (Pd/Ni/ZrO2) samples showed remarkable recovery for D(H)/Pd ratios (up to
1.1–1.8) and heat levels (0.8–2.0 eV) in Phase-I. What is the mechanism for that? Are these phenomena related to the
proposed mechanisms of Takahashi’s TSC formation models and D-cluster (4D, typically) fusion reactions?

3. A Phenomenological Model of D(H)-Adsorption/Absorption with PdO Layer

We propose phenomenological models in Sections 3 and 4 for the phase-I and phase-II phenomena as defined in [6].
We show a modified figure for helping this purpose in Fig. 3.

From our analysis of forced-oxidization experiments [7], we have speculated that a portion of PdO at the beginning
of first (virgin) D(H)-charging run maybe around 30% (y = 0.3 or so). Assuming a formation of PdO surface layer
(coating with y = 0.3) of Pd nano-particle, an image of atomic scale cross section of PdO/Pd nano-particle (5 nm
diameter, for instance) is shown in Fig. 4. By TEM image of used sample (as to be reported by Kitamura ICCF 16
paper, and also we reported [7,17] at ACSNET 2010), 2–10 nm PdO/Pd particles are dispersed in/on ZrO2 flakes with
several micro-meter size. We assume here PdO/Pd particles are kept as isolated each other in a supporter ZrO2 flake.
Position of oxygen-atom can be interstitial or substitute for Pd-atom, but we draw here simply as substitute of Pd-atom.
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Figure 5. D2O molecule going out. Figure 6. SNH traps D2 incoming.

Figure 7. Eventual double D2 trapping. Figure 8. Eventual 4D/TSC fusion on surface.

We are going to propose a mechanism that oxygen of PdO layer will serve as a “seed” for generating a “sub-nano-
hole” (SNH) when D(H)-gas will be started to charge and formation of D2O (H2O) by incoming D2(H2) gas molecule to
combine (de-oxidize PdO) with oxygen. Formed D2O (H2O) molecule will go out to vacuum, and a SNH with chemical
electron dangling bonds will be generated. As the trapping potential of SNH will be “very” deep (strong sticking force
by electron-dangling bonds), incoming D2 molecules will be doubly (or more) trapped there to form a transient TSC
(transitory Bose–Einstein condensate) with certain probability. The image of such TSC formation is speculative at this
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Figure 9. Expanded view of heat–power evolution data by Kitamura et al. [7] for PZ samples.

stage, and we need a further deepened study based on the first principle type quantum-mechanical calculations using
time-dependent coupled Schroedinger equations for the SNH composition of three dimensional Pd-atoms arrangement
and in-coming D2 molecules. However, this is not so easy task.

Once a TSC (t = 0) is formed, very fast (in 1.4 fs) condensation happens to make a very small (in 10–20 fm diam.)
charge neutral entity (TSC-min) which will cause 100% 4d-simultaneous fusion to produce two 4He products with heat
(23.8 MeV/4He) [3–5]. Image of such a process is illustrated in Figs. 5–8. After such an event of D2 trapping at SNHs,
remained surface fractal nano-holes will trap more incoming D(H)-gas and enhance “rapid diffusion” into inner PdDx
lattice points (namely O-sites of local PdD lattice), as we speculate existence of “D(H)-pressure” from backside where
trapping of D2 molecules is taking place one after another and accumulating “surface D-clusters”.
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Figure 10. Normalized heat evolution curves in Phase-I for PZ-1(2)#1 runs [7].

As shown in an inset (right top) of Fig. 7, 1 g of Pd nano-powder contains 5 nm-diam. nano-partilces of 1018 (of
the order). Since 1011 4d/TSC fusion events corresponds to 1 J, one watt heat-level is maintained by a TSC formation
rate of “one over 10 million Pd nano-particles per sec” for PZ sample containing 1 g net Pd atoms. This condition looks
feasible, in reference to observed heat–power evolution levels by Kitamura et al. [1,2,7].

A typical data reported by Kitamura et al. [7] for Phase-I is expanded and is shown in Fig. 9. We can consider
that the heat–power evolution curve for H-charging is purely by chemical heat producing reactions, while the curve for
D-charging may have component of some isotope effect, probably “nuclear heating” as shown with specific patterns
(see arrows). Data by the twin system [7] gave different end-points of Phase-I for the H-charging and D-charging,
respectively, and D(H)/Pd loading ratios are slightly different. We can draw normalized curves by adjusting time-
intervals of Phase-I and loading ratios, as shown in Fig. 10.

From Fig. 10, we can have impression that a beginning peak and a later bump of heat-power evolution in the
D-charging run look like "nuclear heating components", while bumps around 200 min are due to a pure chemical
heat-power evolution. We have observed and deduced similar normalized heat-power evolution curves, three times,
for PZ virgin samples (10 g each) in 2008-2009. Hioki, et al (Toyota Central Research Laboratory) reported8 similar
heat-power evolution curve having a very clear peak (sharp spike) in the beginning and a broad bump later for a PZ
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Figure 11. Observed “rapid” heat response is broadened by indicial response of calorimetry, assuming a single exponential “nuclear heat evolution
by D-absorption in Phase-I. Such a “nuclear response” may be a superposed component in observed heat evolution data for D-gas, in comparison
with rather smooth response by H-gas.

sample (from Santoku Co.) of 54 g. To assure that this is really due to nuclear (fusion) heat, we have of course to
detect correlated ash (maybe alpha particles, other minor charged particles, secondary X-rays, EUV and visible lights)
on line and/or off-line. This is our future task.

From Fig. 10, we can have impression that a beginning peak and a later bump of heat–power evolution in the
D-charging run look like “nuclear heating components”, while bumps around 200 min are due to a pure chemical
heat–power evolution. We have observed and deduced similar normalized heat–power evolution curves, three times,
for PZ virgin samples (10 g each) in 2008–2009. Hioki et al. (Toyota Central Research Laboratory) reported [8] similar
heat–power evolution curve having a very clear peak (sharp spike) in the beginning and a broad bump later for a PZ
sample (from Santoku Co.) of 54 g. To assure that this is really due to nuclear (fusion) heat, we have of course to
detect correlated ash (maybe alpha particles, other minor charged particles, secondary X-rays, EUV and visible lights)
on line and/or off-line. This is our future task.

On the other way of precisely observing time-dependent behaviors of heat evolution in the beginning just after
D(H)-charging, we may obtain anomalously large isotopic effect, namely too large difference of heat–power levels
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Figure 12. Heat evolution curves and η-values for PZ-11(12)#3 runs; nuclear heating looks appearing in the early stage circled by a red broken
elliptic line, for D-gas charging. Amounts of PdO components in PZ-11(12)#3 runs, by forced oxidization, are 8.5 % (5.4 %) for D (H), respectively.

between D-gas and H-gas runs. By exploring such a phenomenon, we may have dynamic information of heat release
mechanisms by “new kind of D-related nuclear reactions” such as 4D/TSC cluster fusion.

We can feel now vividly, by such normalized heat–power evolution runs taken by a twin system, that released
heat–power by D-charging has a significant component of “some D-related fusion” reactions, due to its time-dependent
shapes very different from those for H-charging.

The mechanism of D(H)-absorption in Phase-I is independent of that in Phase-II (the new second phase [2]).
The former is a rapid process of absorption with relatively large heat–power level, while the latter looks a slow
adsorption/absorption process with relatively weak (about 1/10 of that in Phase-I) heat power level albeit having similar
integrated D(H)/Pd loading ratio components (0.5–1.0). Time-dependent D(H)-absorption rate in Phase-I drew decay
curves of almost same rates both for D- and H-charging. This fact is another background that the heat–power evolution
for D-charging (Fig. 10) looks like containing component by nuclear origin.

Our calorimetry system had a time resolution (time constant) of 5 min and observed heat evolution curve became a
convolution with its indicial response and exponential absorption rate. If heat release rate is constant (a step function),
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Figure 13. Extended sub-nano dips by D2O formation. Figure 14. Incoming D2 molecules are trapped one after another,
by dangling bonds of SNH.

Figure 15. Trapped deuterons diffuse inside with enhanced speed
by “D-pressure” from backside.

Figure 16. Feature at the end of Phase-I, full D(H)-loading in
O-sites plus surface D-clusters component.

we need to wait about 20 min to get saturated (real) power level. However, if we have rapid heat release, as supposed as
some surface nuclear reaction, we may have a local peak of heat–power evolution, as shown by simulation in Fig. 11.

Actually observed example of heat responses by H-charging, namely “pure” chemical heat–power evolution curve
and energy per an H sorption (adsorption/absorption), η value (13), is shown in Fig. 12, where data by D-charging
are drastically different. These runs after the forced oxidization realized significant recovery of heat–power levels and
D(H)-loading ratios, in reference to the virgin runs. Heat evolution just after the D-charging has a peak, (see arrows)
while that by the H-charging slowly rises without a “corresponding peak”, which is considered (speculated) due to the
surface 4D/TSC fusion as shown in Fig. 5. The secondly interesting point is that the D-charging gave more than twice
longer-lasting (about 10 hours) heat power than that (about 3 hours) of the H-charging. Evolutions of time-dependent
η values are compared between the D-gas charging and the H-gas charging to show “drastic isotopic effect”. Such a
big “isotopic effect” is difficult to be explained by usual chemical (electrons-interaction) effects, and needed to explore
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Figure 17. Surface and inner D(H)-trapping potential for a bulk-character Pd metal [9].

some “nuclear origin”. Ratio of η values (η-D/η-H) are very large (more than 10) in the beginning few minutes after
D(H)-charging. Such a big isotopic effect infers the need of explanation by a rapid heat release mechanism of some
nuclear reaction as 4D/TSC fusion on surface.

Now we come back to follow the simulation after Fig. 8 for D(H)-absorption into Pd nano-particle. Double D2
trapping in an SNH does not always make a TSC, but does make reaction with near-by oxygen to form D2O molecules
and extended SNH as shown in Fig. 13. Through the extended SNH, deuterons trapped diffuse to inner O-sites as
shown in Fig. 14.

In Fig. 15, we draw an image of D-diffusion enhanced by pressure of incoming deuterons from behind through the
extended SNH. Finally, at the end of Phase-I, Pd nano-particle is fully loaded (PdD, x = 1.0), but we have additional
trapped deuterons on surface (in SNHs) and apparent x-value becomes more than unity, typically as we can roughly
calculate from the drawing, x = 1.1–1.5 which agrees well with observed Phase-I D(H)/Pd ratios [1,2,7]. This feature
is drawn in Fig. 16.
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4. A Phenomenological Model in Phase-II

As shown in Fig. 16, PdD local lattice may be formed inside a Pd nano-particle in Phase-II. We have in addition
trapped deuterons (possibly making D-clusters) on surface SNH. For a known characteristics of bulk Pd metal for D(H)
absorption, we have potential forms as shown in Fig. 17 for the surface adsorption and trapping (absorption) in inner
lattice O-sites [9].

The surface adsorption energy (depth of potential) is 0.5 eV and lattice absorption energy is 0.2 eV, as evaluated in
a standard text book [9]. Therefore heat release level for a bulk Pd sample is around 0.2 eV per D(H)-absorption, since
number of trapped deuterons on surface is negligible. In contrast, observed specific absorption energy by PZ (and PNZ)
samples are very large, namely around 2.0 eV per D(H), about 10-fold of the bulk value (0.2 eV). To explain observed
anomalous values of D(H) loading under as “rapid loading process as observed” and such high specific “chemical”
heat-energy level, we need to propose some new mechanism. We speculate and model that surface adsorption potential
becomes very deep as 1.5–1.8 eV for a nano-Pd particle and local periodical Bloch potential should be in “shrunken
state as shown in right figure of Fig. 18. Here anomalously high chemical heat releases are considered both for D-gas
and H-gas charging procedures.

Existence of PdO surface “barrier” and formed SNHs would make very deep D(H) adsorption potential on surface
(1.5–1.8 eV deep, speculated by our experiments [9]), which is categorized as an collective mesoscopic potential well

Figure 18. Collective shrunken state potential of Pd nano-particle for D(H) trapping, right figure, compared with a bulk metal trapping potential,
left figure.
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Figure 19. Quasi-free motion of deuterons inside CMPW potential enhances TSC formation around T-sites of local PdD lattice of Pd nano-particle
which has formed a collective mesoscopic potential well (CMPW).

(CMPW, or a global potential for a nano-particle). Inside a CMPW confinement, three-dimensional PdD lattice (Bloch)
potential exists as local fine structure in “shrunken state”.

The CMPW potential induces a QM non-harmonic oscillation, and the local Bloch potential induces a QM harmonic
oscillation (wave function becomes a Hermite function, of which ground state is Gaussian and highly excited state has a
U-shape wave-function). Two QM oscillations combine non-linearly [14] to make D-motion in a nano-Pd particle highly
free (quasi-free) under the three dimensional constraint of PdD Bloch structure. This quasi-free motion of deuterons
inside a mesoscopic nano-particle enhances very much probability of TSC (tetrahedral symmetric condensate [3–5])
formation as we give an image of QM wave superposition in Fig. 19 [10].

Generation of CMPW will basically make a Pd nano-particle working as “mesoscopic catalyst” which realizes
very large D(H)-loading ratios and anomalously large chemical heat releases both for H-gas and D-gas loading. If
anomalously large heat observed for H-gas run is by this process, some endothermic (slow heat sink) process should
exist before we made de-sorption runs for which we observed [13] only about 1/10 levels of heat absorption, compared
with released heat levels for the sorption runs, both for D- and H-absorbed samples.
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Figure 20. Speculation of useful potential forms to be applied for QM calculations to estimate fusion reaction rates from a simple system to many
body, mesoscopic and bulk condensed matter systems.

In Fig. 20, we show a flow-chart drawing of considered useful potential forms in Coulombic (electro-magnetic)
and nuclear strong interaction, starting from a simple system of atom and two nucleons to more complex systems as
D-cluster, mesoscopic nano-particle and bulk material. By defining useful potentials for interactions in every step, we
can extend quantum-mechanical (QM) analysis by using many body Schroedinger equations (or dynamic equations as
QM-Langevin equation [3–5]). Fusion reactions in microscopic random systems (gas and plasma) can be treated by
using a simple Coulombic potential and a one pion exchange potential (OPEP) [11]. For D-cluster systems, we can
apply special trapping potential-forms for Coulombic interactions based on Platonic symmetry (orthogonal coupling)
between electron wave functions and deuteron wave functions. For multi-body strong interactions of 4D, 6D, 8D, etc.
cluster fusion reactions, we can use an empirical formula of PEF (pion exchange force) [12].

The specific nature of condensed matter is of constraint (ordering or self-organization) motion of particles with
lattice regularity or surface fractals. A global shrunken state potential well for trapping D(H) atoms in deep hole will
realize a non-linear oscillation mode coupled with harmonic oscillation in PdD lattice, which makes deuteron motion
inside a nano-particle quasi-free under ordered constraint to induce enhanced cluster (TSC) formation probability. A
bulk Bloch potential (periodical) is useful for established states of D(H) absorption. We speculate that D-cluster fusion
is induced in the states of D-cluster and D-mesoscopic systems.



32 A. Takahashi et al. / Journal of Condensed Matter Nuclear Science 5 (2011) 17–33

Figure 21. Typical four steps for TSC condensation and simultaneous 4d fusion.

We copy lastly typical four steps of TSC motion and 4d fusion in Fig. 21.

5. Concluding Remarks

(1) With a PdO surface layer, sub-nano-holes (SNH) are formed in the beginning of D(H)-gas charging. This SNH
would become a seed of “anomalous phenomena” in D(H)-loaded Pd nano-particle samples.

(2) PdO layer also helps to make up a global deep mesoscopic trapping potential well which is a shrunken state of
local PdD lattice Bloch potentials inside a nano-particle.

(3) In SNHs, formation of 4D/TSC is largely enhanced in the Phase-I interval of D(H)-gas loading. 4D fusion thus
induced may be a main nuclear component of heat release in Phase-I.

(4) Within a global mesoscopic potential with local Bloch potentials, quasi-free D-motion is induced by non-linearly
coupled oscillations for the global QM state (long pendulum) and a local harmonic oscillator (short pendulum).
Anomalous heat by D-charging in Phase-II may be by 4D/TSC fusion of this process.

(5) Generation of CMPW will basically make a Pd nano-particle working as “mesoscopic catalyst” which realizes
very large D(H)-loading ratios and anomalously large chemical heat releases both for H-gas and D-gas loading.
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Abstract

Unexplained emission of charged nuclear projectiles due to electrolysis has been reported by Richard Oriani. Experimental results
were said to be highly reproducible. Working independently, we were not able to observe emission of charged nuclear particles (in
a chemical process similar to Oriani’s) and therefore are unable to provide supporting evidence that the effect is reproducible.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

Radioactivity, such as emission of alpha particles, has long been thought to be independent of chemical processes,
such as electrolysis. The same is true for nuclear reactions including fusion and fission. The reason for this is that the
kinetic energies of molecules in a typical chemical process are too small to overcome the Coulomb repulsion between
positively charged nuclear particles [1]. This expectation was challenged by Pons and Fleischman [2], Oriani [3, 4], and
other scientists, as described by Storms [5]. We were attracted by Oriani’s work because his findings were impressive
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(a nuclear process taking place during electrolysis) and his methodology was simple. Our goal was to either confirm
or refute the claimed reproducibility of the effect.

The electrolyte in Oriani’s cell, Li2SO4, is usually dissolved in light water at the concentration of 0.022 g per cubic
centimeter. The cathode electrode is usually nickel while the anode electrode is usually platinum. To detect charged
nuclear particles, Oriani uses CR-39 chips. This method of detection is widely used in personal neutron dosimeters
as well as in other fields of research [6] such as measuring the amount of radon in the air and studying thermonuclear
reactions. In Oriani’s 2003 experiment, described in [3], the detector was suspended in the electrolyte between the
anode and the cathode. The mean track density on the experimental chips was 470 tr/cm2 while the mean track density
on control chips was 168 tr/cm2. The corresponding standard deviations were 384 and 99 tr/cm2, respectively.

Referring to such results, Oriani et al. concluded in 2003 that: “a nuclear reaction of as-yet unknown nature can
accompany the electrolysis.” Experimental results, according to Oriani’s more recent 2008 paper [4], are now highly
reproducible. The purpose of the present study was to verify this assertion.

2. Oriani’s Cell and New Experimental Results

The cell used in Oriani’s new study [4] is shown in Fig. 1. It was similar to the cell used in [3]. The essential difference
was the addition of a thin Mylar film (6 µm) placed between the CR-39 detector and the nickel cathode. That film
was chosen to protect the CR-39 detector from the electrolyte without interfering with detection of expected nuclear
particles.

Twenty-one experiments were performed and 42 CR-39 surfaces were examined, as described in his 2008 paper [6].
The track density on one of these surfaces was reported as “too large to count.” Track densities on the remaining 41
experimental surfaces ranged from 9 to 498 tr/cm2, as illustrated in Fig. 2. The histogram was drawn without making
a distinction between surfaces facing the cathode and surfaces facing away from the cathode. Note that the distribution
of densities is not bell-shaped. Track densities on control CR-39 chips were usually much lower (mean 21 tr/cm2 and
standard deviation 9.7 tr/cm2) than on most experimental chips (mean 122 tr/cm2 and standard deviation 124 tr/cm2).
Mean track densities on surfaces facing the cathode, according to data published in [4], were essentially the same as
mean track densities on surfaces facing away from the cathode.

On the basis of these observations Oriani concluded that “the present technique has consistently produced evidence
that a nuclear reaction of some sort has been generated in the course of electrolysis.” Investigations described in this
paper were undertaken to determine if Oriani’s results could be reproduced in another laboratory.

3. Our Cells and Experimental Results

Our experiments, done in four separate laboratories, were performed using cells that were similar to Oriani’s cell.
Figure 3 displays a generic diagram of our cells. We used the same electrolyte (Li2SO4 in distilled H2O, at the initial
concentration of 0.022 g/cm3) as Oriani; our electrodes were also made from Ni and Pt. Oriani’s nickel cathode wire
and our nickel cathode wires were from the same spool. All of us used the 6 µm Mylar which is capable of transmitting
alpha particles with energies higher than 2 MeV. Distances between the cathodes and the anodes were approximately
3 cm, which is approximately the same as Oriani’s. The essential cell parameters of Oriani’s and our experiments were
the same.

Differences between Oriani’s experiment and our experiment are the following: Platinum wires for the anodes did
not come from the same manufacturer. Oriani’s cathode was spot-welded to a vertical titanium rod, placed inside a
glass tube. Vertical parts of our electrodes, on the other hand, were placed into long heat shrink tubes (not shown in Fig.
3). Lower parts of our shrink tubes were thermally compressed, to prevent capillary creep of the electrolyte. Also note
that Oriani’s cell exposes the bottom surface (the side away from the electrolyte) of the CR-39 detector to air while our
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Figure 1. A diagram of an Oriani cell from his 2008 paper [4]. Small circles are cross sections of O-rings placed between the two sections of the
cell. A clamp (not shown) is used to press the sections toward the CR-39 detector.

cells do not. In our cells, the bottom surface of the CR-39 is in contact with a 25" layer of polyethylene. That layer was
clamped to the cell. The leakage of the electrolyte was prevented by squeezing the CR-39, Mylar and O-ring between
the polyethylene and the cell.

Both we and Oriani used Fukuvi CR-39 material purchased from Landauer. The delivered sheets of that material
are protected from scratches and alpha particles in air by a thin layer of polypropylene plastic. That layer usually peels
off when the sheet is cut into small chips. Our unprotected chips were kept in salty distilled water (NaCl concentration
of about 10 mg/cm3). Furthermore, all control chips were kept in unused electrolyte during electrolysis. Salty water
prevents potential accumulation of electric charges on CR-39 surfaces kept in air. This precaution was taken to reduce
the possibility that electric charges on CR-39 surface in air might attract or repel radioactive ions. No chips were
exposed to air for more than one hour. One author (P.L.) compared track densities on two CR-39 chips, one kept in
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Figure 2. Oriani’s distribution of track densities from his 2008 paper [4]. The +5 and 500, near the lower right corner, refer to five surfaces where
track densities were between 300 and 500.

distilled salty water and in air, for 15 days. The track density turned out to be 30 tr/cm2 on the chip kept in salty water
and 505 tr/cm2 on the chip kept in air. This can be explained by the big difference between ranges of alpha particles
in air (centimeters) and in water (microns). Oriani did not use salty water; he wrapped the chips in aluminum foil and
kept them in air. All of our “control” chips were kept in unused electrolyte during the time that the “experimental”
chips were exposed to electrolysis.

Like in [4], we typically exposed the experimental chips to electrolysis for three days. During this time the electric
current was changing slowly from 60 to about 90 mA, due to the loss of water. The corresponding voltage across the
electrodes was typically 7– 8 V and was kept constant during the experiment. The cell was dismounted after each
experiment and the CR-39 chip was removed. It was then etched for 12 h in the stirred water solution of NaOH
(concentration 6.5 M, temperature 72˚C). The pits on CR-39 surfaces, identified as tracks of nuclear particles, were
subsequently counted under the microscope. The uncertainty of up to plus or minus 5% (in reported track densities)
was common due to difficulties in distinguishing tracks from certain surface defects. Each experimenter was given a
CR-39 chip with one corner that was exposed to alpha particles from an 241Am source. This helped the experimenter
learn the difference between pits and defects. Pits due to particles from that source are shown in Fig. 4. They had the
same size as pits found on control and experimental chips.

The mean and standard deviation on eight of P.L.’s experimental surfaces were 87 and 46 tr/cm2. The mean and
standard deviation on his five control surfaces were 59 and 38 tr/cm2. This information, as illustrated in the Appendix,
can be used to justify the statement that the reported difference between mean track densities on experimental and
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Figure 3. A generic diagram for our electrolytic cells. Small circles are cross sections of the compressed O-ring.

control surfaces, 87–59 = 28 tr/cm2 was not statistically significant, considering small numbers of examined surfaces.
The mean and standard deviation on six of M.H.’s experimental surfaces were185 and 73 tr/cm2. The mean

and standard deviation on his eight control surfaces were 192 and 72 tr/cm2. This information was also used to
justify the statement that the reported difference between mean track densities on experimental and control surfaces,
185–192 = –7 tr/cm2 was not statistically significant.

The mean and standard deviation on eight of J.D.’s experimental surfaces were 98 and 17 tr/cm2. The mean and
standard deviation on his six control surfaces were 125 and 29 tr/cm2, respectively. This information was used to
justify the statement that the reported difference between mean track densities on experimental and control surfaces,
98–125 = –27 tr/cm2 was not statistically significant.

The mean and standard deviation on nineteen of L.K.’s experimental surfaces (excluding three exceptional surfaces
from experiments 13, 14 and 15 — see below) were 16 and 8 tr/cm2. The mean and standard deviation on his 16
control surfaces were 14 and 5 tr/cm2, respectively. This information was used to justify the statement that the reported
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Figure 4. A CR-39 surface seen under the magnification of 40, after 12 h of etching. Small circles are pits due to alpha particles from an Americium
source. The upper left corner shows a mechanically damaged area.

difference between mean track densities on experimental and control surfaces, 16–14 = 2 tr/cm2 was not statistically
significant. In other words, experimental results from our four sets of experiments are consistent with each other. But
they are not consistent with the results reported by Oriani.

Let us address the issue of extremely high track densities on three surfaces from experiments 13, 14 and 15. The
estimated track density on the up-facing surface of the CR-39 chip from Experiment No. 13 were around 15,000 tr/cm2.
This is two orders of magnitude higher than typical densities reported by Oriani [6]. The other side of the chip had
nothing but the usual background. The area covered by copious tracks, nearly two square centimeters, matched the
circle delimited by the O-ring. Distribution of tracks in that area was more or less uniform, except near the boundaries,
where the track density decreased progressively.

Copious tracks from Experiment Nos. 14 and 15 were very different from Experiment No. 13. On these two
surfaces, tracks were concentrated in small areas, near a hole drilled in each CR-39 chip. The holes were drilled to
facilitate etching; each CR-39 chip was suspended in the etching solution by means of a thin copper wire threaded
through the hole. These copper wires were from a telephone cable of unknown origin. The area covered by copious
tracks from Experiment No. 14 was about 10 mm2; the estimated track density was 200,000 tr/cm2. The area covered
by copious tracks from Experiment No. 15 was approximately 3 mm2; the estimated track density was close to
12,000 tr/cm2. Track densities outside of the small affected areas were about the same as on control chips.

It is remarkable that in each of the three cases of high track density, the mean density on the other side of the chip was
essentially the same as on the control chips. That is very different from what was reported in [4]. The most likely cause
of copious tracks was migrating radioactive contamination. Attempts made to identify it were unsuccessful. Alpha
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radioactive substances such as uranium, thorium and radium are known to be present in our environment. One nano-
gram of radium, for example, emits 37 alpha particles per second. Testing of nuclear weapons in the 1960s contributed
to contamination of our environment with long-lasting radioactive isotopes, tritium and uranium for example. Note
that track densities on our three exceptional surfaces were much higher than those reported in [4].

Project participants worked independently of each other in four different states. Collective results, shown in Table 1,
became available to participants only after their own results were submitted to L.K. He collected results after counting
tracks on his own CR-39 surfaces. Note that Experiment No. 12 was performed without using the Mylar film. Low
track densities resulting from this experiment seem to indicate that all experiments could have been performed without
Mylar. Oriani used Mylar to protect the CR-39 from potential chemical effects. Most tracks on control chips were
probably due to natural background, most likely due to radon, radium, etc. Concentrations of such substances are
known to be location dependent. That fact was probably responsible for differences between mean track densities on
the control chips of individual researchers.

4. Conclusion: Facts and Interpretations

The purpose of our four independent investigations was to find evidence for reproducible emission of nuclear particles
described in Oriani’s 2008 paper [4]. No such evidence was found. We examined 40 CR-39 surfaces and found only
three cases of excessive tracks. No excessive tracks were found on the remaining 37 surfaces.

We do not know why we were not able to observe emission of charged nuclear particles (in a chemical process similar
to Oriani’s). There could have been a setup or procedural difference between the experiments. Further experimentation
is needed to confirm the existence of nuclear particle emission in light water electrolysis, understand the causes of such

Table 1. Track densities on 34 surfaces of our experimental chips. No Mylar was used in Experiment No. 12.

Exp. No. ID Experimental chip (upper side) tr/cm2 Experimental chip (lower side) tr/cm2 Control chip averages tr/cm2

1 P.L. 20 28

59 (from five surfaces)
2 P.L. 125 148
3 P.L. 89 94
4 P.L. 99 91
5 M.H. 128 118

192 (from eight surfaces)6 M.H. 128 192
7 M.H. 278 267
8 J.D. 121 113

125 (from six surfaces)
9 J.D. 87 85
10 L.K. 21 23

14 (from 16 surfaces)

11 L.K. 24 24
12 L.K. 18 8
13 L.K. > 10000 11
14 L.K. 10 > 10000
15 L.K. > 10000 17
16 L.K. 31 20
17 L.K. 23 8
18 L.K. 12 24
19 L.K. 10 8
cr 20 L.K. 11 3
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emission and determine the conditions required for reproducibility.

Appendix: An Example of Statistical Analysis

The mean and standard deviation on eight of P.L.’s experimental surfaces were 87 and 46 tr/cm2. The mean and
standard deviation on his five control surfaces were 59 and 38 tr/cm2. Is the difference between mean track densities
on experimental and control surfaces, 87–59 = 28 tr/cm2 statistically significant? To answer this question one must
estimate uncertainties associated with actually measured track densities (87 and 59). The uncertainty about 87 is
46/2.8 = 16, where 46 is the reported standard deviation while 2.8 is the square root of 8 (the sample size consisted of
eight surfaces). Likewise, the uncertainty about 59 was 38/2.23 = 17 tr/cm2, where 2.23 is the square root of 5 (the
sample size consisted of five surfaces).

The difference of 28 tr/cm2 is too small to be significant, considering large uncertainties associated with the reported
mean densities (59 and 38 tr/cm2).

The same approach was used to show that differences between mean values on experimental and control chips of
–7, –27, and 2 tr/cm2, as reported by M.H., J.D., and L.K. respectively, were also statistically insignificant.
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Abstract

Using a twin system for hydrogen absorption, we have studied heat evolution and high-energy particle generation by D2 and H2
gas absorption into nano-sized mixed oxide powders of palladium and zirconium. We have found very large energy of hydrogen
absorption by Pd·Zr oxide compounds exceeding 1.0 eV/D (or H) together with a very high D/Pd loading ratio, exceeding 1.0. The
system has been improved to enable time-dependent measurements of the gas flow rate and loading ratio simultaneously with the
output heat. It has been revealed that the first phase is divided into two sub-phases; the 1a-phase, where most of the anomalously
large output energy is produced with a very high loading, D/Pd ≈ 1.2, and the 1b-phase, where much smaller power is produced as
loading increases further by a ratio of about 0.5 with a difference in pressure between deuterium and hydrogen.
© 2011 ISCMNS. All rights reserved.

Keywords: D/Pd loading ratio, Heat output, Pd·Zr oxide compounds, Time-resolved measurements, Two sub-phases

1. Introduction

The present work describes experiments on deuterium gas charging of palladium nano-powders in the form of Pd/ZrO2
nano-composite. This work is a replication of Arata and Zhang [1], which was in turn a sophisticated, yet simplified,
version of the Arata and Zhang’s previous-generation experiments with double-structured reactors [2]. With the new
configuration,Arata and Zhang report anomalous heat and helium-4 generation. If confirmed, this would be an extremely
important phenomenon, so it is crucial that it be replicated if possible. Although successful replications using systems
similar to the original double-structured reactor with Pd-black have been reported [3,4], few reports of replications of
heat and helium-4 with the new configuration have been published.

We constructed an experimental system to replicate the phenomenon and to investigate the underlying physics
[5,6]. The system is composed of two identical reaction chambers, what we call a “twin system” where the chambers
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are designated A1 and A2. Both chambers are equipped for calorimetry. A third chamber, designated B, is equipped for
nuclear diagnostics. We have performed heat measurements as well as charged particle measurements under D2 or H2
absorption by a variety of palladium nano-powders [5–16] including: 0.1-µmφ Pd powder (PP); 300-mesh Pd-black
(PB); oxide composites of Pd·Zr (PZ); oxide composites of Pd·Ni·Zr (PNZ) and oxide composites of Ni·Zr (NZ). We
have recently reevaluated the loading ratios D/Pd (or H/Pd) and E1 based on a revised value for the volume of the of
the reaction chamber, which we now estimate is 120 ml. The revised results are as follows:

(a) The loading ratio D/Pd ≈ 0.44 (H/Pd is also ∼0.44) and the first phase absorption energyE1 ≈ 0.26 eV/atom-D
(or 0.20 for H) for the PP samples. These figures are in good agreement with those found in the literature
[17–22]. The figures for both deuterium and hydrogen increase as a function of the fineness of the sample
surface, where the PP samples have the roughest surface, followed by PB, and PZ is the finest.

(b) For the virgin PB samples, the loading ratios for both D/Pd and H/Pd = 1.3 ± 0.04 and the output energies in
the first phase, E1 = 0.42 ± 0.07 eV/atom-D (or 0.39 for H). These values are 2–3 times larger than for the PP
sample.

(c) The virgin PZ samples have shown outstanding performance with very high loading ratios D/Pd = 1.8 ± 0.3
(or 1.7 H/Pd) together with the high absorption energiesE1, or the deuteride (hydride) formation energyQD(H)
ranging from 0.92 to 1.4 eV/D (and 0.92–1.2 eV/H) depending on how much fraction of PdOx reduction
contributes to the measured values of D(H)/Pd and E1.

(d) The PB and PZ samples have given substantially smaller D/Pd (and H/Pd) ratios andE1 values in their recycled
use. These are smaller than or nearly equal to those for the PP samples. We inferred that these are due to a
clumping-together (aggregation) effect of palladium nano-particles.

(e) The outstanding performances of the PZ sample have been significantly restored by oxidizing a small amount
(less than 10%) of the sample. The runs after forced oxidization allowed us to measure the hydridation energy,
QD(H) = 1.11 ± 0.04 eV/D (0.93 ± 0.09 eV/H), which is about 2 times larger than the adsorption energy, and
5 times larger than the absorption energy of a bulk-Pd-metal.

(f) In the second phase, we observed positive output, E2 ∼ 2.5 kJ/g-Pd for the deuterium runs employing both the
virgin PZ and the used-PZ samples and the PNZ sample. However, this was only slightly above the margin of
error, so it will have to be confirmed in further investigation.

In these experiments, we determined the amount of hydrogen isotopes absorbed/adsorbed by the samples of palladium
from the gas flow rate multiplied by the duration of the first phase, with the gas flow rate being calculated from a rate
of the pressure increase in the reaction chamber at the beginning of the second phase. This determination is reasonable
if absorption ends completely when the second phase begins. Otherwise, D(H)/Pd will be underestimated.

In recent tests we have improved the experimental setup by equipping the sub-tanks with pressure gauges to directly
measure the flow rate and the loading ratio [16]. Deuterium (or hydrogen) gas is stored in this sub-tank beforehand, and
then absorption runs are initiated after closing the gas supply-valve on the head of the gas cylinder to close the system.
With this improvement, we can make accurate time-resolved measurements of absorbed amount of gas as well as the
flow rate. This enables a measurement of time-dependent sorption energy for each hydrogen isotope (differential heat
of hydrogen uptake), which we describe in the present paper.

2. Experimental Procedure

The D2/H2 absorption system is composed of two identical chambers (A1·A2 twin system): one for a D2 gas foreground
run, and the other for an H2 gas background run. As shown in Fig. 1, each of the twin systems has an inner
reaction chamber containing palladium powder and an outer chamber that is evacuated to provide thermal insulation for
calorimetry. The detailed description of the system is given in refs. [14,16]. The statistical error in the output power is
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Figure 1. Schematic of one of the twin absorption systems.

evaluated based on the standard deviation of the longitudinal data, and is 0.67 mW. This is multiplied by the duration
of the first phase to give the statistical error in the time-integrated output energy, e.g., 4.0 kJ for a 100-min run.

The data nomenclature is as follows. The run number is designated G-PN#M(A)(d), where G is the gas species (D
or H); P the type of powder (PP, PB, PZ); N the powder identification number; and M the number of times the powder
has been used. The number M is incremented when a sample is baked and then used in another absorption run. When
the sample is reused without baking it, in what might be considered a continuation of the same run, the number M
is not incremented. The letter A, B, or C is appended to the number instead. Thus, D-PZ11#3B indicates a run with
deuterium, a PZ powder, powder identification number 11, which has been baked and run 3 times, and then run again
without baking (run 3B).

Every absorption run is followed by a desorption run, which is carried out by evacuating the reaction chamber. This
is an endothermic process. The thermal data has occasionally been processed and presented in the data tables with the
run designation lower-case “d.” For the example above, data from a desorption run following the 3B absorption run
would be labeled DPZ11#3Bd.

The powder species used in the present paper are mixed oxides of Pd·Zr (PZ) fabricated by Santoku Corporation,
Kobe, Japan.

To analyze the heat evolution, we assume that the chemical reaction that occurs during loading is described in Eq.
(1) or Eq.. (2). These describe a combination of an oxygen pickup reaction during the formation of D2O (or H2O)
with a reduction energy ofQred (expressed as eV/atom-Pd) and a hydridation reaction during the formation of hydride
atoms PdD(H) and surface adatoms with a reaction energy of QD(H) (eV/atom-D(H)).

PdOx +
(
x + y

2

)
D2 = xD2O + PdDy, (1)

PdOx +
(
x + y

2

)
H2 = xH2O + PdHy. (2)

Here a fraction x of Pd is assumed to have been oxidized and reduced by introduction of D2 (H2), while a fraction
y of Pd is deuterized (or hydrized).
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Figure 2. Typical variation of output power, WD and WH, and pressure in the reaction chamber, PD and PH.

The specific output energy, E1 either in units of (kJ/g-Pd) or (eV/atom-Pd) is expressed as

E1 = xQred + yQD(H). (3)

The fraction y and the energy QD(H) may include those of bulk hydride formation and adsorption to the palladium
particle surface as well as other possible reactions. We take the value of Qred = 1.85 eV/atom-Pd (or 1.68 for H) from
the literature.

The value of y is calculated from the mass conservation law during the gas introduction through the Super Needle:

PR0VR

NAkTR
= PRVR

NAkTR
+ PV

NAkT
+
(
�x + y

2

)
, (4)

where (VR, PR) and (V , P) are the (volume, pressure) of the upstream (reservoir) tank and the downstream (reaction)
chamber subdivided by the Super Needle, respectively, both including the connecting pipes. The left-hand side of
Eq. (4) represents the amount (in mol) of D2 (H2) molecules in the reservoir tank before opening the Super Needle,
and λ represents the fraction of liquid D2O (H2O), if any, generated as a result of the reduction. The third term
on the right-hand side of Eq. (4) then represents the volume (in mol) of D2 (H2) molecules lost to liquefaction or
absorption/adsorption. In the present experimental conditions it is assumed that the water molecules produced through
the reaction (1) will remain in the gas phase, i.e., λ = 0.

To see the effect of oxygen, the sample was occasionally oxidized or deoxidized deliberately [14,16]. The value of
x is calculated from the pressure decrease during the oxidization process.

3. Experimental Results and Discussion

3.1. Time integrated parameters in absorption/desorption runs for PZ samples

Typical variations of the output power,WD andWH, after the introduction of D2 and H2 gas are shown in Fig. 2 together
with the pressure, PD and PH, in each reaction chamber for the PZ13 and PZ14 samples. As seen in the other runs
described above, the pressure remains low during the main heat generation period, which we call the first phase.
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In the absence of an apparent anomaly, the first phase heat is dominated by the chemical reaction of absorption and
adsorption. In some cases, we have observed positive output in the second phase. In the runs described here, however,
we observed no significant output, even when the reservoir pressure was increased to 1 MPa.

Table 1 and Fig. 3, which show the same results described in [16], summarize the parameters integrated over the
first phase of the runs using PZ11 through PZ14; the specific output energyE1 in units of both kJ/g-Pd and eV/atom-Pd,
which is the time-integrated output power per palladium atom; the loading ratio yD (yH) at the end of the first phase,
which is calculated from Eq. (4); and the hydridation energy calculated with Eq. (3). Here it is assumed that the water
molecules produced through the reaction (1) will remain in the gas phase, i.e., λ = 0.

The results are briefly summarized as follows. The virgin PZ samples (No. 1 runs) have very large specific output
energy, E1 = 2.28 ± 0.42 eV/atom-Pd for D-runs or E1 = 2.28 ± 0.29 eV/atom-Pd for H-runs on average, as well as
very high loading ratios, D/Pd =2.31 ± 0.06 or H/Pd = 2.29 ± 0.03.

The specific energy E1 for these “recycle” runs is more than one order of magnitude smaller than the virgin runs.
The loading ratios, D/Pd and H/Pd, also decrease for the recycle runs to average values of 0.60 ± 0.10 and 0.49 ± 0.14
(by a factor of about 4), respectively. Accordingly, the hydridation energy QD(H) also decreases for the recycle runs
to average values of 0.27 ± 0.02 eV/D (0.30 ± 0.08 eV/H) (by a factor of about 3), respectively. These are consistent
with those for the bulk (PP) samples.

We see essentially the same values for E1, D/Pd (or H/Pd) and QD (or QH) in the No. 2 (deoxidized sample)
runs as those in the recycle runs. However, the performance characteristics are largely recovered in the No. 3 runs by
oxidizing the sample palladium to a small extent (a few percent). The averaged values are: E1 =1.97 ± 0.1 eV/Pd,
D/Pd = 1.72 ± 0.09 and QD =1.11 ± 0.04 eV/D for D-runs, and E1 = 1.37 ± 0.06 eV/Pd, H/Pd = 1.44 ± 0.16 and
QH = 0.93 ± 0.09 eV/H for H-runs. A detailed discussion of these results is found in [16].

3.2. Time-resolved parameters; loading ratio and specific absorption energy

Since we were monitoring the time-dependent pressure both in the reaction chamber and the reservoir tank constituting
a closed system, we can calculate time-resolved loading ratio D(H)/Pd, defined as LD(H)(t), which is equal to the
parameter yD(H) defined in Eq. (1), when we can assume that the water molecules, if any, have negligible volume, i.e.,
λ = 0.

Figure 4 shows LD(H)(t) as a function of pressure PD(H) in the first phase for D(H)-PZ13(14)No. 1, D(H)-
PZ13(14)No. 2 and D(H)-PZ13(14)No. 3 runs. This relationship between the pressure and the loading ratio cor-
responds roughly to the absorption isotherm, since the temperature change during the run is smaller than a few degrees
Celsius. We find a similarity between the traces for the No. 1 run (a) and the No. 3 run (c). In both cases there are two
distinct phases, phase 1a and phase 1b. In phase 1a the choice of isotopes, deuterium or hydrogen, has no effect, while
in phase 1b deuterium produces higher pressure.

The transition from the 1a-phase to the 1b-phase occurs at about 60 min for the No. 3 run, which is readily apparent
in Fig. 2. The effect of the isotopes (deuterium or hydrogen) appears to be of the same nature as that in [24]. The
pressure during the 1b-phase for the D-runs is about 10 kPa, while that for the H-runs it is about 5 kPa. Note that the
No. 2 run has only the 1b-phase. The hydrogen uptake in the 1b-phase is�LD(H) ≈ 0.5 in all cases. These values of the
pressure and the hydrogen uptake are consistent with those extrapolated from the values found in ref. [24] which used
10-µm-thick palladium foils. From this we infer that the 1b-phase is characteristic of the bulk palladium absorption,
and not of the surface adsorption. On the other hand, the 1a-phase is considered to be characteristic of the sample
containing PdO, since the samples for the No. 2 runs have no oxygen.

From the above results we can exclude the possibility that the anomalously large D(H)/Pd might be due to conden-
sation of D2O (or H2O) atoms into the liquid phase with negligible volume, i.e., an overestimation of D(H)/Pd (= y) due
to a nonzero λ (cf. Eq. (4)). Condensation, if it could occur, would be in the 1b-phase at higher pressure. However, the
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Table 1. Summary of the first phase parameters in absorption/desorption runs for PZ11 through PZ14
samples. Contribution of deoxidization (oxygen pick-up and water formation) to the output energy is not
subtracted in calculating QD(H) in the case of the virgin sample runs indicated with asterisks*.

Run No. O/Pd (= x)
Specific output energy E1 D/Pd(= y) QD (eV/D) Remarks
(kJ/g-Pd) (eV/atom-Pd)

D-PZ11
No. 1 Unknown 1.69 ± 0.05 1.86 2.37 0.79* Virgin
No. 2 0 0.14± 0.01 0.16 0.56 0.28 Deoxidized
No. 3 0.086 1.88 ± 0.07 2.08 1.81 1.15 Oxidized
No. 3d 0 –0.13 ± 0.01 –0.14 – –
No. 3A 0 0.14 ± 0.01 0.15 0.56 0.27
No. 3Ad 0 –0.11 ± 0.01 –0.12 – -
No. 3B 0 0.12 ± 0.01 0.14 0.49 0.28
No. 3Bd 0 –0.11 ± 0.01 –0.13 – –
D-PZ13
No. 1 Unknown 2.44 ± 0.13 2.69 2.25 1.20* Virgin
No. 1d 0 –0.27 ± 0.03 –0.30 – –
No. 1A 0 0.16 ± 0.02 0.18 0.63 0.28
No. 1Ad 0 –0.16 ± 0.02 –0.18 – –
No. 1B 0 0.15 ± 0.01 0.16 0.70 0.23
No. 1Bd 0 –0.14 ± 0.01 –0.16 – –
No. 2 0 0.26 ± 0.06 0.23 0.59 0.39 Deoxidized
No. 2d 0 –0.17 ± 0.02 –0.18 – –
No. 3 0.073 1.69 ± 0.17 1.87 1.63 1.06 Oxidized
H-PZ12
No. 1 Unknown 1.80 ± 0.13 1.99 2.26 0.88* Virgin
No. 2 0 0.14 ± 0.01 0.16 0.45 0.35 Deoxidized
No. 3 0.054 1.18 ± 0.05 1.31 1.28 1.02 Oxidized
No. 3d 0 –0.10 ± 0.01 –0.11 – –
No. 3A 0 0.11 ± 0.01 0.12 0.41 0.29
No. 3Ad 0 –0.10 ± 0.01 –0.11 – –
No. 3B 0 0.10 ± 0.01 0.11 0.44 0.25
No. 3Bd 0 –0.09 ± 0.01 –0.10 – –
H-PZ14
No. 1 Unknown 2.32 ± 0.12 2.56 2.31 1.11* Virgin
No. 1d 0 –0.42 ± 0.05 –0.46 – –
No. 1A 0 0.13 ± 0.01 0.15 0.35 0.42
No. 1Ad 0 –0.16 ± 0.02 –0.18 – –
No. 1B 0 0.16 ± 0.02 0.18 0.73 0.25
No. 1Bd 0 –0.16 ± 0.02 –0.18 – –
No. 2 0 0.19 ± 0.04 0.21 0.65 0.33 Deoxidized
No. 2d 0 –0.14 ± 0.01 –0.22 – –
No. 3 0.061 1.29 ± 0.13 1.43 1.59 0.83 Oxidized

1b-phase is observed also in the No. 2 runs with no oxygen involved. Therefore, it is unlikely we have overestimated
D(H)/Pd because of condensation.

We can define time-resolved specific sorption energy, or differential heat of hydrogen uptake, ηD(H)(t), as the output
energy per hydrogen isotope atom absorbed/adsorbed, which is calculated as the output energy during a time interval
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Figure 3. First phase parameters in comparison with D-runs and H-runs; specific output energy E1, loading ratio D(H)/Pd, and hydridation energy
QD(H).

τ divided by the increment of L(t) in the same interval;

η(t) ≡
∫ t+τ
t

Ws(t)dt

L(t + τ)− L(t)
, (5)

where Ws(t) is in unit of power per palladium atom including the contribution from the oxygen pickup reaction. The
interval τ is arbitrary, and chosen here to be the time constant of the calorimetry system. For the samples with no
oxygen involved, the hydridation energy QD(H) introduced above is equal to time-averaged value of ηD(H)(t) with τ
being the first phase duration and t = 0. Since both Ws(t) and L(t) are values per palladium (absorber) atom, ηD(H)(t)

is independent of sample constituent, namely whether we use PZ or PNZ or other mixed samples.
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Figure 4. Time-resolved loading ratio, LD and LH, expressed as a function of pressure in PZ13(14)No. 1–3 runs. The first phase appears to be
divided into 1a-phase and 1b-phase.

Figure 5 shows examples of time-resolved sorption energy ηD(H) and loading ratio LD(H) compared with the output
power WD(H) in the run D(H)–PZ13(14)No. 3. We notice here again that the evolution of heat has two phases divided
at t = 60 min. The heat evolution associated with hydrogen isotope absorption/adsorption proceeds mainly in the
low-pressure 1a-phase below ∼4 kPa. In a difference from LD(H)(t), a not-inconsiderable difference in the effect of
the isotopes (deuterium or hydrogen) is observed for the heat evolution in the 1a-phase: ηD ≈ 1.33 eV/D, while ηH ≈
1.15 eV/H. On the other hand, a relatively small amount of heat is generated in the 1b-phase from 60 to 100 min; ηD ≈
0.47 eV/D and ηH ≈ 0.41 eV/H with a moderate isotope effect compared with that in the pressure mentioned above.

It has been found that most of the heat evolution from the samples in the 1a-phase only occurs when oxygen atoms
are involved, and the 1b-phase with no oxygen produces much less heat. From this we might infer that the main heat
source is the oxygen pickup reaction. However, it must be emphasized that QD(H) obtained after the contribution of
the deoxidization subtracted from E1 is still anomalously large, being 1.11 ± 0.04 eV/D (or 0.93 ± 0.09 eV/H), as
was shown in Table 1 and Fig. 3. Therefore, the main heat source in the 1a-phase is related to the presence of oxygen,
but it is independent of the deoxidization reaction. From the fact that the 1a-phase proceeds at low pressure with little
difference in the effect of the isotopes (deuterium or hydrogen) on pressure, we conclude that the heat source is on or
near the surface of palladium nanoparticles, or that the reaction is triggered on or near the surface.

What is important is that the hydridation energy QD(H) = 1.11 ± 0.04 (0.93 ± 0.09) eV/D(H) is much larger than
the bulk hydride formation energy (∼= 0.2 eV) and the surface adsorption energy (∼= 0.5 eV). Huang et al. [23] have
reported that differential heat of hydrogen uptake for hydrogen chemisorption reaches or even exceeds 1 eV/H for a
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Figure 5. Time-resolved sorption energy ηD(H), loading ratio LD(H) compared with the output power WD(H) in the run D(H)-PZ13(14)No. 3.

dispersed 2-nm-diameter palladium particles. In the present case of our Santoku samples, however, the mean diameter
of the palladium nanoparticles is 10 nm, and oxygen incorporation is necessary for the large hydridation energy.

A phenomenological modeling and discussions on the role of the PdO layer of the Pd-nano-particle and possible
mechanisms relating the anomalous heat component found in the present work to a nuclear origin are given in the
separate papers [15, 25]

4. Conclusion

The hydrogen isotope absorption/adsorption system has been improved to enable time-dependent measurements of the
gas flow rate and the D (or H) loading ratio simultaneously with the thermal output power. Runs using the samples after
forced deoxidization and forced oxidization, as well as the virgin runs at room temperature, have revealed interesting
facts. The first phase, in which chemical heat is produced, is divided into two subphases, after which the chemical heat is
completed. In the 1a-phase, the predominant heat evolution is associated with hydrogen isotope absorption/adsorption,
and proceeds under relatively low pressure below about 4 kPa with the specific sorption energy being ηD ≈ 1.33 eV/D
and ηH ≈ 1.15 eV/H. In the 1b-phase, a relatively small amount of heat is generated under an isotope-dependent
pressure of several to 10 kPa with ηD ≈ 0.47 eV/D and ηH ≈ 0.41 eV/H. It should be noted that samples tested after
forced deoxidization exhibited only the 1b-phase. The 1a-phase only appears with samples incorporating oxygen.
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Abstract

Excess heat in the Fleischmann–Pons experiment is observed without commensurate energetic particles, which is inconsistent with
known nuclear reactions. Any proposed model must address this at the outset. At present, we recognize are two general approaches
to the problem: mechanisms which transfer the reaction energy directly to a condensed matter mode, which requires the fractionation
of a large quantum into many small quanta; mechanisms in which the large energy quantum is converted to kinetic energy over a very
large number of neighboring nuclei. We have focused on the first approach, and we have found a model that seems to accomplish this.
Here we introduce the model, which we call the “lossy spin-boson model”. We find that energy exchange in the lossless spin-boson
model is hindered due to destructive interference effects. Augmenting the model with loss removes the destructive interference, and
we use perturbation theory on a specific example for illustration. Feshbach projection operators and the Brillouin–Wigner formalism
which we adopt to describe loss in the model are reviewed in Appendix A.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

Over the past several years, we have been thinking about models relevant to excess heat in the Fleischmann–Pons
experiment [1,2]. In these experiments, a prodigious amount of energy is observed, and 4He is seen in the gas phase
in amounts correlated quantitatively with the energy produced [3–5]; essentially no energetic particles are observed
correlated with the energy [6]. This latter aspect of the experiments has drawn our attention over the years as being of
particular importance.

To understand why, we consider briefly the situation in a “normal” nuclear reaction. In a Rutherford picture, the
incident nuclei might be taken to be as classical particles, and similarly the product nuclei might also be thought about
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© 2011 ISCMNS. All rights reserved.
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classically. Both energy and momentum are conserved in such a picture, so that the basic kinematic relations for the
final state products can be determined from a knowledge of the reaction energy and initial state momenta and energies.
A consequence of this is that the reaction energy in the case of deuteron-deuteron fusion ends up as kinetic energy of the
proton and triton, or neutron and 3He nucleus, in the final state. In the quantum mechanical description of the reaction,
energy and momentum conservation similarly requires that the reaction energy appears as kinetic energy of the product
nuclei.

In the Fleischmann–Pons experiment, there are no energetic particles commensurate with the energy produced. In
light of the comments above, one might reasonably conclude that no nuclear reactions take place. But if so, then what
is the source of the energy, and where does the 4He come from? In the early days following the initial announcement
of 1989, arguments were put forth that the energy was a result of chemical reactions, or experimental error [7]. The
arguments against chemical reactions include the absence of observable commensurate chemical reaction products, and
that the amount of energy is much greater in some cases than a chemical level of energy associated with all the atoms
of the cathode and electrolyte. The primary argument against experimental error at this time is that the effect has been
reported in a very large number of experiments [8,9], where different calorimeters and different types of calorimetry
have been used.

So, what can be the resolution? Energy at the nuclear level is seen in many experiments, 4He seems to be present
as a product that is correlated with the energy produced, and yet there are no commensurate energetic particles as
would be required in a Rutherford-type picture of a nuclear reaction. We are by now sure that energy is produced as an
experimental fact; we are pretty sure that 4He is produced as an experimental fact; and we are sure that commensurate
energetic particles are not present as an experimental fact. In essence, some new kind of reaction seems to be taking
place in a way inconsistent with the Rutherford picture of how a nuclear reaction is supposed to work.

If so, then where does the energy go? From experiment, we measure it as thermal energy; but whatever intermediate
forms the energy might appear in prior to thermalization so far is hidden.

There is indirect evidence in the Letts two-laser experiment that the energy goes into optical phonon modes (in
this experiment in particular) stimulated at the beat frequency, since excess heat persists after the lasers are turned off
[10,11]. The theoretical question as to how such a thing might happen is at present an open one.

In our efforts to understand the effect, we have been interested in the possibility of the fractionation of a large energy
quantum into a very large number of smaller energy quanta [12]. The basic idea is that the initial nuclear reaction energy
will be measured in units of MeV, while the characteristic energy of an optical phonon mode as an oscillator is measured
in units of meV. This suggests that perhaps the large nuclear quanta is somehow being split up into on the order of 108

smaller energy quanta. If a mechanism exists to accomplish this, then we might be able to understand how excess heat
is produced in the Fleischmann–Pons experiment.

Although this approach has seemed perhaps the most plausible one to us, there is no precedent, and the majority
of our colleagues favor various other approaches. Among the schemes that are presently being considered there are
aneutronic fusion schemes in which the reaction products are hidden [13]; there is the approach of Kim wherein the
reaction energy is somehow partitioned as kinetic energy among a very large number of deuterium atoms [14]; and
there is the general approach of Widom and coworkers [15] where the reaction products are again hidden. There have
been a great many proposals for reaction mechanisms put forth over the years, some of which are based on aneutronic
mechanisms that are otherwise largely conventional. The intuition associated with such proposals is that a reasonably
unreactive energetic product (such as an alpha) would be able to slow down and thermalize inside the cathode so as
to be “hidden”. The measurements described in [6] can be interpreted, based on direct calculations of the associated
secondary yields, as placing an upper limit on the energy of a product alpha to be conservatively less than 20 keV.
In essence, energetic alphas produced at the watt level cannot be “hidden” in a PdD cathode. Since 4He appears as a
primary product of the new process, this upper limit on the kinetic energy is a very severe constraint, and rules out the
majority of proposed mechanisms involving 4He that have been proposed. We do not think that it is possible to “hide”
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commensurate energetic reaction products [6], and we do not understand what kind of direct physical mechanism is
capable of distributing a large reaction energy (for example, 24 MeV) over more than 104 deuterium atoms as proposed
by Kim.

In the case of direct coupling of the reaction energy into condensed matter modes, there is no real precedent for
such an effect. The results outlined here follow from our recent studies of basic models involving two-level systems
and harmonic oscillators that began around 2000. The thinking behind this kind of model was that the two-level system
would stand in for two nuclear states with an MeV energy difference, and the oscillator would stand in for a vibrational
mode of the lattice. The question of interest was whether there was any way to exchange energy coherently between the
two systems; our earlier results (from the previous decade) suggested that that it would be extremely difficult to couple
a relevant number of quanta directly from two-level systems to the oscillator. Computations of coupled systems were
done under a variety of assumptions: weak coupling, strong coupling, linear interactions and nonlinear interactions. In
these computations, energy exchange seemed to be restricted to less than 100 oscillator quanta at a time.

The situation changed qualitatively when we recognized that energy exchange in these systems was inhibited by
massive destructive interference, which could be removed in lossy systems. We presented calculations at ICCF9 in
2002 which showed the basic effect [16]. We used a quantum flow formulation at that time, and carried out calculations
which showed that coherence was maintained under conditions where up to 104 oscillator quanta were exchanged. This
result seemed to us to be quite significant, since it showed that coherent energy exchange could occur between two-level
systems and an oscillator with incommensurate quanta. Following the initial presentation at ICCF9, there seems to
have been little outside interest in the result.

Subsequently, we devoted significant effort to better understand the new models. In the absence of loss, the early
models that we had explored are equivalent to the spin-boson model which has received considerable attention in the
literature [17–19] (but much less attention in regard to the issue of energy exchange in the multiphoton regime). We
developed a rotation that allowed us to treat coherent multiphoton energy exchange in the spin-boson model in the
same way as one would analyze linear coupling [20,21]. In this approach, we were able to isolate dressed states which
were nearly degenerate, but “distant” with regard to the linear coupling of the model, and estimate the indirect coupling
between them analytically.

The lossy problem is much harder, and to date we have not identified an analogous rotation that would allow a
similar treatment of the problem. However, we have over the years applied a number of different techniques which
have allowed us to characterize the model and establish important limits. In this manuscript, we begin our discussion
of the lossy spin-boson model. We start with a brief consideration of the spin-boson model, and then augment the
spin-boson model with loss using a Brillouin–Wigner loss operator. Since the projection operators of Feshbach and
infinite-order Brillouin–Wigner theory were used more often in decades past, we provide a brief review in Appendix A.
Finally, we demonstrate explicitly that indirect coupling between distant states is hindered by destructive interference
in the spin-boson model using perturbation theory (which provides for the cleanest demonstration of the effect), and
that the indirect coupling is not hindered in the lossy model (by considering the limit where the loss becomes infinite
for states with an energy excess).

In the course of the review process, a great many criticisms were put forth by a reviewer, who wanted them to be
addressed systematically in this paper. The issues of interest cover a lot of topics, and we chose to focus our attention on
a subset of the problems so that papers of manageable size might result. Nevertheless, some of our colleagues thought
that the associated discussion might be useful, so we have added selections of the reviewer’s criticisms along with some
responses in Appendix B.
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2. Spin-boson Model Augmented with Loss

The spin-boson model is a popular model which includes two-level systems and an oscillator with linear coupling. Earlier
versions of the model were investigated in association with NMR research about 70 years ago [17], and extended to
problems involving atoms and electromagnetic fields about 35 years ago [18]. From our perspective, this Hamiltonian
is interesting because it describes the most basic interaction between two fundamental quantum models (two-level
systems and a harmonic oscillator), and more particularly, it sheds light on coherent energy exchange between the two
systems when the two-level transition energy is a large multiple of the oscillator energy.

2.1. Spin-boson model

The Hamiltonian for the spin-boson model is [19]

Ĥ = �E

h̄
Ŝz + h̄ω0â

†â + V (â† + â)
2Ŝx
h̄
. (1)

In this model, �E is the transition energy of the two-level systems, h̄ω0 is the characteristic energy of the oscillator,
and V is a coupling strength.

Our intuition might lead us to anticipate that energy exchange between the two systems should occur when the
transition energy of the two-level systems is matched to the characteristic energy of the oscillator. This is so when the
coupling is weak. If the coupling is stronger, and if there is a near resonance between the two-level transition energy
and three oscillator quanta, then once again energy can be exchanged coherently. The reason that this works is that
the system is able to maintain coherence over the time that several interactions occur, so that a nonlinear response is
possible even though the coupling is linear.

We have explored energy exchange in this model in the multiphoton regime, with much larger numbers of oscillator
quanta exchanged for a single two-level system quantum [20,21]. Unfortunately, coherent energy exchange in the
multiphoton regime is a weak effect that requires very precise level matching. Coherent energy exchange at finite rates
in this model is possible under moderately strong coupling for up to about 50 quanta at a time; for the exchange of even
more quanta, the constraints on the degree of resonance becomes prohibitive, and the energy exchange rates become
very small [23].

2.2. Lossy spin-boson model

If we augment the spin-boson model with loss, things change qualitatively in regard to energy exchange in the multi-
photon limit as we will show later on in this paper. We write such a model as [22–24]

Ĥ = �E

h̄
Ŝz + h̄ω0â

†â + V (â† + â)
2Ŝx
h̄

− i
h̄�̂(E)

2
. (2)

The loss term in this model is an operator that comes about from an infinite-order Brillouin–Wigner model as discussed
in Appendix A. As written, this loss term is completely general, but we are thinking of it as being referenced to the
oscillator so as to provide strong loss at energies in the vicinity of the two-level system transition energy.

In regard to the Fleischmann–Pons model, the oscillator here stands in for an optical phonon mode, so that h̄ω0 is
tens of meV. The transition energy�E for the two-level system is assumed to be associated with nuclear energy levels,
on the order of MeV. The thought regarding the loss term here is that loss channels for the phonon mode open if the
system has available several MeV of energy through the disintegration of nuclei that make up the phonon mode.
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3. Indirect Coupling in Perturbation Theory

We have argued previously that the introduction of loss into the model leads to an enormous enhancement of indirect
coupling between distant states that are nearly degenerate. To understand this better, if we consider a product basis
state of the form

|S,m〉|n〉,
then the Hamiltonian leads to coupling between neighboring states of the form

|S,m± 1〉|n± 1〉.
If the two-level transition energy �E were matched to the characteristic energy h̄ω0 of the oscillator, then this direct
coupling would lead to coherent energy exchange on or near resonance. However, in the multiphoton regime of the
model, we require the exchange of more oscillator quanta to bring the system back into energy balance. As a result, the
closest states which are nearly degenerate are the distant states

|S,m− 1〉|n+�n〉, |S,m+ 1〉|n−�n〉,
where�n is the number of oscillator quanta exchanged. There is no direct coupling between |S,m〉|n〉 and these states;
when the coupling constant is sufficiently large there can be a weak indirect coupling. It is this weak indirect coupling
that we are interested in here.

3.1. Indirect coupling in perturbation theory with no loss

Indirect coupling is very weak in the lossless spin-boson model because of destructive interference. We can see this
most readily in a perturbation theory calculation. As an example, we consider indirect coupling in the case where 5
oscillator quanta are exchanged between the nearly degenerate basis states |S,m〉|n〉 and |S,m+ 1〉|n− 5〉.

We can develop the perturbative result that we are interested in starting from a finite basis expansion of the form

� =
∑
j

cj�j

= c1|S,m〉|n〉 + c2|S,m− 1〉|n− 1〉 + c3|S,m+ 1〉|n− 1〉 + c4|S,m− 2〉|n− 2〉
+ c5|S,m〉|n− 2〉 + c6|S,m+ 2〉|n− 2〉 + c7|S,m− 1〉|n− 3〉 + c8|S,m+ 1〉|n− 3〉
+ c9|S,m+ 3〉|n− 3〉 + c10|S,m〉|n− 4〉 + c11|S,m+ 2〉|n− 4〉 + c12|S,m+ 1〉|n− 5〉. (3)

The numbering here corresponds to the state definitions indicated in Fig. 1.
The finite basis equations for the coefficients can be written as

Ec1 = m�E + nh̄ω0 + V1,2c2 + V1,3c3,

Ec2 = (m− 1)�E + (n− 1)h̄ω0 + V2,1c1 + V2,4c4 + V2,5c5,

...
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Figure 1. Basis states involved at lowest order in perturbation theory for indirect coupling with the exchange of five oscillator quanta.

Ec12 = (m+ 1)�E + (n− 5)h̄ω0 + V12,10c10 + V12,11c11. (4)

To develop these equations, we require the diagonal and off-diagonal matrix elements of the spin-boson Hamiltonian.
The nonzero matrix elements are

〈n|〈S,m|Ĥ |S,m〉|n〉 = M�E + nh̄ω0,

〈n+ 1|〈S,m+ 1|Ĥ |S,m〉|n〉 = V
√
n+ 1

√
(S −m)(S +m+ 1),

〈n− 1|〈S,m+ 1|Ĥ |S,m〉|n〉 = V
√
n
√
(S −m)(S +m+ 1),

〈n+ 1|〈S,m− 1|Ĥ |S,m〉|n〉 = V
√
n+ 1

√
(S +m)(S −m+ 1),

〈n− 1|〈S,m− 1|Ĥ |S,m〉|n〉 = V
√
n
√
(S +m)(S −m+ 1). (5)

Since our focus is on the indirect coupling between |S,m〉|n〉 and |S,m+ 1〉|n− 5〉, we can keep the corresponding
coefficients c1 and c12, and eliminate the others algebraically. This leads to coupled equations of the form

Ec1 = m�E + nh̄ω0 +�1(E)c1 + V1,12(E)c12,

Ec12 = (m+ 1)�E + (n− 5)h̄ω0 +�12(E)c12 + V12,1(E)c1. (6)
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Here �1(E) and �12(E) are self-energies, and V1,12(E) and V12,1(E) are indirect coupling coefficients. The lowest-
order contribution to the indirect coupling coefficient V1,12(E) is obtained by summing over the different paths

V1,12(E) = V1,2V2,4V4,7V7,10V10,12

(E −H2)(E −H4)(E −H7)(E −H10)

+ V1,2V2,5V5,7V7,10V10,12

(E −H2)(E −H5)(E −H7)(E −H10)
+ · · · , (7)

where Hj is the diagonal matrix element of basis state j . There are 10 terms altogether in this summation. Assuming
resonance H1 = H12, this sum can be evaluated in closed form to yield

V1,12(E) = 625

64

V 5√n(n− 1)(n− 2)(n− 3)(n− 4)

�E4

√
(S −m)(S +m+ 1). (8)

3.2. Destructive interference

The indirect coupling term in the lossless case is very small due to destructive interference. This can be seen from a
comparison of the summed indirect coupling coefficient V1,12(E) with the first term of the series of Eq. (7). We may
write

V1,2V2,4V4,7V7,10V10,12

(E −H2)(E −H4)(E −H7)(E −H10)
= 625

64

V 5√n(n− 1)(n− 2)(n− 3)(n− 4)

�E4

√
(S −m)(S +m+ 1)

(S +m)(S +m− 1)(S −m+ 1)(S −m+ 2)

36
(9)

If the number of two-level systems is large, then S will be large. This term can be larger than the sum by a factor that
can be on the order of S4/36, which gives an indication of how effective destructive interference is for this case.

3.3. Indirect coupling in the lossy model

In the augmented version of the problem with loss, the destructive interference can be removed if the loss terms are
sufficiently large. We can begin to see this in perturbation theory by using a finite basis approximation with the same
basis states as we used above. This time, the first three expansion coefficients satisfy coupled equations of the form

Ec1 = H1c1 + V1,2c2 + V1,3c3,

Ec2 = (H2 − ih̄�2/2)c2 + V2,1c1 + V2,4c4 + V2,5c5,

Ec3 = H3c3 + V3,1c1 + V3,5c5 + V3,6c6. (10)

Intermediate states (such as �2) which have energies less than E have decay modes available in this model, since the
system can decay to such states if energy is lost through the decay processes modeled by the loss operator. Other states
(such as �3) which are in energy deficit as intermediate states do not have analogous decay modes available, and are
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Figure 2. Basis states involved at lowest order in perturbation theory for indirect coupling with the exchange of five oscillator quanta in the limit
of infinite loss.

free of loss in this model. States that are resonant (such as �1 and �12) are assumed to be stable against zero-energy
decay processes.

The expression one obtains in such a model for the indirect coupling coefficient is very complicated, and not
particularly enlightening. As we are interested in the issue of destructive interference between different pathways, we
can eliminate the destructive interference completely by considering a model in which the loss terms are much greater
than other terms that appear in the denominator. In the limit that the associated loss is infinite, then only pathways
which include intermediate states in energy deficit contribute (see Fig. 2). In this limit we sum to obtain

V1,12(E) →
[
V1,12(E)

]

�j=0
F(S,M) (�j → ∞), (11)

where the �j = 0 result is given in Eq. (8), and where the factor F(S,M) evaluates to

F(S,M) = (S −m− 1)(S +m+ 2)(7S2 + 7S − 7m2 − 23m− 18)

36
. (12)

We see from this calculation that destructive interference greatly reduces the indirect coupling between distant resonant
states in the original Dicke model, leading to a much larger indirect coupling matrix element.

4. Discussion and Conclusions

We are interested in the possibility that a large nuclear quantum of energy can be fractionated and exchanged with a
condensed matter mode. To investigate this possibility, we have focused on the simplest basic physics model which
exhibits coherent energy exchange between relevant quantum systems – the spin-boson model augmented with loss.
This model is interesting in that it describes coherent energy exchange at usefully large rates under conditions where a
large two-level system energy quantum is divided into a great many small energy quanta. In our most recent studies with
more realistic and more sophisticated models, the indirect coupling appears to be strong enough to allow for coherent
energy transfer at rates relevant to excess heat production in the Fleischmann–Pons experiment. This provides us with
motivation for pursuing this model and its generalizations.

We presented the spin-boson Hamiltonian along with the generalization to the lossy version of the problem. Although
one can find in the literature versions of the spin-boson model augmented with loss, these generalizations of the model
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are usually concerned with oscillator loss near the characteristic frequency of the oscillator (so that the oscillator is
damped). These models are qualitatively different from the one we have given, since we are interested in oscillator loss
generally at higher frequency which produces a different physical effect.

We used perturbation theory to argue that indirect coupling between distant nearly degenerate states is hindered by
destructive interference in the spin-boson model (without loss), and that this destructive interference is removed in the
lossy problem when the loss is large. This establishes the most important property of the new model in a clean and
obvious way, that it allows for very much enhanced indirect coupling.

The new model is moderately complicated despite its deceptively simple sector Hamiltonian, so it seemed helpful
to provide a review of projection operators and infinite-order Brillouin–Wigner theory in Appendix A. This seems
appropriate given that the version of the model that we have been studying is expressed using this formalism, and such
a review may be helpful for our colleagues in the field.

It remains to establish the scaling of the new model with respect to its dimensionless coupling constant, to develop
a formalism that allows us to understand it using a formalism based on indirectly coupled nearly degenerate states, and
to establish formulas for the indirect coupling in the limit that a very large number of quanta are exchanged. These
issues will be dealt with in following manuscripts.

Appendix A. Second-order Loss Models

From the earliest days of quantum mechanics, the inclusion of loss into models has been of interest. Over the years a
variety of different approaches have been introduced of varying degrees of complexity. In our work, we have made use
of an approach which is sometimes called infinite order Brillouin–Wigner theory. While this approach was at one time
a very standard approach, in recent years it has not been as popular as other methods. This motivates us to provide a
brief review in this section.

Appendix A.1. Sectors

We consider a simple example of a system which has a set of states that we can identify readily in which the system
resides prior to decaying, which we will refer to as {�a}; and a second set of states that we can readily associate with
the system after it has decayed, which we will refer to as {�b}. By identifying these two distinct sets of states in this
way, we divide the associated Hilbert space, or Fock space, into two different sectors.

We assume that there is a Hamiltonian Ĥ that is valid for all of the states of the system, and that eigenstates satisfy

E� = Ĥ�. (A.1)

We can divide the wavefunction � into different pieces corresponding to the different sectors. One way to do this is to
use projection operators (P̂ and Q̂) [25] so that

�a = P̂�, �b = Q̂�. (A.2)

The first projection operator P̂ separates out the part of the wavefunction � that belongs in the first sector; and the
second operator Q̂ does the same for the second sector. If we assume that there are only two sectors of interest, then
we may write

P̂ + Q̂ = 1. (A.3)
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Appendix A.2. Sector equations

We can take advantage of these operators to isolate the parts of the Hamiltonian Ĥ which refer to the different sectors,
which leads to sector equations. We may write

EP̂� = P̂ (Ĥ�) (A.4)

to project into the a sector. Since

Ĥ� = Ĥ (P̂ + Q̂)�, (A.5)

we can expand and write

E�a = (P̂ Ĥ P̂ )�a + (P̂ Ĥ Q̂)�b, (A.6)

where we have used the identities

P̂ 2 = P̂ , Q̂2 = Q̂. (A.7)

Similarly, we may write

E�b = (Q̂Ĥ Q̂)�b + (Q̂Ĥ P̂ )�a. (A.8)

Appendix A.3. Sector Hamiltonian with loss

The projection operators have allowed us to separate cleanly the problem into two pieces, but now we have a situation
in which the coupling terms between the different sectors are not Hermitian. This is important, and also useful, since
when there is loss we expect to lose probability from the first sector.

It is possible to eliminate�b algebraically from thea sector equation, which will produce a second-order Hamiltonian
for the a sector that includes simple loss effects. We can do this by first writing

�b = [E − (Q̂Ĥ Q̂)]−1(Q̂Ĥ P̂ )�a, (A.9)

which allows us to obtain the second-order equation for the a sector

E�a = (P̂ Ĥ P̂ )�a + (P̂ Ĥ Q̂)[E − (Q̂Ĥ Q̂)]−1(Q̂Ĥ P̂ )�a. (A.10)

The second-order term in general is complex; the real part is an effective potential, and the imaginary part gives rise to
loss. We might express this as

�̂(E) = Re

[
(P̂ Ĥ Q̂)[E − (Q̂Ĥ Q̂)]−1(Q̂Ĥ P̂ )

]
, (A.11)

− h̄�̂(E)
2

= Im

[
(P̂ Ĥ Q̂)[E − (Q̂Ĥ Q̂)]−1(Q̂Ĥ P̂ )

]
. (A.12)
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Our sector Hamiltonian Ĥa might be written as

Ĥa(E) = (P̂ Ĥ P̂ )+ �̂(E)− i
h̄�̂(E)

2
. (A.13)

Appendix A.4. Connection with Golden Rule decay

On the one hand, this might seem to be a rather strange Hamiltonian, since it depends explicitly on the energy eigenvalue
E, and since it is not Hermitian if loss is present. On the other hand, this formalism can be very useful since it includes
decay very simply, and since the loss term in the Hamiltonian is consistent with the Golden Rule decay rate [26]

γ = 2

h̄

〈
Im

[
(P̂ Ĥ Q̂)[E − (Q̂Ĥ Q̂)]−1(Q̂Ĥ P̂ )

]〉
= 2π

h̄
|〈�b|Q̂Ĥ P̂ |�a〉|2ρ(Ef ). (A.14)

The eigenvalues of this second-order a sector Hamiltonian are complex, so that if we solve

Eψa = Ĥa(E)ψa (A.15)

then we can find the associated decay rate for a state from

γ = − 2

h̄
Im{E}. (A.16)

Appendix B. Reviewer Comments and Responses

T he first reviewer for this and the following paper had a great many criticisms. To address all of the issues raised by the
reviewer in the main text did not seem to be a reasonable thing to do, as it would have greatly extended the length and
complexity of the paper. Our approach has been to recognize at the outset that the problem of interest is complicated,
and made up of a great many pieces, so that we might make progress best by focusing on a small number of issues at a
time.

Some of our colleagues thought that the associated discussion was helpful. As a result, we have decided to include
a subset of the comments (which we have in some cases restated or revised), along with some associated comments.
In some cases these comments were those in our response, in other cases we have summarized comments from our
response, and in yet others we have provided different and hopefully better comments.

Appendix B.1. On the need for many step-wise levels

As 4He*(Ex) nuclear excited states are known to be limited for Ex = 23.8, 23.35, 23.04, 21.04, 21.01, 20.21 MeV
after the d+d reaction, possible electromagnetic transitions from the Ex = 23.8 MeV state are limited for step-wise
emitting photon quanta of 0.45, 0.31, 0.03, 0.8, 20.21, 0.76, 0.83, 2.7, 3.6 and 23.8 MeV; even neglecting the spin-parity
selection rule (as spin-parity of 23.8 MeV state is unknown). These are all easily measurable gamma-rays by an HPGe
detector, but they are never observed. Therefore the proposed transition with very small quanta (30 meV; 3 × 10−2 eV)
stepwise is not possible as the corresponding 4He excited states do not exist step-wise.

To avoid this difficulty, one must show that very fine (30 meV step, for instance) new levels with defined spin-parities
are possible by the third interaction field. This is not done in the present paper (once Talbot Chubb proposed such an
idea, but has never proved it by his theory).
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This comment is the one most relevant to the technical content of our papers. From our perspective, we are grateful
that the reviewer has spelled out this argument, since it very much helps to clarify a very pervasive misunderstanding
about the models we have studied.

In the conventional spin-boson model, significant rates for coherent energy exchange occur when several tens of
oscillator quanta make up a single two-level system quantum. There are no intermediate states available for a step-wise
excitation as the reviewer has mentioned in the associated model. I note that there are reports of experimental results
in which this kind of energy exchange has been observed directly, in agreement with the theoretical models.

I agree that many people have intuition that suggests that the only way to exchange a lot of quanta with an oscillator
is by having a lot of equi-spaced levels. Many years ago, I started from the same place, and at one time I used this very
argument to dismiss the possibility of energy exchange with a low energy oscillator. However, the argument is simply
wrong. One does not need equi-spaced levels in order to exchange a large number of quanta with an oscillator. In the
case of the spin-boson model, this was known at least as early as 1965 when Shirley’s paper [18] appeared; there is
now a sub-field that focuses on this regime (which is called the multi-photon regime in the literature). In our paper, we
show that this is true for the lossy version of the spin-boson model, and obtain an analytic result in the simplifying case
when the loss is infinite.

Appendix B.2. The Coulomb barrier problem

At the end of reading through the paper, the reviewer noticed a big problem. The paper does not describe about how
to overcome the Coulomb barrier, for two deuterons to make their relative distance very close for inducing nuclear
fusion reaction by the strong interaction under mutual very short range interaction (nuclear confinement) potential.
Did they solve the problem in their past works? Probably not. The paper does not use the relative distance between two
deuterons as key variable for solving wave functions of quantum-mechanical equations with defined Hamiltonians. As a
consequence, the solution, how very close d–d pairs are realized in the assumed nuclear-lattice-phonon coupled-particle
confining potential, is not shown.

The first two papers introduce the lossy spin-boson model; make clear that destructive interference is the reason
that coherent energy exchange is hindered in the normal spin-boson model; demonstrates a strongly enhanced coherent
energy exchange effect under conditions where a modest number of oscillator quanta are exchanged; and then presents
a tool with which the we can analyze this kind of model. However, the reviewer wants to see a solution to the problem
of tunneling through the Coulomb barrier, a discussion of excited states of 4He, confining potentials, and many other
topics as well. All of this is well out of the scope of the papers under consideration. The inclusion of material to deal
with these issues would greatly lengthen the papers, and make them incomprehensible to readers.

Nevertheless, the Coulomb barrier appears in more sophisticated versions of the model, and we have worried a great
deal about the associated tunneling contribution to the matrix element. We note that in a coherent reaction theory, the
reaction rate can be linear in the matrix element, where the reaction rate goes as the square of the matrix element in
incoherent reaction models [so the Gamow factor can come in as exp(−G) rather than as exp(−2G)]. This provides a
natural way within the theory to obtain a dramatic enhancement of the associated reaction rate while taking into account
tunneling through the Coulomb barrier.

In early versions of our models from many years ago, we made use of the molecular D2 potential to estimate the
Gamow factor numerically. In recent years, we have found that the coherent reaction rate that results from such an
assumption ends up being much too small to account for experimental observations. The inclusion of screening effects
at the level of Ue near 100 eV greatly improves the agreement between model predictions and experiment. Such values
for the screening energyUe are close the those estimated in the Thomas–Fermi approximation by Czerski and coworkers
[27], who obtain Ue = 133.8 eV for PdD0.2.
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Appendix B.3. Derivation of nuclear-phonon coupling

The imagined “direct coupling mechanism between nuclear excited states and solid-state lattice optical phonons (104

quanta)” is not plausible in view of EM-nuclear-force coupling. First we need to treat nuclear-EM coupling and next
we may treat succeeding coupling between EM-waves (virtual photons) and lattice optical phonons. The present paper
does not consider such necessary path; hence, the proposed spin-boson model is in question.

We have not included a derivation of the model in these papers in order to restrict our focus to a manageable set of
issues.

So far, there does not seem to exist a theory in the literature that allows such computations to be done in the case of
a D2 to 4He transition. We have in fact worked out a theory along the lines of what the reviewer suggests, and presented
it at ICCF14 [28]. This approach can be used for coupling between molecular D2 states and the 4He ground state.

For transitions involving ground state nuclei as might be relevant to receiver systems in more complicated versions
of the model, we are exploring phonon exchange associated with nuclear transitions that are dipole and quadrupole
coupled to atomic electrons in the context of three- or more-level models.

The inclusion of associated discussions and derivations is out of the scope of the present set of papers. If we included
such material here, the resulting modified papers would become very long, and would be difficult to read.

Appendix B.4. Magnitude of the coupling matrix element

The formalism of the “spin-boson model” seem OK, but only if the DIRECT and significant-magnitude coupling
between the nuclear strong interaction (to MeV level intermediate compound state) and the lattice optical phonons
exists. However, this is surely in doubt. Extending the elegant mathematics looks off-centered. The authors should
explain the supporting logic of it. If not, the treated transition between two levels seems to be forbidden by itself; and
it is nonsense to develop the mathematics associated with the coherent dynamics between the two levels.

We are not aware of a way to develop the effects of interest by pursuing transitions to intermediate compound states
as seems to be required by the reviewer. We are also not aware of any general result that argues that phonon exchange
is forbidden in association with transitions between different nuclear states.

We are able to derive the relevant phonon exchange matrix elements (as noted above), and the associated transitions
are not forbidden as proposed by the reviewer.

Implicit in the reviewer’s comment seems to be the notion that the reviewer would be able to tell if the coupling
matrix element were sufficiently large to be relevant. This seems unlikely. From our perspective, one needs to analyze
the models in order to figure out how large the coupling matrix elements need to be. It is only relatively recently that
we have been able to establish such criteria for simplified versions of our models.

Appendix B.5. Adoption of a solution prior to solving the problem

It seems that they assumed that a d–d nuclear admixture or 4He* (probably its excited energy 23.8 MeV, or something else)
intermediate excited state happened to appear abruptly (or a priori) without any proper reasons of substantially shown
confining mechanisms. They assume superposition of two deuteron’s wave functions are 100% both in the complex
EM (electro-magnetic field) potential for many particles (palladium atoms, deuterons, electrons, lattice phonons,
virtual photons for EM interaction) and in the strong interaction confining potential. Such an initial assumption is,
unfortunately, common to other “theories” as Y. Kim’s BECNF. Isn’t the adoption of a solution before solving the
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problem a forbidden methodology in theory? Anyway, they started with the desired condition that a close deuteron–
deuteron pair or 4He* (probably its excited energy 23.8 MeV) with very long life time (also unimaginable in nuclear
physics) exists in the assumed nuclear-lattice-phonon coupled particle confining potential. The reviewer requires for
the authors to explain how such a priori conditions can have consistent capability (proper logics in physics) to deduce
proper solutions of the F-P excess heat problem or phenomenon if existing.

From our perspective, the biggest theoretical issue that must be addressed in response to the Fleischmann–Pons
excess heat effect is coherent energy exchange under conditions where a large quantum is fractionated into a very
large number of smaller quanta. As a result, we have studied very general models involving two-level systems and an
oscillator, seeking a basic understanding of this new coherent energy exchange mechanism. This is the subject of the
first two papers, and the three that follow.

If we had found that these general models were not capable of the coherent energy exchange effect of interest, then
there would be no reason to pursue the identification of specific states and coupling mechanisms. So, the big question
of interest initially is whether the effect can be demonstrated under any conditions or set of assumptions. Once this has
been done, then possible reactions scenarios can be analyzed using results from the more general models.

In any event, the reviewer seems to want to focus on the specific states and pathways first, before developing the
associated coherent dynamics models. From our perspective, had we been analyzing a much simpler incoherent reaction
mechanism, then we would use the Golden Rule to evaluate the reaction rates, so that all that would be needed would
be a specification of the initial, intermediate, and final state reaction channels (much as the reviewer would like to see
specified here). However, coherent reaction dynamics are much more difficult to analyze. There is no simple general
formula analogous to the Golden Rule for coherent reaction dynamics. For the idealized lossy spin-boson model under
discussion in our papers, it has taken us five papers to develop tools and results sufficient to associate the model reaction
rate to the relevant matrix elements. We need all of these results, and more, in order to begin to understand how coherent
reactions involving specific reaction pathways might work.

Appendix B.6. Impossibility of describing d + d + particle reactions

The present paper never treats the nuclear excited state after the deuteron–deuteron reaction; the spin, parity, and
isospin, with excited energy value, after “some external force interaction” (lattice optical phonons are out of this scope,
in principle). Therefore the “spin-boson model” of the paper has no capability to tell the final state interaction of the
(d + d) + “something” reaction going out to the 4He ground state only, if at all, killing known break-up channels (p+t
and n+3He). Thus whole story becomes a desired scenario, a-priori chosen, in imaginary thought.

The reviewer appears to assume here that an additional particle is needed, as in d + d +“something”. We know that
in vacuum, 4He when it occurs (with low probability) is accompanied by a 23.85 MeV gamma. Energy and momentum
conservation in vacuum requires an additional particle, so that if another particle is present then it could result in another
final state channel with 4He and no gamma.

However, if we accept that experiments have been done where excess heat is observed, and where no significant
neutron emission is correlated with the excess heat (with an upper limit near 0.01 n/J) [6], then we are forced to conclude
that no reaction of this kind is going to be consistent with experiment. Let us consider systematically the possibilities
in the case that d + d + something is in the input channel, and 4He + something is in the output channel, with a 24 MeV
reaction energy:

• 4He + Pd (an example where the alpha energy is maximized), with the alpha particle ending up with about
23 MeV. Although fast alphas are not penetrating, they cause α(d,n+p)α deuteron break-up reactions with a
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high yield, with fast neutrons that are penetrating. We calculated an expected yield of 107 n/J, which is nine
orders of magnitude above the neutron per unit energy upper limit from experiment.

• 4He +d (since there are deuterons in the system), so that the alpha particle ends up with about 8 MeV. We
would expect about 104 n/J from the same alpha-induced deuteron break up reaction, which is now six orders
of magnitude above experiment. However, the deuteron will have 16 MeV, which would make dd-fusion
neutrons with a yield of just under 108 n/J, which is a bit less than 10 orders of magnitude above the upper
limit from experiment.

• 4He+p, so that we get the minimum alpha particle recoil for any nucleus, and the alpha ends up with 4.8 MeV.
The number of secondary neutrons produced as a result of primary collisions between the alphas and deuterons
in the lattice now is reduced to about 200 n/J, which is about four orders of magnitude above the experimental
limit. The energetic protons in this case would cause deuteron break up reactions with a yield near 107 n/J,
which is nine orders of magnitude above the experimental limit.

• 4He+e, which gives close to the minimum alpha recoil for any single particle, and the alpha ends up with
about 76 keV. Now the secondary neutron emission due to the alphas is down to 10 n/J, only three orders
of magnitude above experiment. However, penetrating 24 MeV electrons produced at the watt level would
again constitute a significant health hazard for any experimentalists nearby. For an experimentalist within a
meter of an experiment producing a watt of 24 MeV betas, the radiation dose would be on the order of 1 rem/s
(assuming a 10 cm range) which would be lethal in about 1 min.

• 4He+γ , again giving 76 keV recoil energy for the alpha, and again 10 n/J which is again three orders of
magnitude above experiment. Penetrating 24 MeV gammas at the watt level would be a major health hazard
for any human beings in the general vicinity. As in the case of fast electrons, 24 MeV gammas at the watt level
would be lethal for an exposure of about 1 min at a meter distance.

• 4He + neutrino (as advocated by Li), also gives 76 keV recoil energy for the alpha, so we would expect three
orders of magnitude more neutrons than the experimental upper limit. The neutrinos in this case are not a
health hazard, and we would not know from direct measurements if they were there. However, most of the
reaction energy would go into the neutrinos, so that the observed reaction Q-value would be about 76 keV,
which differs from the experimental value by about 300.

We can conclude from this that no reaction scheme based on d + d + particle is capable of being consistent with the
experimental upper limit on neutron emission in association with energy production, with the observed Q-value (energy
produced per 4He observed), and with the absence of lethal amounts of electrons, gammas or other light particles.

Appendix B.7. Impossibility of killing off 3+1 channels

... Therefore the “spin-boson model” of the paper has no capability to tell the final state interaction of the (d + d) +
“something” reaction going out to the 4He ground state only, if at all, killing known break-up channels (p + t and n +
3He) …

The reviewer seems to require some particle and associated mechanism to "kill off" the n + 3He and p + t exit
channels, and faults the two-level system description as not being able to deal with this. If we focus on the two-level
system part of the problem alone (since the optical phonon modes are associated with the oscillator), then there is no
ability to describe in detail the microscopic physics that the reviewer believes is required in the final state to "suppress"
the primary deuteron–deuteron fusion channels, and hence favor 4He.

In our view, there is no way to suppress the fast n + 3He or p+t decay channels; with, or without, an additional
particle present. When two deuterons approach each other sufficiently close for conventional fusion reactions to occur,
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the 2+2 to 3+1 reactions proceed about as fast as the laws of physics allow, and there is not much that is going to
stop them from happening. The reviewer seems to suggest that these channels need to be killed off somehow, perhaps
through the introduction of a third body. Now, if one were to pursue such an approach, and if one were to start from
the conventional fusion branching ratios, then one would need to kill off the 3+1 channels by about 11 + 7 = 18 orders
of magnitude relative to the 4He channel to be consistent with experiment (11 orders of magnitude for the observed
branching ratio, and 7 since the 4He branch occurs at a rate much slower than the 3+1 channels). From our perspective,
this is simply impossible.

Our approach has been instead to focus on coherent dynamics mechanisms, which work differently. So, instead of
trying to change the existing incoherent reaction pathways (which we don’t think can be changed significantly anyway),
our view is to focus on new coherent mechanisms that might be able to happen in addition to the existing incoherent
reactions. In the end, to determine relative reaction rates, one need compare a coherent rate to an incoherent rate. There
seems to be no fundamental problem in having a coherent rate be orders of magnitude larger than an incoherent rate.

We have pursued more sophisticated models in which there are more sets of two-level systems. In these models, one
set of two-level systems is responsible for converting a large quantum into many small quanta. Since matrix elements
between the D2 and 4He system is hindered by Coulomb repulsion, the associated coupling is very small, which means
that there is no way to exchange significant energy with the lattice in the simple lossy spin-boson model. In these more
sophisticated models, the energy from the D2/4He system is transferred to other transitions, which then convert it to
phonon mode excitation. In this case, all that we require is a single phonon exchange to convert molecular D2 to 4He.
We can compute the incoherent reaction rate for decay to 3+1 channels on the same footing as for the coherent reaction
pathway, and we can find conditions under which the coherent pathway is many orders of magnitude greater.

Appendix B.8. Neutron detection not done with calorimetry

The authors mixed up various measurements for independent items under different conditions to conclude as if all the
measured data took place simultaneously in one experiment.

In our Naturwissenschaften paper (Ref. [6]), we cited five experiments in which neutron detection was operating
when excess heat bursts were seen.

• In the case of the Oak Ridge result (Scott et al. [29]), a graph showing the level of neutron emission during
the time at which excess heat was seen is presented in Fig. 6 of a preliminary version of their conference
proceeding paper for ICCF1 [30].

• In the case of the OSU result (Klein et al. [31]), one can see plotted temperature excursions and neutron
emission levels on the same graphs as a function of time in Figs. 2–4 in their AIP conference proceedings
paper.

• In the J. Fusion Energy paper of Wolf et al. [32], one finds written: “The correlation of the results on neutrons,
tritium, and heat production has proved to be negative. Obvious heat generation (ignition) by a Srinivasan
cell was not accompanied by neutron emission, and none of these cells show tritium production despite an
indication of 5–15% excess heat.”

• In the ICCF3 paper by Takahashi et al. [33], results for excess heat measurements and neutron measurements
using the L-H current protocol are given in Fig. 7.

• In the ICCF4 paper by Gozzi et al. [34], Fig. 9 shows excess heat results for cell #10, and Fig. 12 shows
neutron counts for various neutron detectors for the same acquisition period, where detector #1 is reasonably
close to cell #10.

In these references, experiments were discussed in which neutron detection ran monitoring cells that produced
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excess power. In all of these cases, one of the points of the experiments reported was to determine whether the neutron
emission was correlated with excess heat production. There are additional experiments that have been done in which
excess heat was reported also with neutron detection operational; however, only in the references we used were we
able to develop quantitative estimates in terms of source neutrons per unit energy. From the information reported in the
papers cited in Ref. [6], it seems clear that neutron measurements were done on cells that produced excess heat, when
they produced excess heat, in contrast to the claim of the reviewer.

Appendix B.9. Absence of energetic particles not yet proven

An experimental proof showing noncorrelation of energetic out-going particles and claimed (not reproducible) excess
heat in Fleischmann-Pons type electrolysis experiments is not clear at all. Accurate experimental works accurately
measuring time-dependent correlations between excess heat, helium, alpha-particles with their energies, neutrons
with their energies, gamma-rays, X-rays, and low energy photons has not been given. Some experiments measured
once-through excess heat without accurate nuclear radiation detection; others measured nuclear radiation somehow
accurately, but the calorimetry was poor, or else there was no calorimetry. Therefore the argument in Ref. [6], which
is the starting assumption of paper is not certain, or wrong.

The very restricted view of choosing only one scenario out of Takahashi’s four scenarios ([3]) is in question. The
true status is that we do not have enough experimental evidences showing on-line correlations between excess heat
(irreproducible), neutrons (unknown energy), alpha-particles or helium (unknown energy), gamma-rays (unknown
energy), X-rays (unknown energy), EUV, EV, visible light, etc. data. Nobody has made successfully such experiments.
Due to the irreproducibility of Fleischmann-Pons excess heat experiments, we do not have definite logics to make such
a narrow-focus conclusion as done by Hagelstein [6]. It is premature and dangerous.

I will be the first to agree with the reviewer that more experimental results are needed generally in the field. The
controversy that has plagued the field has resulted in funding difficulties, so that a great many experiments that we
would like to be done have not managed to get done. As a result, in our considerations today we are forced to deal with
the experimental data set that is available today, imperfect as it may be. If new experiments are done in the future, we
can revisit the associated issues.

Perhaps the most significant issue in response to what the reviewer has written concerns a misconception that you
need to diagnose for all kinds of emissions ("helium, alpha-particles with their energies, neutrons with their energies,
gamma-rays, X-rays, low energy photons") in order to be able to say something about whether there are energetic
particles in the exit channel. In this, the reviewer is simply incorrect. The point of the discussion of Ref. [6] (and also
of related papers [35–37] that appeared last year in the CMNS journal) is that if you think 4He is a reaction product,
then you can say something about how much energy it has, since energetic alphas make primary or secondary neutrons
very efficiently in PdD.

You do not need to detect the alphas directly, or measure their energies, for the purpose of this argument. If there
are no commensurate neutrons produced, then you can be sure that there are not a corresponding number of energetic
alphas as determined by the yield functions given in [6] (and in the other papers published in the CMNS journal). If
the neutrons aren’t there, you do not need to measure gamma-rays or X-rays to answer the question of whether there
are a lot of fast alphas – there aren’t, or else you would have known from the neutron measurements.

The reviewer argues that inaccurate calorimetry impacts the issue of whether commensurate energetic alphas are
present. Now, let us suppose that the calorimetric errors are as large as a factor of 2 (which is substantially larger than
the claimed accuracy in the different papers used in [6]). In this case, we might take the excess power to be less by 2x,
which would increase the upper limits for neutrons per Joule by 2x. So, an upper limit in this case might go from 0.01
to 0.02 n/J. This does not help very much since from the examples given above, we would need on the order of 9 or
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10 orders of magnitude more in order to have consistency between the number of neutrons expected and the number
of neutrons seen for the different proposed incoherent reaction mechanisms with a two-body exit channel (that are not
fatal to the experimentalists, and have roughly the right ratio between energy and amount of helium).

Results from reproducible experiments are preferred. But the reviewer seems to be suggesting that observations
taken in the case of experiments where the reproducibility of the excess heat effect is less than 100% should be ignored.
From our perspective, the issue as to whether there are energetic alphas involves a very large numbers of neutrons, so
that having five published reports of observations of excess heat bursts, where each of which reports neutron emission
at levels more than a factor of a million below what would be seen if energetic alphas were present in commensurate
amounts, is very significant.

Both the reviewer, and the authors, would like for the associated heat bursts in these experiments to be reproducible,
and even better if the measurements were more accurate. However, for us, these and other papers provide good
confirmation that large numbers of neutrons simply aren’t there; while this reviewer rejects all of the measurements
(of these five papers, as well as all other papers – of which there are at least five more reporting similar results, but
without giving sufficient numbers so that a value of neutrons per Joule could be extracted) that give similar results.
Moreover, this reviewer seems unwilling to accept any relevant experiment until the excess heat effect is completely
reproducible, until the calorimetry is very accurate, until the neutrons are measured with energy resolution at the same
time, until energetic alphas are measured at the same time, and until also gammas, X-rays, EUV, and optical photons
are measured as well. This reviewer has exceptionally high standards in what measurements will be accepted. But in
our view, this matter is settled already with orders of magnitude to spare in the difference between the level of neutron
emission observed, and that needed for energetic alphas to be present.

I do not think that such conclusions are either premature, dangerous, or narrowly focused. The real issue here is that
energetic alphas in amounts commensurate with the energy observed produce secondary neutrons with a surprisingly
high yield, so that if they were there it would be very easy to tell. They simply aren’t there.

Appendix B.10. Chemical origin of energy in the Letts experiment

The excess energy observed by Letts et al. [10,11] has no evidence that it is nuclear reaction energy, but may be chemical
energy. So, the possibility of chemical reactions should be considered as candidate explanation of the observed results.

The original argument that the excess energy in the Fleischmann–Pons experiment is nuclear was based on the
very large amount of energy observed, combined with the relative absence of observed chemical products. A similar
argument can be made for the two-laser experiment. In run 669Z, Letts observed 118 kJ of excess energy produced
in about 36 h following initiation by two-laser stimulation. The cathode in these experiments have a volume of about
0.0012 cm3, which corresponds to about 7.2 × 1019 Pd atoms. The observed energy per Pd atom is then over 9300 eV.
As in the Fleischmann–Pons experiment, there were no observed commensurate chemical reaction products.

The energy produced in the two-laser experiments used to develop the spectrum of Ref. [11] was less (closer to
10 kJ). The corresponding energy per Pd atom in this case is less (about 800 eV/Pd atom), but still well outside of what
can be accounted for by chemistry.
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Abstract

Excess heat in the Fleischmann–Pons experiment has been observed in a great many experiments, and we have been working toward
the development of a theoretical model to account for it. In the experiments, excess heat is correlated with 4He, but there are no
commensurate energetic particles. This has motivated us to consider models in which the excess energy is communicated directly
to low energy degrees of freedom associated with the solid state environment. We have found relatively simple models which are
capable of splitting up a large energy quantum into a very large number of much smaller energy quanta. In order to analyze these
new models, we are motivated to consider the dynamics associated with a set of ordered degenerate states with nearest neighbor
coupling.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

There has been a keen interest in the elucidation of the underlying mechanism associated with excess heat in the
Fleischmann–Pons experiment [1,2] over the past two decades, and there have been a great many papers put forth over
the years suggesting how it might work. Some years ago Takahashi and coworkers gave a simple overview of the
situation, wherein was described four scenarios [3]. These included aneutronic fusion with hidden reaction products,
fusion with the energy coupled directly to the lattice, chemical or mechanical explanations, or experimental error.
Enough experimental confirmations of the effect have been reported that it seems unlikely that we are dealing with
experimental error [4,5]. The amount of energy observed is sufficiently large that chemical or mechanical explanations
seem impossible, and there is no indication of chemical reaction products or mechanical changes commensurate with the
energy produced. Recently we were able to make strong arguments against the possibility of hidden energetic products
from proposed aneutronic fusion reactions, since they would produce secondary neutrons in sufficient quantities to have
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been readily observed [6]. Among Takahashi’s scenarios, the one that remains (coupling the nuclear energy directly to
the lattice) has been the focus of our efforts for many years now.

Of course, the theorists have been busy since publication of the different scenarios by Takahashi et al (for example,
see [5,7]), and it is likely that at present a revised list of scenarios is appropriate. From our perspective, the constraints
imposed from the upper limits of energetic reaction products [6] are sufficiently severe that the majority of mechanisms
that have been proposed since 1989 can be ruled out as inconsistent with experiment. At this point there seem to be
two kinds of candidates that remain. One of these are schemes which involve direct coupling of energy to the lattice,
or to other condensed matter degrees of freedom (such as plasmon modes [8], or hybrid plasmon–phonon modes). The
other are schemes in which an extreme fractionation of the nuclear energy occurs into kinetic energy of a very large
number of nuclei, as argued for by Kim [9]. Our concern with this approach is that a mechanism through which this
might occur has not yet been clarified.

We have been interested for some time in the problem of how a large quantum can be split up into a very large
number of small quanta. To study this problem, we first focused on the spin-boson model [10–12] and variants. In the
spin-boson model, two-level systems and an oscillator are coupled, with an interaction that is linear in the sense that one
transition of the two-level systems occurs with the exchange of a single oscillator quantum. It has been understood for
many years that this model described coherent energy exchange in the multiphoton regime, in which many oscillator
quanta are exchanged for a single two-level system quantum [13,14]. The transition rates in this model are slow because
of destructive interference effects. We found that the destructive interference could be removed in part if loss terms are
included, resulting in an enhancement by many orders of magnitude of the associated rate for coherent energy exchange
[15].

In this work we are interested in the dynamics of coherent energy exchange in this and related models. We might
think of coherent energy exchange in the limit where many oscillator quanta are exchanged as occurring as a result of
nearly degenerate states which are weakly coupled through off-resonant transitions through intermediate states. We
would expect the resulting system dynamics when the indirect coupling is strong to be similar to that of a chain of
degenerate states with nearest neighbor coupling. This leads to a quantum mechanical problem that we can analyze
relatively simply. In the event that there is a small systematic mismatch between the nearly degenerate levels, we are
also able to recover useful evolution equations.

We note that the first reviewer for this paper had numerous criticisms. With encouragement from colleagues, we
have included selected criticisms with responses in Appendix C.

2. A Basic Model for Coupling between Degenerate States

We begin by considering a highly idealized model for a quantum system that evolves through coupling between ordered
degenerate states. We assume that the dynamics are governed by a Hamiltonian Ĥ so that

ih̄
∂

∂t
� = Ĥ�, (1)

We assume the wavefunction � can be expanded in terms of a set of degenerate basis states

� =
∑
m

cm(t)|�m〉. (2)

We assume that the dynamics of the system can be reasonably approximated by coupling only between nearest neighbors
(see Fig. 1), so that
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Figure 1. Schematic of ordered degenerate states with nearest neighbor coupling.

ih̄
d

dt
cm(t) = Vm+ 1

2
cm+1(t)+ Vm− 1

2
cm−1(t). (3)

This presumes that the energies are degenerate

〈�m|Ĥ |�m〉 = 0, (4)

where we have removed any finite offset from our model Hamiltonian for simplicity. The coupling coefficients Vm±1/2
are the matrix elements

Vm± 1
2

= 〈�m|Ĥ |�m±1〉, (5)

which we take to be real in our model.
Equation (3) defines the basic model of interest to us here. One might argue that the assumptions of the model

are restrictive, so that there are only a few quantum systems that work this way. However, it may be the case that the
simplified model under discussion here is one that has been extracted from a much more complicated model, that the
focus is on a small subset of the states which are degenerate, and the effect of all the other states has been included
through indirect coupling in the model Hamiltonian Ĥ . This will be our point of view, although it will not be required
in the discussion which follows in this work.

In the particular case of two-level systems coupled to an oscillator (a case that we will analyze later on in this paper),
the degenerate states are those in which energy is kept constant by maintaining constant m�E + nh̄ω0, where �E is
the two-level system transition energy and where h̄ω0 is the characteristic energy of the oscillator. In this case, the
degenerate states are indirectly coupled since many oscillator quanta need to be exchanged in order to make up for the
change of a single two-level system.

3. Evolution Equation for 〈m〉
Let us define the average 〈m〉 according to

〈m〉 =
∑
m

m|cm|2. (6)

To understand the dynamics of the system, we would like to know how 〈m〉 changes with time. As a result, we are
interested in the calculation of the derivative. As a first step we may write
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d

dt
〈m〉 =

∑
m

m

(
dc∗m
dt
cm + c∗m

dcm
dt

)
. (7)

We evaluate to obtain

d

dt
〈m〉 = − 1

ih̄

∑
m

m(Vm−1/2c
∗
m−1 + Vm+1/2c

∗
m+1)cm

+ 1

ih̄

∑
m

mc∗m(Vm−1/2cm−1 + Vm+1/2cm+1). (8)

We can recast this as

d

dt
〈m〉 = 1

ih̄

∑
m

m(c∗mcm+1 − c∗m+1cm)Vm+ 1
2

+ 1

ih̄

∑
m

m(c∗mcm−1 − c∗m−1cm)Vm− 1
2
, (9)

which simplifies to

d

dt
〈m〉 = − 1

ih̄

∑
m

Vm+1/2(c
∗
mcm+1 − c∗m+1cm). (10)

It is convenient to define the average velocity 〈v̂〉 according to

〈v̂〉 = − 1

ih̄

∑
m

Vm+1/2(c
∗
mcm+1 − c∗m+1cm). (11)

This allows us to write

d

dt
〈m〉 = 〈v̂〉. (12)

In general we can identify 〈v̂〉 with the rate for transitions between the different nearly degenerate states.

4. Evolution Equation for 〈v̂〉
Next, we require an evolution equation for the average velocity. We write

d

dt
〈v̂〉 = − 1

ih̄

∑
m

Vm+1/2

(
dc∗m
dt
cm+1 + c∗m

dcm+1

dt
− dc∗m+1

dt
cm − c∗m+1

dcm
dt

)
. (13)

We substitute to obtain
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d

dt
〈v̂〉 = 2

(ih̄)2

∑
m

V 2
m+ 1

2
(|cm+1|2 − |cm|2)

+ 1

(ih̄)2

∑
m

Vm+ 1
2
Vm− 1

2
(c∗m−1cm+1 + c∗m+1cm−1)

− 1

(ih̄)2

∑
m

Vm+ 1
2
Vm+ 3

2
(c∗mcm+2 + c∗m+2cm). (14)

We can collect terms and rearrange to obtain

d

dt
〈v̂〉 = − 2

(ih̄)2

∑
m

(V 2
m+1/2 − V 2

m−1/2)|cm|2. (15)

It seems reasonable to introduce the notation

〈
dV 2

dm

〉
=

∑
m

(V 2
m+1/2 − V 2

m−1/2)|cm|2. (16)

The resulting evolution equation takes the form

d

dt
〈v̂〉 = 2

h̄2

〈
dV 2

dm

〉
. (17)

Note that the velocity increases towards regions where the magnitude of the coupling constant is larger.

4.1. Discussion

We are familiar with the evolution equations for the closely related problem of the dynamics of spin systems (which
is discussed in Appendix A). The evolution equations that we developed in this section and in the previous section
constitute an interesting and nontrivial generalization of this model.

Several interesting features of this generalization can be observed. One feature is that we have obtained only two
independent evolution equations, which is significant since had we chosen a somewhat more complicated model we
could have easily generated an infinite set. Another is that the resulting equations are of the general form of Newton’s
laws in one dimension, which allows us to apply our intuition about classical particle dynamics in one dimension to
this new problem involving coupling between ordered degenerate basis states. Finally we see that the coupling matrix
elements Vm+1/2 determine the dynamics in a fundamental way. Hence when we analyze new models that involve a set
of coupled degenerate basis states, our attention should properly be focused on these coupling matrix elements. With
an understanding of these coupling matrix elements, we can predict the associated dynamics simply.

5. Analogy with Kinetic and Potential Energy

Since the evolution equations are of the same form as classical Newton’s laws in one dimension, we can develop an
effective energy equation for the classical version of the problem. To proceed, we identify the classical position m(t)
and velocity v(t) with the average values
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〈m〉 → m(t), 〈v̂〉 → v(t). (18)

The classical equations are

d

dt
m(t) = v(t),

d

dt
v(t) = 2

h̄2

dV 2

dm
. (19)

The associated energy equation is then approximately

C = 1

2
v2 − 2

h̄2V
2(m). (20)

From this it is possible to determine the velocity as a function of position as

v = ±
√

2C + 4

h̄2V
2(m). (21)

This is analogous to the situation in classical dynamics where we can specify the momentum at each position from a
knowledge of the potential and total energy.

In some cases, the coupling becomes weaker for the outer values ofm. If so, then for a trajectory that starts at these
outer values it should be a reasonable approximation that C is small (since the velocity is small where the coupling is
very weak). For zero C we obtain

v(m) = ± 2

h̄
V (m). (22)

This formula is important since we can specify the velocity v (which is the rate for transitions between the different
nearly degenerate states) directly in terms of the coupling matrix elements as a function of m. If the velocity is a
sufficiently simple function of m, then we might be able to integrate to obtain an explicit expression for m(t).

The maximum rate in this approximation occurs where the coupling matrix element is maximum, with a value of

max(v) = 2

h̄
max |V (m)|. (23)

6. Dynamics of Coherent Energy Exchange in the Perturbative Limit

In a previous work [15] we analyzed indirect coupling matrix elements for the spin-boson model augmented with loss
using perturbation theory. We can make use of these results to calculate the associated system dynamics. In the event
that there are a very large number of two-level systems, then it is possible to arrange for a version of the problem in
which the indirectly coupled states are very nearly degenerate. In this case we can make use of the equivalent classical
evolution equations from the section above
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d2

dt2
m(t) = 2

h̄2

d

dm
V 2(m). (24)

It seems reasonable to take as an example the perturbation theory model where one two-level system quantum is
exchanged for five oscillator quanta. In this case we developed explicit formulas for the indirect coupling matrix
elements which can be used directly to evaluate the evolution.

6.1. Large S and n approximation

The explicit expressions for the indirect coupling constants are complicated, so that the equation that results from taking
the difference of the squares to determine the acceleration will be more complicated. We seek a simplification of the
problem relevant to the large S limit. A common approximation is to neglect terms of order unity in the Dicke factors,
so that

√
(S ∓m)(S ±m+ 1) →

√
(S2 −m2). (25)

Using this kind of approximation, we can write

F(S,M) → 7

36
(S2 −m2)2 (26)

V1,12(E) → 625

64

(V
√
n)5

�E4

√
(S2 −m2) (� = 0), (27)

where we have assumed that n is large. The indirect coupling in the lossy limit is then approximated by

V1,12(E) → 4375

2304

(V
√
n)5

�E4 (S2 −m2)
5
2 (� = ∞). (28)

6.2. Approximation for the force

We can use the estimate for the indirect coupling in order to estimate the force. We may write

d

dm
V 2(m) =

(
4375

2304

)2
(V

√
n)10

�E8

d

dm
(S2 −m2)5

= − 10

(
4375

2304

)2
(V

√
n)10

�E8 m(S2 −m2)4. (29)

The dynamics for the classical version of the problem is then described by

d2

dt2
m(t) = − 20

(
4375

2304

)2
(V

√
n)10

h̄2�E8
m(t)[S2 −m2(t)]4. (30)
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6.3. Simplification

It is convenient to recast the problem in terms of a normalized version of m(t)

y(t) = m(t)

S
, (31)

which allows us to write

d2

dt2
y(t) = −�2

0y(t)[1 − y2(t)]4, (32)

where the characteristic frequency �0 is defined through

�2
0 = 20

(
4375

2304

)2
(V

√
n)10

h̄2�E8
S8. (33)

6.4. Solutions

The nonlinear second-order classical equation (Eq. (32)) has oscillatory solutions (which correspond to a ball rolling
back and forth confined in a nonlinear well) and a non-oscillatory solution (corresponding to a ball with an energy
matched to the top of the well). The latter solution is illustrated in Fig. 2. This function can be fit well according to

y(t) = − ax + bx3

1 + bx2
√
c + x2

(34)

with

a = 0.381902, b = 0.00708607, c = 161.393. (35)

7. Summary and Conclusions

We are interested in developing models for excess heat in the Fleischmann–Pons experiment, as outlined in the In-
troduction. The key problem from our perspective in the development of relevant models is that of coherent energy
exchange under conditions where a large energy quantum is split up into a very large number of smaller energy quanta.
We have proposed models that accomplish this, and which begin to be relevant to the new effect. However, these new
models are not so easy to analyze in general. To make progress on them, we have found that some understanding is
possible by considering a subset of the states which are nearly degenerate, and then developing models which account
for the indirect coupling between these nearly degenerate states. Once this is done, then we are able to understand what
the new models do, and we are able to extract estimates for the reaction rates from them. From this point of view, it
seems that the place to start in our discussion of the new models is by examining the dynamics associated with a set of
ordered degenerate states with nearest neighbor coupling. This is the simple model we have introduced in Section 2.

We find that the resulting evolution equations for this model are simple, and are of the form of Newton’s laws in one
dimension. We find that the dynamics are determined ultimately by the coupling matrix elements between the different
nearly degenerate basis states, hence in studying such models our attention will naturally be drawn to these coupling
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Figure 2. Schematic of ordered states with constant energy separation, and with nearest neighbor coupling..

matrix elements. We have tested them against a well-known problem involving spin dynamics in Appendix A, and we
have verified that we get the right answer. Since the evolution equations are similar to Newton’s laws, we can construct
an energy expression for the equivalent classical problem. This allows us to specify the velocity, or coherent reaction
rate, as a function of the index given an equivalent energy. Explicit results were given for the dynamics of a spin-boson
model augmented with loss, where we made use of the indirect coupling matrix elements calculated in an earlier work.
This provides an example which shows how the approach under discussion can be used to describe the dynamics of
coherent energy exchange in the multiphonon regime.

The requirement of precise energy degeneracy is restrictive. In general, if the states are not degenerate, then the
dynamics become very complicated. However, in the special case where the basis state energies are linear in the index,
it is possible to develop somewhat more general evolution equations which are similar in form to those found in the
dynamics of a spin system (see Appendix B). The absence of degeneracy in this model results in the presence of a
reactive term which impacts the velocity.

Appendix A. Spin Dynamics Example

To see whether the simple model developed above works, we would like to try it out on a test problem for which the
answer is known.

Appendix A.1. Test problem

In this case, an obvious test problem is the dynamics of a system of many equivalent spins governed by a simple
Hamiltonian. For the test problem, we take the Hamiltonian to be
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ĤT = 2�Ŝx. (A.1)

We can make use of the commutation relations of the spin operators to write

d

dt
〈Ŝz〉 = 2�

ih̄
〈[Ŝz, Ŝx]〉 = �〈Ŝy〉. (A.2)

Similarly, we may write

d

dt
〈Ŝy〉 = 2�

ih̄
〈[Ŝy, Ŝx]〉 = −�〈Ŝz〉. (A.3)

Appendix A.2. Dynamics from the spin operators

To make a connection with our test problem, we can identify

〈m〉 = 〈Ŝz〉
h̄
, 〈v̂〉 = �〈Ŝy〉

h̄
. (A.4)

With these definitions we obtain the exact equations

d

dt
〈m〉 = 〈v̂〉,

d

dt
〈v̂〉 = −�2〈m〉. (A.5)

Appendix A.3. Dynamics from coupled degenerate states

To make use of the approach from above based on degenerate states, we first require evaluation of the spin matrix
element

Vm+ 1
2

= 〈S,m|2�Ŝx |S,m+ 1〉 = h̄�
√
(S −m)(S +m+ 1), (A.6)

Vm− 1
2

= 〈S,m|2�Ŝx |S,m− 1〉 = h̄�
√
(S +m)(S −m+ 1). (A.7)

We can use these to compute

V 2
m+ 1

2
− V 2

m− 1
2

= (h̄�)2
[
(S −m)(S +m+ 1)− (S +m)(S −m+ 1)

]

= − 2(h̄�)2m. (A.8)

The spin dynamics computed using from the dynamics above is then
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Figure 3. Schematic of ordered states with constant energy separation, and with nearest neighbor coupling.

d

dt
〈m〉 = 〈v̂〉,

d

dt
〈v̂〉 = −�2〈m〉 (A.9)

in agreement with the dynamics obtained from the spin commutation relations.

Appendix B. Generalization to a Non-degenerate Set of States

For more sophisticated models it may be that the levels are not strictly degenerate, in which case the dynamics quickly
becomes much more complicated. It is possible to provide an extension of the dynamical equations for the simplest
generalization to the non-degenerate case where the basis state energy increases linearly in the index (see Fig. 3). The
associated model is described by

ih̄
d

dt
cm(t) = δEmcm(t)+ Vm+ 1

2
cm+1(t)+ Vm− 1

2
cm−1(t). (B.1)

The evolution equations now become

d

dt
〈m〉 = 〈v̂〉,

d

dt
〈v̂〉 = 2

h̄2

〈
dV 2

dm

〉
+ 〈ŵ〉,

d

dt
〈ŵ〉 = − 2

(
δE

h̄

)2

〈v̂〉. (B.2)

The average value 〈ŵ〉 is defined by

〈ŵ〉 = 2�E

h̄2

∑
m

Vm+ 1
2
(c∗mcm+1 + c∗m+1cm). (B.3)

These equations are closely related to the evolution equations obtained for spin systems, but they can provide estimates
for the dynamics for more complicated models.
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Appendix C. Responses to Reviewer Comments

The first reviewer put forth a great many criticisms of this paper and the preceding one [15]. Our colleagues provided
encouragement to include some of the associated criticisms and responses in the papers. In response, we have provided a
selection of the reviewer’s criticisms, modified where appropriate to be more understandable, as well as some discussion
of the associated issues.

Appendix C.1. No reason to focus on degenerate states

There is no reason to have degenerate states, which seems merely a “desired assumption” by the authors.

What we mean by degenerate states in the context of the lossy spin-boson model are basis states with constant
energy

E = m�E +�nh̄ω0.

For example, suppose that we start with a state with m two-level systems excited, and n oscillator quanta. To go to
a degenerate state with m − 1 two-level systems excited, we are going to have to have an increase in the oscillator
energy by �n oscillator quanta, where �n is the ratio the two-level transition energy and the characteristic oscillator
energy. More simply, if the two-level transition energy is matched to five oscillator quanta, then you need to increase
the oscillator energy by five quanta every time you lose one excited state of the two-level systems.

Hence, the “desired” assumption in this case is that we would like to conserve energy overall between the two-level
systems and the oscillator.

Appendix C.2. No reason to focus on indirect coupling

There is no reason to have indirect coupling, which also seems merely a “desired assumption”.

In the spin-boson model, there is no direct coupling between these degenerate states in the multiphoton regime,
which we are working in. As a result, the coupling is indirect. This is explained in the papers, and we have presented an
explicit perturbation theory calculation as a concrete example. The coupling under discussion in the spin-boson model
is due to phonon exchange, and we are able to derive this directly from more general Hamiltonians.

Appendix C.3. Nuclear reactions are irreversible

Nuclear reactions are irreversible (one-way for out-going channel with significant mass-energy defect) and are stochas-
tic processes (namely one-way or never-return for going out to final interaction products with big entropy increase).
So the assumed oscillatory dynamics between the two states (where energy is transferred from the nuclear system to
the oscillator) cannot exist, due to the stochastic one-way nuclear decay.

In the simple models discussed in this paper, the dynamics can be oscillatory in the sense that the energy can go
from the two-level systems to the oscillator and back again, coherently. This is consistent generally with how coherent
dynamics tend to work.
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The reviewer has decided that one cannot apply models with this kind of dynamics to a nuclear transition, seemingly
because conventional (incoherent) nuclear reactions are directional. As we have argued, because of the absence of
commensurate energetic particles, conventional incoherent nuclear reactions cannot account for excess heat in the
Fleischmann-Pons experiment, which is why we are interested in coherent processes. Coherent models in many cases
show oscillatory behavior as does the example considered in this paper. We would have no problem in principle with a
coherent process producing energy that shows oscillations.

However, in more sophisticated versions of the coherent models that we have studied, phonon loss in the vicinity of
ω0 must be included. In these models, the energy that is exchanged coherently with the oscillator thermalizes, which
makes it unavailable for transferring back. So, even though the simple models that we focus on to begin the discussion
do show oscillations, we agree with the reviewer that such oscillations should not occur in a realistic model for excess
heat production. In the more sophisticated models that will be considered in later papers, thermalization of optical
phonons results in unidirectional dynamics. for models describing excess heat. Some transfer of energy from the lattice
(oscillator) to nuclear transitions however is predicted by our models, and has the potential to result in a lattice-induced
X-ray or gamma-ray emission effect, independent of the Fleischmann–Pons experiment.

Appendix C.4. Limitations due to relativity

The authors have not discussed issues associated with speed of light limitations in nuclear fusion, since the process is
very fast (less than a femtosecond) once the deuterons get sufficiently close.

Back in 1989, the notion was put forth that deuteron-deuteron fusion might be occurring in some new way, such
that the reaction energy was somehow going directly into the lattice. Critics responded with the argument that once the
deuterons got close enough to interact, the reaction itself was over long before there was time for communication with
the nearest atoms.

We can quantify this argument starting with the reaction rate for molecular D2 written in the form

γ = A|�(0)|2,
where �(r) is the molecular wavefunction for the relative deuteron separation; A is a reaction constant that is derived
from the astrophysical S factor, and has a numerical value estimated to be [16]

A = 1.5 × 10−16 cm3/s.

Hence, if we take the two deuterons to be localized within a spherical volume with maximum separation of r =10 fm

V = 4π

3
r3 = 4.2 × 10−36 cm3.

The associated reaction timescale given this localization could be estimated as

τ = V

A
= 2.8 × 10−20 s.

The associated speed of light limitation for this time interval is
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cτ = 8.4 × 10−10 cm,

which is less than a tenth of anAngstrom. Critics used this argument effectively to convince others that it was impossible
to couple energy to the lattice, since there was not sufficient time to communicate to the nearest atom that the reaction
had occurred given the speed of light constraint.

We generally agree with this argument in connection with the incoherent fusion reaction process. The argument
might be criticized in that there is some energy exchange with the lattice nonetheless since the lattice structure is
changed instantaneously. We could compute the associated phonon exchange from existing theory; however, the effect
is not large, and is unlikely to be measurable.

In the models that we have studied, the coherent energy exchange associated with the fractionation of a large
nuclear quantum to optical phonons cannot be accomplished in the D2/4He system, since Coulomb repulsion makes
the associated coupling strength much too small. Consequently, the picture that might be associated with this criticism
is not one relevant to the models of interest to us.

Appendix C.5. Excitation transfer

However, some further discussion of the issue is worthwhile. In our earlier studies, we have considered D2 to 4He
transitions mediated by phonon exchange, where the reaction energy is transferred elsewhere.

What we have termed excitation transfer as a physical effect has not been considered previously (outside of our
work) in connection with nuclear reactions or MeV-level nuclear transitions. It is known in biophysics as the Förster
effect, or as resonant energy transfer. An excited molecule can transfer its excitation to a nearby molecule through
Coulomb dipole–dipole interactions. The effect is observed experimentally, and the theoretical explanation was given
by Förster more than 60 years ago [17].

What we have proposed is that nuclear de-excitation can occur mediated by phonon exchange (rather than by
Coulomb interactions), with the excitation energy being transferred to another nucleus (and subsequently coherently
exchanged with the lattice). In this scenario, the issue raised by the reviewer then concerns whether this kind of
de-excitation can occur in the presence of fast incoherent reaction rates. Since the coherent and incoherent processes
are basically separate processes, one would address this by computing the rates for both processes; and if the rate
associated with excitation transfer happens to be faster, then the answer would be yes. The situation in our models
is made somewhat more complicated in that we need to consider the incoherent process as a loss mechanism in the
coherent dynamics associated with the D2 to 4He transitions, but the essential argument is basically the same.

References

[1] M. Fleischmann, S. Pons and M. Hawkins, J. Electroanal. Chem. 201 (1989) 301; errata, 263 (1990) 187.
[2] M. Fleischmann, S. Pons, M.W. Anderson, L.J. Li and M. Hawkins, J. Electroanal. Chem. 287 (1990) 293.
[3] A. Takahashi, T. Inokuchi, Y. Chimi, T. Ikegawa, N. Kaji, Y. Nitta, K. Kobayashi and M. Taniguchi, Proc. ICCF5, 1995, p. 69.
[4] M.C.H. McKubre, S. Crouch-Baker, R.C. Rocha-Filho, S.I. Smedley, F.L. Tanzella, T.O. Passell, J. Santucci, J. Electroanal.

Chem. 368 (1994) 55.
[5] E. Storms, Science of Low Energy Nuclear Reaction: A comprehensive compilation of evidence and explanations about cold

fusion, World Scientific, Singapore, 2007.
[6] P.L. Hagelstein, Naturwissenschaften 97 (2010) 345.



86 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 5 (2011) 72–86

[7] E. Storms, How to explain cold fusion, Low-energy Nuclear Reactions Sourcebook, ACS Symposium Series 998, 2008, p. 85.
[8] G. Preparata, Cold fusion ’93: Some theoretical ideas, Proc. ICCF4, Vol. 1, 1994, pp. 12–1.
[9] Y. Kim, Naturwissenschaften 96 (2009) 803.
[10] F. Bloch and A. Siegert, Phys. Rev. 57 (1940) 522.
[11] J. Shirley, Phys. Rev. 138 (1965) B979.
[12] C. Cohen-Tannoudji, J. Dupont-Roc and C. Fabre, J. Phys. B: Atom. Molec. Phys. 6 (1973) L214.
[13] P.L. Hagelstein and I.U. Chaudhary, J. Phys. B: Atom. Mol. Phys. 41 (2008) 035601.
[14] P.L. Hagelstein and I.U. Chaudhary, J. Phys. B: Atom. Mol. Phys. 41 (2008) 035602.
[15] P.L. Hagelstein and I.U. Chaudhary, Energy exchange in the lossy spin-boson model, J. Cond. Mat. Nucl. Sci. 5 (2011) 52.
[16] S.E. Koonin and M. Nauenberg, Nature 339 (1989) 690.
[17] T.Förster, Z. Elektrochem. 53 (1949) 93.



J. Condensed Matter Nucl. Sci. 5 (2011) 87–101

Research Article

Second-order Formulation and Scaling in the Lossy
Spin-Boson Model

Peter L. Hagelstein ∗
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Irfan U. Chaudhary
Department of Computer Science and Engineering, University of Engineering and Technology. Lahore, Pakistan

Abstract

In the Fleischmann–Pons experiment, energy is produced without commensurate energetic reaction products. To account for this
we have proposed new models in which coherent energy exchange occurs between two-level systems with a large energy quantum,
and an oscillator with a much smaller characteristic energy. In earlier work we demonstrated using perturbation theory that the
lossy spin-boson model is capable of efficient coherent energy exchange when many oscillator quanta are exchanged for a two-level
system quanta on resonance. Here we introduce a formulation that isolates nearly degenerate states in the lossy spin-boson model,
and allows the computation of the self-energy and indirect coupling matrix elements. From calculations of simple lossy spin boson
models we establish a scaling law and define the dimensionless coupling constant g for the system. Direct calculations using this
approach is not possible for large models in which a great many oscillator quanta are exchanged, but the formulation provides a
foundation for understanding this kind of model, and will allow us to develop more powerful approximate methods.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

We have been interested over the past decade or more in developing models [1–4] to account for excess heat in the
Fleischmann–Pons experiment [5–8]. From our perspective, the key feature of these experiments which makes the
development of a model difficult is the absence of energetic particles commensurate with the energy observed.

The only product which has been identified so far to be commensurate with the energy produced is 4He, which is
seen in the off-gas from the cathode [9–11]. We have used the results from experiment in which excess power is seen
under conditions where an attempt was made to measure neutron emission in order to obtain an upper limit on the
energy of the 4He. We found that energetic alpha particles can collide with deuterons, resulting in secondary neutrons

∗E-mail: plh@mit.edu

© 2011 ISCMNS. All rights reserved.
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from subsequent deuteron–deuteron fusion reactions. The upper limit on the alpha energy estimated in this way is
below 20 keV [12]. The experimental reaction energy per 4He observed is close to 24 MeV [13].

These constraints tell us that no matter what process is responsible, it does not work in the same way as a Rutherford-
type of reaction familiar in nuclear physics. Local conservation of energy and momentum in such reactions requires
that the reaction energy must be expressed primarily as kinetic energy of the products. If two deuterons react to produce
4He with most of the energy carried away by a gamma or electron, the resulting alpha particle would have an energy
near 75 keV, which by itself is inconsistent with experiment (and there are no commensurate fast electrons or gammas
observed).

This has motivated us to pursue new models in which the nuclear energy is transferred directly to low energy
condensed matter degrees of freedom, such as vibrational modes [1–4]. There is no precedence for this in nuclear
physics or condensed matter physics. Coherent many quantum exchange between an oscillator and two-level systems
is known in NMR and in problems involving atomic states and an electromagnetic field [14–16]. However, in these
models, the number of quanta exchanged is less than 102, where on the order of 108 would be required to account for
the Fleischmann–Pons experiment.

Some years ago, we found new models which are much more efficient at exchanging a large number of quanta [1].
In two recent papers, we began a program of laying out the new models systematically. In the first, we introduced
the lossy spin-boson model more properly than in earlier work, we reviewed the sector formalism that underlies loss
in a second-order Hamiltonian, and we showed that coherent energy exchange is enhanced dramatically using lowest-
order perturbation theory [17]. In the second, we considered the dynamics of a set of nearly degenerate states that
have nearest neighbor coupling, and developed reasonably general evolution formula for the dynamics of number and
velocity expectation values [18].

Here, we extend the discussion to a second-order formulation which isolates the nearly degenerate states. In previous
work on the (lossless) spin-boson model, we studied a rotation which isolated the nearly degenerate states, and allowed
us to model the indirect coupling between them simply [19,20]. We have not found an analogous rotation for the lossy
version of the problem, but the second-order formulation accomplishes a similar function.

Perhaps the biggest advantage of this formulation is that it allows us to reduce a complicated problem (the lossy
spin-boson model) into a much simpler one (a set of nearly degenerate states where the nearest neighbor coupling is
dominant). We can use this formulation to compute the self-energies of the nearly degenerate states (which can remove
the approximate degeneracy when the coupling is strong), and also the indirect coupling matrix elements. In the latter
case, we can compare with perturbation theory in order to verify that the approach is correct in the weak coupling limit.
We are able to use this approach to begin to understand how scaling works in the lossy spin-boson model, and to define
a relevant dimensionless coupling coefficient.

A disadvantage of the approach is that the matrix calculations that result do not scale well as the number of states
increase. So, if we focus on models that involve the exchange of only a few quanta (three, five, or seven), then we can
perform calculations effectively even when the coupling is beginning to be strong. However, if we attempt computations
for models with tens or hundreds of quanta exchanged, this approach is too slow to give us results in a reasonable time.

Even though the second-order formulation is not capable of handling the problems that we are ultimately interested
in, it does provide us with a foundation that we can use for the development of approximation schemes which greatly
extend our ability to analyze these models. A discussion of these approximation schemes is deferred to a following
paper.
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2. Coupling Between Nearly Degenerate States

We begin with the lossy spin-boson model, which is described by the Hamiltonian [17]

Ĥ = �E
Ŝz

h̄
+ h̄ω0â

†â + V (â† + â)
2Ŝx
h̄

− i
h̄�̂(E)

2
. (1)

Here �E is the transition energy between the two-level systems, h̄ω0 is the characteristic energy of the oscillator, and
V describes the strength of the interaction. We have used many-spin operators Ŝz and Ŝx to describe the two-level
systems. The model assumes identical two-level systems with identical linear interactions with the oscillator.

Loss is included using a Brillouin–Wigner formulation as we have reviewed previously [17]. In the case of a general
loss model, the model that results is very complicated, and it becomes difficult to analyze. In this paper we will make
an assumption about the loss in order to simplify things. In the infinite loss version of the model, we would assume
that the loss is infinitely fast (resulting in zero occupation of the lossy states) when the basis state energy is less than E.
Although this drastically reduces the complexity of the model, we find that even this simplified version of the model
has technical issues associated with it due to the self-energy when the coupling is not weak. Instead, our focus will be
on the closely related fixed basis version of the model, where we exclude all basis states with an energy less than the
basis state energy of the nearly degenerate set initially selected.

2.1. Nearly degenerate states

We expand in terms of two sets of basis states

� =
∑
j

cj�
a
j +

∑
k

dk�
b
k, (2)

where the �aj states are of the form

|S,m〉|n〉, |S,m− 1〉|n+�n〉, . . . ,
which are nearly degenerate at the energy E of interest. Here�n is the number of oscillator quanta exchanged per unit
change in the excitation of the two-level systems. The�bk states include all of the other basis states with higher energy.

2.2. Isolation of the nearly degenerate states

Our goal is the development of a formulation that allows us to describe the slow evolution of the system between the
nearly degenerate states. To accomplish this, we would like to focus on the cj expansion coefficients of the degenerate
basis states, and eliminate the other coefficients. To proceed, we start with the algebraic eigenvalue coefficients for the
two sets of expansion coefficients (which we write in vector and matrix form)

Ec = Ha · c + Vab · d,

Ed = Hb · d + Vba · c. (3)

Since the b states are not degenerate at energy E, we can write the d vector in terms of the c vector as
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d = (E − Hb)
−1 · (Vba · c). (4)

This allows us to obtain a reduced implicit eigenvalue problem

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c. (5)

2.3. Hamiltonian matrix for the nearly degenerate states

The associated second-order Hamiltonian matrix can be written as

H(E) = Ha + Vab · (E − Hb)
−1 · Vba. (6)

This new second-order matrix H(E) is much smaller than the total matrix made up of Ha , Hb, Vab, and Vba , and we
can use it for computations specifically on the cj coefficients. Since the energy eigenvalue appears explicitly in the
denominator, this Hamiltonian matrix is more complicated to work with than more standard Hamiltonians. Nevertheless,
we can use iterative numerical methods to achieve self-consistency between a specific eigenvalue and the eigenvalue
in the denominator.

3. Three-phonon Exchange and Scaling

One of our goals is the demonstration of a scaling law for the lossy spin-boson model. It seem reasonable to make use of
the formulation outlined in the previous section to explore scaling for a specific example. The simplest example which
shows enhanced coupling between nearly degenerate states is a problem in which a single two-level system quantum is
matched to three oscillator quanta

�E = 3h̄ω0. (7)

Since the numerical computations outlined increase rapidly when there are a very large number of states involved,
we can minimize the number of states for a set of computations by reducing the number of oscillator quanta that are
exchanged.

The notion of scaling is familiar to those working on various physics models, such as the spin-boson problem.
If we were writing for those working on the this problem, probably a single line and scaling formula would suffice.
However, the intended audience for this paper includes researchers who may not be familiar with the idea in the context
of this kind of model. As a result, we are interested in clarifying the issue through the examination of a set of specific
calculations.

3.1. Energy levels and scaling

The simplest way to understand what a scaling law does is by considering solutions for different examples which satisfy
the scaling law. We consider two solutions with different numbers of two-level systems, under conditions where the
maximum off-diagonal coupling matrix element for the original lossy spin-boson model are the same.

The largest matrix element has a magnitude of approximately

max{〈S,m, n|Ĥ |S,m± 1, n± 1〉} = V
√
nS. (8)
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Figure 1. Reduced basis energies for 69 (red) and 79 (blue) two-level systems.

In Fig. 1, we show results for the diagonal matrix elements for H(E) in the case of 69 (S = 34) and 79 (S = 39)
two-level systems. The product V

√
nS is the same (9.75 × 10−3 �E) in both calculations. We have taken n = 1012,

and used different values for V to match the largest matrix element. We see that the diagonal energies line up together
when plotted this way.

3.2. Dimensionless coupling strength

It is customary to define a dimensionless coupling strength g for this kind of problem. In this case, we would take the
ratio of the magnitude of the coupling matrix element to the two-level transition energy, so that the maximum coupling
strength is

max{g} = V
√
nS

�E
. (9)

The intuition that we seek to develop in what follows is that the local dimensionless coupling strength g determines the
important parameters of the model, such as the self-energy and the indirect coupling matrix element between nearest
neighbors.

3.3. Indirect coupling matrix elements

The indirect coupling matrix elements between nearest nearly degenerate neighbors are shown in Fig. 2 for the same
calculations as for Fig. 1. We can make use of perturbation theory to compute the effective coupling matrix element
for a transition from |n, S,m〉 to |n− 3, S,m+ 1〉, which leads to
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Figure 2. Indirect matrix element between nearly degenerate states for 69 (red) and 79 (blue) two-level systems.

Veff = 9

8

V 3

�E2 (S
2 + S −m2 − 3m− 2)

√
S2 + S −m2 −m

√
n(n− 1)(n− 2). (10)

This perturbation theory result is indicated as a solid black line in Fig. 2. The two different problems that we have
examined give very similar results for the indirect coupling matrix elements, and these results are in good agreement
with the results from perturbation theory.

3.4. Decoupling of one basis state

One of the nearly degenerate states is decoupled from the others in this model. Consider the basis state

� = |S, S, n0〉. (11)

in which all of the two-level systems are excited, and in which there are no excess oscillator quanta. This state has
non-vanishing coupling matrix elements only to

|S, S − 1, n0 ± 1〉. (12)

The energy of these states is below the cut-off energy in this model. Such states are presumed to be very lossy, and
hence have a zero occupation probability in the infinite loss model. If so, then |S, S, n0〉 becomes decoupled from the
other states.

In Fig. 3, we show the lowest loss path in this case in a perturbation theory scheme. Two of the intermediate states
have basis energies that are lower than that of the initial state, and which can decay. For comparison, we show the
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Figure 3. Levels and transitions for lowest loss pathway in perturbation theory starting from |S, S, n〉 = |S, n〉, in the case of �E = 5h̄ω0.

lowest loss path in the general case in Fig. 4. In this case, none of the intermediate states have basis energies below
that of the initial state, so that decay processes are minimized.

Coupling from this state in finite loss models would by necessity involve coupling through a lossy intermediate
state. This is the first time in the present discussion that we come across this issue. When we consider more complicated
models in papers that follow, we will find that this effect occurs generally in models of interest to us. We will eventually
connect this effect with the low-level emission of energetic particles that is seen in some Fleischmann–Pons experiments.

3.5. Discussion

The specific problem that we selected to focus on in this section appears now to be very simple to understand. The
second-order Hamiltonian leads to basis state energies that are very close to parabolic in m under conditions where
perturbation theory is valid. The coupling between neighboring nearly degenerate states is dominant, and closely
matches the result from perturbation theory.

In order for the associated system to exchange energy between the two degrees of freedom efficiently, all that we need
is for the coupling matrix element between neighboring states to be as large as the splitting between neighboring states or
greater. In this model, it seems clear how to do it. The more two-level systems that we have, the smaller the interaction
we choose (in the scaling outlined above), so the smaller the difference between neighboring states. The coupling
between neighboring states is strongest when about half of the two-level systems are excited, and is approximately
constant with the number of two-level systems when scaled as above. Hence, as there are more two-level systems, we
are able to maintain coherence over a larger fraction of the Dicke states.
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Figure 4. Levels and transitions for lowest loss pathway in perturbation theory starting from |S,m, n〉 = |m, n〉, in the case of �E = 5h̄ω0.

4. Practical Issues

The isolation of a set of nearly degenerate states as outlined above is a very useful way to think about the problem, and
provides a way to compute the important parameters of the model. However, as we start to go further in this direction,
new issues arise. There is a practical computational issue concerning how to determine the energy eigenvalue self-
consistently, since it appears in the second-order Hamiltonian. The self-energy shift tends to split the nearly degenerate
states, so that we would like to understand under what conditions energy exchange can occur. The self-energy shift in
addition impacts our selection of basis states, which motivates us to consider a restricted basis approximation.

4.1. Solving the second-order eigenvalue problem

If the dimensionless coupling strength is small, then the self-energy is also small, which means that one can obtain
solutions to the second-order eigenvalue equation

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c (13)

by using the unperturbed basis state energy on the right hand side. When the self-energy begins to become significant,
then the accuracy of the energy eigenvalues computed this way is degraded. We can obtain accurate results by solving
for the energy eigenvalue self-consistently, as discussed in Appendix B.

Unfortunately, it quickly becomes inconvenient to obtain numerical solutions using this approach as the number
of quanta exchanged becomes larger, and when the dimensionless coupling strength is near or above unity. This will
motivate us to pursue an approximate solution to the problem, which we will consider below.
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4.2. Constraint for maintaining coherence

From the results in the previous section, we have seen that models with the same maximum dimensionless coupling
coefficient g are very similar in terms of their self-energy and indirect coupling matrix elements. We can think of
a family of models where the maximum dimensionless coupling constant is held fixed, and the number of two-level
systems is varied (assuming that n is kept constant and large). For this family of models, the self-energy and indirect
coupling matrix elements as a function of M/S are nearly the same. However, if the states were initially degenerate,
then the splitting of the states is reduced when we have more two-level systems.

When we considered the dynamics resulting from the coupling between nearly degenerate states, we found that the
problem was simplest in the case of degenerate basis states. If there is a splitting between the states, then this can alter
the dynamics. In order for energy exchange to proceed at rates close to that for the degenerate version of the problem,
we require that the splitting be less that the indirect coupling

|Em+1 − Em| < |Vm+ 1
2
| (14)

in the notation of the previous paper. If the basis states are initially degenerate, then the splitting of interest for this
constraint will be due to the self-energy shift. In this case, as we increase the number of two-level systems, the splitting
will decrease, and more of the nearly degenerate states will be able to participate in the dynamics.

4.3. Constraint for three-quantum exchange

We can develop an approximate version of the constraint in the special case of three quantum exchange that we discussed
above. The self-energy shift for small g is approximately

Em = − 0.0237 (max{g})2
[

1 −
(m
S

)2
]
�E (15)

so that

|Em+1 − Em| = 0.0237 (max{g})2
(

2|m|
S2

)
�E. (16)

The matrix element for indirect coupling from perturbation theory is approximately

Veff = 9

8
(max{g})3

[
1 −

(m
S

)2
]3/2

�E (17)

in the limit that S and n are large. We can combine these estimates to obtain

∣∣∣m
S

∣∣∣
[

1 −
(m
S

)2
]3/2 < 23.7 max{g}S. (18)

This constraint is illustrated in Fig. 5.
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Figure 5. Evaluation of the constraint (18) in the case of three quantum exchange. The region in gray is where the level splitting is less than the
indirect coupling matrix element.

4.4. Self-energy as potential energy of the coupled system

When the self-energy becomes large, there can be a significant shift of the energy levels. For example, when the
coupling is near unity, the self-energy can be on the order of �E. Since this self-energy seems to be large, we need to
think some about what it means, and what the implications are for our approximation.

The self-energy comes about due to the interactions in the model that produces the coupling between the states.
Perhaps it is best to think of it as a binding energy or equivalently, a potential energy, for the coupled systems. If so,
then it may be best to think of it on a per two-level system basis, especially if n is very large. For large g the self-energy
becomes linear in g, so that this point of view will be helpful much later on when we consider models which seek
to describe the Fleischmann–Pons excess power effect. Under the conditions that we have encountered so far, this
self-energy per two-level system is small compared to the transition energy �E. It can be substantial compared to the
oscillator energy, especially when a large number of oscillator quanta are exchanged.

4.5. Fixed basis state model

In the lossy spin-boson model with infinite loss, we proposed that all states with an energy less than E were to be
assumed to have infinite loss. If the self-energy is small, then the basis state energy will not be so different from the
diagonal energy in the second-order H(E) matrix. Hence, in this limit the choice of which states to keep and which to
omit is clear.

However, if we include the self-energy, then things become more complicated. If we omit all states with an energy
less than some energy E, and then calculate the diagonal energies for the H(E) matrix, we will find that many of the
resulting states have an energy less than the energy E which we selected as a cut-off due to the contribution of the
self-energy. If the dimensionless coupling constant g is close to unity, this contribution can be very large.

One approach to this problem is to go back and revise the list of included and omitted states so as to be self consistent
with a cut-off energy. Another approach to the problem is to fix the basis initially, and keep it throughout the calculation.
This latter approach is much more convenient for numerical calculations. In the limit that there are many oscillator
quanta exchanged for each two-level transition, then this kind of model will lead to minor errors locally in the list of
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Figure 6. Largest normalized effective indirect coupling matrix element Veff/�E as a function of g computed using S = 19 (blue); perturbation
theory result (black). The number of oscillator quanta used in this calculation is 1012.

states that are retained (it will keep too many). We would not expect this to lead to significant changes in the model
parameters or dynamics, but we have not pursued this issue in our work.

In Fig. 6, we show results from such a computation for the largest indirect coupling matrix element as a function
of g. In most of the calculations that will follow in this and in following papers, we will work with this kind of model.

5. Discussion and Conclusions

In a previous paper of this set [17], we introduced the lossy spin-boson model and showed that it was capable of greatly
enhanced coherent energy exchange (as compared to the lossless spin-boson model) when many oscillator quanta are
exchanged for a two-level system quantum. In this we are pleased that the new model is capable of such efficient
coherent energy exchange, since it is the basic effect that in our view is needed to account for excess heat in the
Fleischmann–Pons experiment.

However, it is clear that we are going to need much stronger analytical tools to obtain results in a relevant regime.
Perturbation theory is helpful when the coupling is weak, but we are going to need the model to work in a very strong
coupling limit in order to convert a single two-level system quantum into 108 oscillator quanta. As a result, we need to
develop models and approximations which are useful in the strong coupling limit.

The second-order formulation that we introduced above allows us to extend our modeling well beyond the weak
coupling limit. We can use it directly to analyze the lossy spin-boson model when a relatively small number of
oscillator quanta are exchanged. This is useful since it allows us to discuss scaling for this model, and also to introduce
the dimensionless coupling constant g.

We cannot use the second-order formulation presented here for direct calculations of models in which millions of
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quanta are exchanged for each two-level system transition, since the approach does not scale well as a computational
problem. What is important here is the notion that we can isolate the nearly degenerate states, and that the self-energy
and the matrix elements for indirect coupling between nearest neighbors obey scaling laws. For example, even though
we are not able to perform a computation with 1010 two-level systems, we would have no trouble developing accurate
estimates for the self-energy and indirect coupling between nearest neighbors for weak and moderately strong coupling
in the case of 3 or 5 quantum exchange because of the scaling law. We still need to develop a scaling law that governs the
self-energy and indirect coupling matrix element in the limit where a large number of oscillator quanta are exchanged.

In a paper that follows, we will present an approximation scheme which is based on the formulation presented here
that will allow us to perform calculations for models where a much larger number of oscillator quanta are exchanged.
Based on these results we will be able to deduce a scaling law that is useful generally when the number of oscillator
quanta exchanged is large.

Appendix A. Numerical issues

The algebraic problem as outlined in Section 2 seems completely straightforward, but there are significant issues that
remain. Some of these concern numerical issues which we must face when implementing the approximation. We will
provide a brief discussion of a simple numerical approach in the subsections that follow.

Appendix A.1. Selection of basis states

We first consider the selection of basis states. We have the parity selection rule that states with positive parity (−1)n+m
do not couple with states with negative (−1)n+m. So, we have chosen to work with positive parity states here.

Next, we note that the number of Dicke states associated with the two-level systems alone is 2S + 1, since all of
the two-level systems can be in the ground state (m = −S) and all of them can be in the excited state (m = S). The
line for equal energy is defined according to

E = �Em+ h̄ω0n. (A.1)

It seems reasonable to keep states up to some fixed energy above the threshold energy, which we define here has being

E0 = �ES + h̄ω0n0. (A.2)

At this energy, all of the two-level systems are excited, and the oscillator has nominal excitation n0.

Appendix A.2. Banded Cholesky decomposition

In the algebraic equation above, we need to compute the inverse of a matrix. While this seems straightforward, not all
numerical algorithms will result in a symmetric inverse. Consequently, we need to pay some attention to how this is
carried out.

To proceed, we define

A = A(E) = Hb − E. (A.3)

Since A is symmetric, LU decomposition can be carried out using
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A = L · LT, (A.4)

where L is lower triangular.
We can use Cholesky decomposition in order to decompose A. This algorithm seems to work pretty well for this

problem. We are aided by the fact that A is banded, which speeds the computation of L, and leads to a banded matrix
L. Even for a very large problem, we are able to compute L by Cholesky decomposition conveniently.

Appendix A.3. Matrix inverse of the lower triangular matrix

For the solution linear systems, Cholesky decomposition is the time-consuming part of the algorithm in the case of
symmetric matrices. Determination of the solution is done by back substitution. We have tried various algorithms
based on back substitution, however, it seemed useful along the way to carry out an explicit construction of the inverse,
and we subsequently kept it.

The construction of the inverse of a lower triangular matrix can be done reasonably efficiently in the case of a banded
matrix. The algorithm that we have used works as follows. We assume that the inverse is also a lower triangular matrix
B, so that

B · L = I. (A.5)

To understand the associated algorithm for determining B, it is useful to write this equation out explicitly in the case of
3 × 3 matrices. We may write

⎛
⎝
B11 0 0
B21 B22 0
B31 B32 B33

⎞
⎠ ·

⎛
⎝
L11 0 0
L21 L22 0
L31 L32 L33

⎞
⎠ =

⎛
⎝

B11L11 0 0
B21L11 + B22L21 B22L22 0

B31L11 + B32L21 + B33L31 B32L22 + B33L32 B33L33

⎞
⎠ . (A.6)

It seems clear that we can solve for diagonal terms directly using

Bii = 1

Lii
. (A.7)

If we go off of the diagonal by one, we end up with equations of the form

Bi,i−1Li−1,i−1 + BiiLi,i−1 = 0. (A.8)

We can solve this using

Bi,i−1 = − BiiLi,i−1

Li−1,i−1
. (A.9)

It is possible to continue the algorithm to determine the different Bij values based on a knowledge of known L and
previously determined B matrix elements.
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Appendix A.4. Construction of the second-order matrix

The second-order matrix can be written as

H(E) = Ha − Vab · A−1(E) · Vba. (A.10)

This can be written in terms of L as

H(E) = Ha − Vab · (L · LT)−1 · Vba = Ha − Vab · (LT)−1 · L−1 · Vba. (A.11)

We can recast this as

H(E) = Ha − (L−1 · Vba)T · (L−1 · Vba). (A.12)

In this form, the resulting second-order matrix is explicitly real and symmetric, which was one of the goals of our
construction.

Appendix B. Self-consistent computation of the energy

The Schrödinger equation in the case of the second-order Hamiltonian can be written as

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c. (B.1)

We see that the energy eigenvalue appears both on the right-hand side (RHS) and on the left-hand side (LHS) of this
equation. If the self-energy shift is small, then we can approximate the energy on the RHS with the basis state energy
and obtain good results. If the self-energy shift is large, then a self-consistent calculation is needed.

Appendix B.1. Simple iteration

Iterative schemes can be used to obtain a self-consistent solution. The simplest iterative scheme can be written as

E(k+1)c = Ha · c + Vab · (E(k)j − Hb)
−1 · Vba · c. (B.2)

On the LHS, we have the energy eigenvalue in generalE(k+1) for the k+1 iteration; on the RHS we have one particular
basis state energy Ekj determined on the previous iteration. If the scheme converges, then it can be stopped when the
change in the energy eigenvalue of the state of interest doesn’t change any more

|E(k+1)
j − E

(k)
j | < ε. (B.3)

The iterations can be started by taking the initial energy equal to the initial basis state energy.
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Appendix B.2. Iterations with relaxation

We have found that the iterations described above do not converge when the dimensionless coupling coefficient ap-
proaches unity. In this case, we have been able to converge using a modification of the scheme with relaxation based
on

E(k+1)c = Ha · c + Vab · (F (k)j − Hb)
−1 · Vba · c, (B.4)

where

F
(k)
j = aE

(k)
j + (1 − a)E

(k−1)
j (B.5)

with a taken to be near 0.2.
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Abstract

We are interested in the problem of coherent energy exchange in the spin-boson model augmented with loss, in the limit of infinite
loss. This model is interesting because it predicts rapid coherent energy exchange under conditions when the transition energy of
the two-level systems is much greater than the characteristic energy of the oscillator. Here we introduce the local approximation,
in which we assume that the matrix elements change little when an energy exchange event occurs. This approximation results in
a periodic system when a resonance condition is satisfied, which is much easier to solve than the original problem. We consider a
model problem where we analyze the self-energy and indirect coupling matrix elements numerically and in the local approximation,
with good agreement. Systematic results from the local approximation are obtained for the self-energy and indirect coupling matrix
elements in models where 3, 5, 7, 9, and 11 quanta are exchanged.
© 2011 ISCMNS. All rights reserved.

Keywords: Coherent energy exchange, Excess heat, Fleischmann–Pons experiment, Lossy spin-boson model, Theory

1. Introduction

There have been a great many experiments which indicate that excess energy is produced in the Fleischmann–Pons
experiment [1,2] and its variants. The amount of energy observed in some of these experiments is prodigious, with no
obvious commensurate chemical processes observed. Since there has been measured 4He in amounts proportional to the
energy produced [3–5], with an associatedQ-value near 24 MeV [6], one possible conclusion is that there is some kind of
new nuclear reaction process occurring. The conundrum that arises in such a proposal is that known exothermic nuclear
reactions put the reaction energy into energetic nuclear particles. In the Fleischmann–Pons experiment, there simply
aren’t energetic nuclear particles in amounts commensurate with the energy produced [7]. Consequently, conventional

∗E-mail: plh@mit.edu

© 2011 ISCMNS. All rights reserved.
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nuclear reactions that appear in the nuclear physics literature in general cannot be candidates to account for the excess
heat effect.

If so, then the question arises as to what reactions or new physical processes can be consistent with these experimental
observations? It seems the outstanding theoretical problem which must be faced involves the conversion of a very large
MeV-level nuclear quantum of energy into a very large number of eV-level or meV-level quanta.

If we adopt such a point of view, then the recent results from two-laser experiments [8,9] perhaps begin to make
sense. Excess power is observed when the cathode is stimulated by two weak laser beams, and the response depends
on the frequency difference between the two laser frequencies. Two of the frequencies at which strong responses are
observed correspond to the �-point (8 THz) and L-point (15 THz) of the optical phonon mode dispersion curve of PdD.
The excess power in these experiments is seen in many cases to persist when the lasers are turned off. Some power
is put into one of the these modes by the lasers, which initially stimulates excess power production. If excess power
continues when the lasers are turned off, we might infer that some of the energy which is being produced in the reaction
is going into the mode that has been stimulated. This could be verified by Raman measurements, but such experiments
have not yet been attempted.

From experiment, a picture seems to emerge in which a new kind of nuclear reaction process occurs, in which
the reaction energy is communicated to the optical phonon modes. Such an effect is unprecedented, which makes the
theoretical problem of model development that much harder. Nevertheless, we have managed to construct new models
based on two-level systems coupled to an oscillator, which exhibit a much accelerated coherent energy exchange effect
involving the fractionation of a large energy quantum into a great many low energy quanta.

The simplest version of the model is the spin-boson model augmented with loss, which we have introduced in earlier
publications. We have demonstrated the new coherent energy exchange effect using perturbation theory [10], and we
have also presented a second-order formulation of the model [11] which allows us to think about the model in terms of
a set of ordered nearly degenerate states with nearest neighbor coupling. In these papers, we have begun the analysis
of the model, introducing tools that help us understand and analyze important properties. Our goal ultimately is to
understand how coherent energy exchange works in a regime relevant to the Fleischmann–Pons experiment, and in this
work we take a big step in that direction. In this paper, we introduce the local approximation, which provides us with
a powerful tool to analyze coherent energy exchange when the coupling is strong, and also when a larger number of
oscillator quanta are exchanged.

2. Local Approximation for the Lossy Spin-boson Model

As we have discussed in earlier works, the lossy spin-boson model is described by the Hamiltonian [10]

Ĥ = �E
Ŝz

h̄
+ h̄ω0â

†â + V (â† + â)
2Ŝx
h̄

− i
h̄

2
�̂(E), (1)

where �E is the transition energy of the two-level systems, where h̄ω0 is the oscillator energy, and where V is the
coupling strength. Loss is included through the second-order −ih̄�̂(E)/2 term that comes from a Brillouin–Wigner
formulation (see [10]). Eigenfunctions of the coupled two-level systems and oscillator can be found from the solution
of the eigenvalue problem

E� = Ĥ�. (2)
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2.1. Finite basis approximation

We can make use of a finite basis approximation for the associated wave function in terms of product basis states
according to

� =
∑
m

∑
n

cm,n|S,m〉|n〉. (3)

We can use this to develop the above eigenvalue equation in terms of the expansion coefficients according to

Ecm,n =
(
�Em+ h̄ω0n− i

h̄

2
�(E)

)
cm,n + V

√
n+ 1

√
(S −m)(S +m+ 1)cm+1,n+1

+ V
√
n
√
(S −m)(S +m+ 1)cm+1,n−1 + V

√
n+ 1

√
(S +m)(S −m+ 1)cm−1,n+1

+ V
√
n
√
(S +m)(S −m+ 1)cm−1,n−1. (4)

2.2. Limit of many oscillator quanta and two-level systems

In the event that n is very large, then

√
n+ 1 ≈ √

n. (5)

If S is very large, and if m is not close to ±S, then
√
(S −m)(S +m+ 1) ≈

√
S2 −m2,

√
(S +m)(S −m+ 1) ≈

√
S2 −m2 (6)

Under these approximations, the coupling coefficients to the nearby states are the same, so that the eigenvalue equation
for the expansion coefficients is approximately

Ecm,n =
[
�Em+ h̄ω0n− i

h̄

2
�(E)

]
cm,n

+ V
√
n
√
S2 −m2

(
cm+1,n+1 + cm+1,n−1 + cm−1,n+1 + cm−1,n−1

)
. (7)

2.3. Local approximation in terms of g

We recall that the dimensionless coupling constant g is given by

g = V
√
n
√
S2 −m2

�E
. (8)

The approximate eigenvalue equation can be written in terms of the dimensionless coupling constant as

E

�E
cm,n =

(
1 + h̄ω0

�E
− i

h̄�(E)

2�E

)
cm,n

+ g

(
cm+1,n+1 + cm+1,n−1 + cm−1,n+1 + cm−1,n−1

)
. (9)
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Althoughg is dependent onm, we can simplify the problem significantly if we consider it to be a constant. The eigenvalue
equation that results constitutes a local approximation, allowing us to obtain approximate basis state energies and indirect
coupling coefficients.

2.4. Hamiltonian associated with the local approximation

We can write down a Hamiltonian for this local approximation as

Ĥ = �E
Ŝz

h̄
+ h̄ω0â

†â + g�E

(
δ̂n+ + δ̂n−

)(
δ̂m+ + δ̂m−

)
− i

h̄

2
�̂(E), (10)

where the δ̂ operators satisfy

δ̂n±|n〉 = |n± 1〉, (11)

δ̂m±|S,m〉 = |S,m± 1〉. (12)

3. Periodicity

An important feature of the Hamiltonian in the local approximation is that it is invariant under translations of the form

T̂±|S,m〉|n〉 = |S,m± 1〉|n∓�n〉, (13)

when the resonance condition holds

�E = �n h̄ω0 (14)

for odd �n.

3.1. Bloch’s theorem

The Hamiltonian is invariant under the energy-preserving translations of the T̂± operators, so we know that Bloch’s
theorem applies. The eigenfunctions�m,n of the local Hamiltonian satisfy the time-independent Schrödinger equation

Ĥ�m,n = E�m,n. (15)

In the local approximation with odd integer �n, the Hamiltonian commutes with the translation operators

[T̂±, Ĥ ] = 0. (16)

Hence it is possible to find solutions which are eigenfunctions of both operators

Ĥ�m,n = E�m,n, (17)
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|m,n〉

|m,n+2〉

|m,n+4〉

|m,n+6〉

|m+1,n-∆n〉

|m+1,n-∆n+2〉

|m+1,n-∆n+4〉

|m+1,n-∆n+6〉

|m-1,n+∆n〉

|m-1,n+∆n+2〉

|m-1,n+∆n+4〉

|m-1,n+∆n+6〉

m

n+m∆n

Figure 1. Levels and selected couplings in m and n+m�n basis with �n = 5, plotted using m and n+m�n (proportional to the energy) axes.
State |m, n+ 6〉 is coupled to higher energy states |m+ 1, n+ 6 ± 1〉, although this coupling is not shown.

T̂+�m,n = C�m,n. (18)

These solutions can be written in the form

�m,n = eimφum,n, (19)

where the um,n are periodic in m. As a result, the energy eigenvalues can be described as a set of bands in φ from the
eigenvalue equation

E(φ)eimφum,n = Ĥeimφum,n. (20)

3.2. Reduced problem and boundary conditions

Since the problem is periodic under the local Hamiltonian, we can reduce the problem by working with a single column
of states such as plotted in Fig. 1. We need only include the states |m, n〉, |m, n+ 2〉, · · · explicitly. The phase factors
that result in the Bloch solution relate the phase of a basis state with one value of m to the phase of the basis state
at the same energy at a neighboring value of m. So, a Bloch state solution can be developed from a set of expansion
coefficients associated with the basis states in a single column, knowing that the expansion coefficients for the basis
states in neighboring columns differ only by a single phase factor for each column.
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4. Product solution

The discussion above suggests that a convenient product solution can be constructed using

� =
∑
m

∑
n

dmvn+m�n|S,m〉|n+m�n〉 (21)

assuming large S with m away from ±S, and large n. Since the index of the v coefficients is proportional to the basis
state energy, it is unaffected by T̂± translations. Hence we can implement the phase factors associated with the Bloch
states in the dm coefficients by taking

dm = eimφ. (22)

The local Hamiltonian couples states with m and n indices that differ by one unit; however, when we line the states up
according to their energy (which is useful in the local approximation), then this coupling appears to connect relatively
distant states as indicated in Fig. 1.

4.1. Self-energy

Starting with the basis expansion above, we can isolate the v coefficients by taking advantage of orthogonality

〈m′, n′|m, n〉 = δm′,mδn′,n. (23)

The eigenvalue equation associated with the expansion coefficients can be written as

E(φ)dmvn+m�n =
[
�Em+ nh̄ω0 − i

h̄

2
�̂(E)

]
dmvn+m�n

+ g�E

[
dm+1(vn+1+(m+1)�n + vn−1+(m+1)�n)

+ dm−1(vn+1+(m−1)�n + vn−1+(m−1)�n)

]
. (24)

If we focus on the coefficients corresponding to the column with m = 0 and use dm = exp(imφ), we obtain

E(φ)vn =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
vn

+ g�E

[
eiφ(vn+�n+1 + vn+�n−1)+ e−iφ(vn−�n+1 + vn−�n−1)

]
. (25)

The lowest energy solution of this eigenvalue equation gives the self-energy in the local approximation.

4.2. Indirect coupling matrix element

Under conditions that are of interest to us in the development of models relevant to the excess heat effect in the
Fleischmann–Pons experiment, the indirect coupling between nearly degenerate states is weak. In the local approx-
imation, a second-order formulation that isolates the nearly degenerate states would result in degenerate states when
�n is an odd integer. The associated eigenvalue equation is of the form
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Figure 2. Self-energies for the nearly degenerate basis states of the test problem (black circles) and for the local approximation (blue line).

Edm = E0dm + Veff(dm−1 + dm+1). (26)

It is possible to obtain a useful version of such an equation from the model under consideration above (but this will be
of more interest in a later paper, so we defer the associated discussion).

We can solve this equation using

dm = eimφ (27)

consistent with the phase factor that we used above from Bloch’s theorem. The associated energy eigenvalue is

E(φ) = E0 + 2Veff cosφ. (28)

As a result, if we were to solve the eigenvalue equation in the local approximation for two values of φ, then we could
determine the indirect coupling coefficient in the weak coupling approximation. For example, if we take φ values of 0
and π , then we obtain

E(0)− E(π) = 4Veff. (29)

We have used this to obtain numerical estimates for the indirect coupling matrix element for the restricted basis version
of the infinite loss model with success.
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Figure 3. Indirect coupling matrix elements for the nearly degenerate basis states of the test problem (black circles) and for the local approximation
(blue line).

5. Model Problem

The local approximation described above allows us to develop approximate results for the self-energy and indirect
coupling matrix elements for the lossy spin-boson model. Since it is an approximation, we are interested in whether
it can give good results. To explore this, we developed a model problem in which we can compare the approximate
results with exact numerical results.

5.1. Problem specification

For the test problem, we chose

�E

h̄ω0
= 5 (30)

with

S = 19.5, (31)

which corresponds to 39 two-level systems. We took the coupling strength V to satisfy

V
√
nS

�E
= 0.1 (32)

for which the maximum dimensionless coupling strength g is close to 0.10. We have taken the lossy spin-boson model
in the limit of infinite loss, using a restricted basis approximation [11].
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Figure 4. Self-energy as a function of g for �n = 3,5,7,9,11 (n = 3 is the bottom curve, and n = 11 is the top).

5.2. Second-order formulation

In a previous paper we described a second-order formulation for the lossy spin-boson problem [11]. The advantage of
this formulation is that we are able to reduce the original complicated Hamiltonian into a conceptually simpler one that
focuses on a set of nearly degenerate states that are coupled indirectly. This formulation can be represented through
the second-order Hamiltonian

H(E) = Ha + Vab · (E − Hb)
−1 · Vba, (33)

which we can evaluate numerically to determine the self-energies and indirect matrix elements.
For this calculation, we took 50 energy points for the energy in the denominator and evaluated the self-energies

and indirect coupling matrix elements between nearest neighbors. Then we interpolated for self-consistency for each
state to get the self-energies. Based on this interpolation we obtained accurate values for the indirect coupling matrix
elements.

5.3. Comparison of the self-energy

To compare the results from the two models, we needed to develop an estimate for the local coupling strength. Our
procedure was to sum the coupling matrix elements out of one of the initial degenerate basis states of the original full
Hamiltonian, and then divide by the product of �E and the number of couplings. This produces an approximate local
g defined by
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Figure 5. Relative self-energy as a function of phase angle φ for �n = 5. Weak coupling limit is the lower curve in black; results from bottom to
top in blue are for g = 0.3, 1, 10.

gi =
∑
j Hij∑
j �E

, (34)

where the summation over j includes only states with non-zero coupling matrix elements from i. We plotted the
self-energy for each state versus the approximate state gi as points in Fig. 2, and we also plotted results for the self-
energy as a function of g in the local approximation as a line. As can be seen, the agreement is excellent for all of the
nearly-degenerate basis states.

5.4. Comparison of the indirect coupling matrix elements

In Fig. 3, we plotted the indirect matrix elements from each state as for each dimensionless coupling strength gi as
points, and results from the associated local approximation as a line. One sees good agreement for the larger values
of g, which corresponds to the part of the problem where the different gi values vary slowly (where we would expect
the local approximation to be best). The agreement is not quite as good for the smaller gi values. This is because the
coupling matrix elements of the original Hamiltonian are most rapidly varying in this regime.

5.5. Discussion

We see from this comparison that the local approximation does very well in estimating the self-energy, which varies
relatively slowly with g. The indirect coupling matrix element is a much stronger function of g, so the local approx-
imation does not do quite as well. The underlying approximation that the coupling matrix elements of the original
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Figure 6. Indirect coupling matrix elements between nearest neighbors (upper curve); second, third and fourth nearest neighbors (lower curves in
descending order).

Hamiltonian are all the same begins to break down for small g. In this regime, the indirect matrix elements which
couple to states where the local coupling is stronger becomes larger, while the indirect matrix elements which couple
to states with weaker local coupling become smaller. In this regime, we see a splitting of the matrix elements for the
two different directions (see Fig. 3). When this occurs, the indirect matrix elements from the local approximation lie
between them.

In this model problem, the number of two-level systems is not particularly large. As a result, we end up seeing
a weak departure between the numerically exact results from the second-order formulation and the results from the
local approximation. In problems where the number of two-level systems is much larger, we would expect the local
approximation to be much better, since the associated coupling matrix elements of the original problem generally will
have smaller differences locally.

6. Local Approximation Results

One advantage of the local approximation is that we are able to carry out computations systematically for a wide range
of dimensionless coupling constants g when the number of oscillator quanta exchanged is modest.

6.1. Self-energies

In Fig. 4, we show the self-energies as a function of g for the local approximation for different values of�n. One sees
that for larger values of �n, the different self-energies quickly approach a large �n limit. For small g the self energy
is quadratic in g; and for large g the self-energy is linear in g.
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6.2. Energy as a function of angle

We expect the self-energy to be dependent on the phase angle φ, with a simple sinusoidal dependence when the coupling
is weak as discussed above. In Fig. 5, we show results for the relative self-energy in the case of five quantum exchange
for different values of the dimensionless coupling constant g. When the coupling is very weak, nearest neighbor
coupling is dominant, and

E(0)− E(φ)

E(0)− E(π)
→ 1 − cosφ. (35)

We see that when g = 0.3 that the the relative self-energy is a good match, and that nearest neighbor coupling is
dominant. For the larger values of the dimensionless coupling constant, there is some deviation from the cosine
function, which indicates that coupling to second and higher neighbors contributes.

It is possible to extract from the angle-dependent self energy curves the coupling parameters for the different
neighbors systematically. We have done this for the results shown in Fig. 5 to obtain the indirect coupling coefficients
for the different neighbors in Fig. 6. From these results we see that nearest-neighbor coupling dominates, and that as
the magnitude of the splitting gets larger the contributions from other neighbors increases.

6.3. Level splittings

Results for the normalized level splittings for different local approximation models as a function of g are shown in
Fig. 7. In the event that the indirect coupling is weak, this normalized level splitting approaches the indirect coupling
matrix element

g
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Figure 7. Normalized level splitting as a function of g for �n = 3, 5, 7, 9, 11 (n = 3 is the top curve, and n = 11 is the bottom).
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E(0)− E(π)

4
→ Veff (36)

It is easiest to carry out systematic computations for the level splitting, without isolating the contributions of indirect
coupling between the different nearly degenerate neighbors.

In general, we see that the level splitting in the lossy spin-boson model decreases with the exchange of more
oscillator quanta, and that the curves become sharper with a threshold at increasing g as �n increases.

7. Discussion and Conclusions

In previous papers we have provided a systematic presentation of the lossy spin-boson model, which we have been
interested in because of it is capable of fast coherent multi-quantum energy exchange between two-level systems and
an oscillator. Although the model Hamiltonian is relatively simple in form, the analysis of coherent energy transfer
between the two-level systems and the oscillator in the multi-quantum regime is not straightforward. In earlier work we
have explored coherent energy exchange using perturbation theory, and a formulation that is based on a second-order
Hamiltonian. Using these tools, we can study coherent energy exchange when a few quanta are exchanged under
conditions where the coupling is weak to moderate. Here we introduced the local approximation, which greatly extends
our ability to quantify coherent energy exchange in the model.

In the local approximation, we assume that the system is essentially unchanged when a single two-level system
gains or loses excitation, such that the underlying coupling matrix elements do not change. The assumption leads to a
problem that is periodic when the resonance condition is satisfied, and the resulting periodic problem is much easier
to solve. We considered a model problem in order to see how good the local approximation does when compared to
results obtained from the second-order Hamiltonian. The results from the local approximation were found to be very
good under conditions where we would expect the local approximation to be good (large S, S2 −m2 >> 0).

Within the framework of the local approximation, we define a local value of the dimensionless coupling constant
g, and the self-energy and indirect coupling matrix elements become unique functions of this g. We analyze the lossy
spin-boson model in the limit of infinite loss, and the result of the analysis then is a determination of the associated
self-energy and indirect matrix element functions versus g for a particular value of �n. In practice, it is simpler to
compute the level splitting E(0)−E(π) than the indirect coupling matrix elements. This is useful since we know that
nearest neighbor coupling dominates when the splitting is smaller than �E.

We have given results for the self-energy and level splitting for different values of�n between 3 and 11 here. These
results allow us to see the general trends that emerge. For example, the self-energy is quadratic at low g and linear
when g is large. As the number of quanta exchanged becomes large, the self-energy curve approaches a large�n limit.
The level splitting (and coherent energy exchange rate) becomes smaller when more quanta are exchanged, as we might
expect since intuitively we would expect the corresponding physical system to have more trouble breaking up a big
quantum into smaller pieces.

What remains is for us to extend our analysis even further to understand what happens when �n becomes large.
From the results obtained so far, we would expect that g is going to have to become large in order to obtain a finite rate
for coherent energy exchange. As we shall see, the local approximation presented in this paper is going to be of great
help in analyzing this limit; however, we are going to need additional tools in order to extract quantitative results from
the local approximation in this limit. (which we will discuss in a subsequent paper).
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Abstract

We focus on the lossy spin-boson model since it is capable of efficient energy exchange between two-level systems and an oscillator
under conditions where the characteristic energy of the oscillator is small compared to the transition energy of the two-level systems.
We are considering this model as the essential component for a theoretical understanding of the excess heat effect in the Fleischmann–
Pons experiment. We introduce an iterative algorithm that allows the numerical calculation of eigenfunctions and eigenvalues of the
coefficient eigenvalue equation that arises in the local approximation. From systematic calculations in the strong coupling limit we
establish scaling laws for the self-energy and for the indirect coupling matrix element in the local approximation. These results are
used to study the system dynamics for simple strong coupling models.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

In this work we continue our studies of coherent energy exchange between a set of two-level systems and an oscillator,
under conditions where the transition energy of the two-level systems is much greater than the characteristic energy
of the oscillator. Our interest in this problem is motivated by a great many experiments in which positive results have
been reported on measurements of excess heat in the Fleischmann–Pons effect [1,2]. In these experiments a very large
amount of energy is sometimes produced, with no sign of chemical or material changes commensurate with the energy
produced. Fleischmann and Pons conjectured that the origin of the energy was nuclear; however, known exothermic
nuclear reactions that produce energy do so through energetic particles, and there are no commensurate energetic
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particles in the Fleischmann–Pons experiment. Helium has been observed correlated with the energy [3–5], and the
ratio of energy produced to helium observed is near 24 MeV [6]. This is significant since it is consistent with the mass
difference between two deuterons and a 4He nucleus.

Hence, experiment suggests that the energy is probably nuclear in origin, and that perhaps deuterons are somehow
reacting to make 4He. The big problem with such a statement is that there are no previous examples in nuclear
physics of nuclear reactions making energy without commensurate energetic particles [7]. So, whatever process that
is responsible for the effect is one that hasn’t been seen before. There are no previous relevant models in the nuclear
physics or condensed matter physics literature, and most scientists believe the literature that does exist rules out any
possibility of such an effect.

This situation would change radically if there were a known mechanism which could take a large nuclear scale MeV
quantum and convert it efficiently into a large number of optical phonons. Such a scenario would be consistent with
recent two-laser experiments [8,9], where two weak lasers incident on the cathode surface initiate an excess heat event
when the beat frequency is matched to zero-group velocity point of the optical phonons, and the excess heat persists
after the lasers are turned off. The excess heat effect initiated with a single laser does not persist. The picture which
has been proposed to account for this is one in which the two lasers provide an initial excitation of the optical phonon
modes which the new process requires; then, when the lasers are turned off, the new process channels energy into the
same modes which sustains the effect.

To make progress given such a picture, we need to understand the conditions under which a large nuclear energy
quantum can be converted into a large number of optical phonons. Once again, there is no precedent for this; however,
it does seem to be what is going on in these experiments, and this motivates us to explore theoretical models which
exhibit such an effect. Coherent energy exchange as a physical effect under conditions where are large quantum is
divided into many smaller quantum is known in NMR and in atomic physics; it is predicted in the spin-boson model.
However, the effect in the spin-boson model is weak, and we need a much stronger version of it to make progress with
the excess heat effect in the Fleischmann–Pons effect.

When we augment the spin-boson model with loss, we see that the coherent energy exchange process improves
dramatically [10]. In perturbation theory we see that this comes about through the removal of destructive interference,
which drastically hinders the effect in the basic spin-boson model. In a set of recent papers [10–13], we have been
discussing the model, and building up tools and results to try to understand coherent energy exchange when the coupling
is stronger and when more quanta are exchanged. In the preceding paper [13], we introduced the local approximation
for the lossy spin-boson model, which provides us with a powerful tool with which to address the strong coupling
regime.

In this work, we continue the analysis by first introducing a numerical algorithm which allows us to obtain eigen-
functions, self-energies, and indirect coupling matrix elements in the strong coupling regime. As will be discussed,
once we began assembling the results from systematic calculations we noticed that the system appeared to obey scaling
laws in the strong coupling regime. This is interesting because after establishing the scaling laws, we can use them
to predict the dynamics of the model under conditions of extremely strong coupling, which is where we need to go in
order to convert a nuclear-scale quantum into a very large number of atomic scale quanta. Our primary goal then in
what follows in this paper is to discuss the scaling laws for self-energy and for the indirect coupling matrix element in
the strong coupling regime.

2. Eigenvalue Equation for the Coefficients

We are interested in coherent energy exchange in the lossy spin-boson model under conditions where the coupling is
strong, and where a great many oscillator quanta are exchanged for each two-level system transition. In our earlier
discussions of the problem, we have introduced a number of models and approximations which allow us to make
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progress on what would otherwise be a difficult theoretical problem. For example, if we assume that the loss is infinite
for states below a certain energy and adopt a restricted basis approximation, then we obtain a reduced version of the
problem that has fewer states and leads to a real Hamiltonian and real solutions. In the local approximation, we assume
that the matrix elements change little when the number of excited two-level systems is increased or decreased. When
the resonance conditions is met, then the Hamiltonian becomes invariant under translation, and by Bloch’s theorem
the solutions are periodic in one dimension. This further simplifies things, and allows us here to analyze the system in
regimes closer to those of interest for understanding excess heat in the Fleischmann–Pons effect.

2.1. Local approximation eigenvalue equation

We begin with the eigenvalue equation for the expansion coefficients that was developed previously [13] for the local
approximation

E(φ)vn =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
vn

+ g�E

[
eiφ(vn+�n+1 + vn+�n−1)+ e−iφ(vn−�n+1 + vn−�n−1)

]
. (1)

In this equation, �E is the transition energy of the two-level systems, h̄ω0 is the characteristic oscillator energy, g is
the dimensionless coupling constant, and φ is the phase associated with the Bloch solutions of the periodic problem
that results when the resonance condition

�E

h̄ω0
= �n (2)

is satisfied for odd integer �n. Loss is included in general in this model through the second-order loss operator
ih̄�̂(E)/2. In this paper our focus will be on the infinite loss model (in a restricted basis approximation), so that we
will take v0 to be to lowest expansion coefficient that is finite. As in our previous work, we assume that the oscillator
is very highly excited, so that the oscillator index n is incremental. The number of oscillator quanta to be associated
with v0 is n0, which we assume is very large; the total number of oscillator quanta in general associated with vn is then
n0 + n.

2.2. Focus on the φ = 0 and φ = π problems

We are interested in the self-energy and in the indirect coupling matrix element. As discussed in [13] it is easier to
compute the level splitting, from which we can estimate the nearest neighbor indirect coupling matrix element. For
this, we need two eigenvalues E(0) and E(π). The corresponding eigenvalue equations can be written as

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (3)

επvn = n

�n
vn − g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (4)

where
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ε0 = E(0)

�E
, επ = E(π)

�E
. (5)

3. Solutions for Moderately Large �n

To extend our results significantly beyond what was done in our earlier papers we require new numerical and analytical
tools. In this section we present an iterative numerical approach which allows us to develop solutions to the eigenvalue
equations under conditions where a direct solution is impractical. This allows us study coherent energy exchange when
a two-level system quantum is split into a moderately large number of oscillator quanta. The results of such calculations
are interesting since we find that the indirect coupling matrix element appears to obey a useful scaling law.

3.1. Matrix eigenvalue problem

When the resonance condition is satisfied in the local approximation, we obtain an eigenvalue equation for the expansion
coefficients of the form

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
. (6)

In the restricted basis approximation of the lossy spin-boson model with infinite loss, we assume that the expansion
coefficients with n negative are zero due to loss effects. Here �n is an odd integer, which is the number of quanta
exchanged on resonance, and g is the dimensionless coupling constant.

This eigenvalue equation for the expansion coefficients can be thought of as a matrix eigenvalue equation of the
form

εv = H · v. (7)

3.2. Iterative numerical scheme

When the vector v has more than 1000 elements, the matrix eigenvalue problem that results becomes computationally
expensive for a direct calculation. As a result, we seek an iterative numerical scheme that is faster, which will allow us
to extend our computations to examples with larger �n and strong coupling.

We have found that the computations can be improved considerable with the use of Newton’s method with an
inequivalent Jacobian. Although the method in general was developed to handle nonlinear problems, it is possible to
use it on a linear problem. We begin by assuming that the exact solution can be obtained by adding a small correction
to a current guess, such that

vexact = v + δv. (8)

If so, then we can develop an exact equation for the correction δv of the form

(H − ε) · δv = − (H − ε) · v. (9)

The term on the RHS we recognize as a residual for this problem, which we define as
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r = (ε − H) · v. (10)

This vector keeps track of how far away from the exact solution the current guess is. We see that the residual goes to
zero when we have an exact solution for ε and v. The correction δv then satisfies

(H − ε) · δv = r. (11)

Unfortunately, the amount of work required to evaluate the correction δv is considerable as written. However, we can
gain an advantage if we can find an approximate version of H that we can solve more efficiently. Suppose that this
approximate matrix is defined to be A, and that

A ≈ H (12)

in some computationally useful sense. Then the correction δv will no longer be exact, but it may still improve v anyway.
This leads to the following iterative scheme

[A − ε(m)] · δv(m) = r(m), (13)

v(m+1) = v(m) + βδv(m), (14)

ε(m+1) = (v · H · v)(m+1)

(v · v)(m+1)
, (15)

where β is an under-relaxation parameter.
We have found that corrections can be made with an approximate Hamiltonian that corresponds to

εδvn = n

�n
δvn − αg(δvn+2 + δvn−2)− rn. (16)

We have used the parameter values

α = 0.5, β = 0.5. (17)

3.3. Selected results

We have computed results for two examples with�n = 91 and with�n = 151. These examples are instructive in that
the number of oscillator quanta exchanged now is significantly larger than what we have presented previously, and the
results already appear to show the presence of nontrivial scaling laws. We show the self-energy in Fig. 1. The two
curves are very close to each other, and are roughly linear in g. For large g the curves approach

E(g)

�E
→ − 4g. (18)

We recall that when the indirect coupling is weak that the indirect matrix element Veff is related to the level splitting
through
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Figure 1. Self-energy as a function of the dimensionless coupling strength g for �n = 91 (blue) and �n = 151 (red).

Veff → E(0)− E(π)

4
. (19)

We have computed the level splitting for the two examples for different values of g, and we have found that the results
approximately line up if we plot �n2Veff/4g�E (which is a scaled version of Veff) as a function of g/�n2 (which
is a scaled version of g). The results are shown in Fig 2. This is our first indication so far that the solutions obey an
important scaling law in this regime.

The expansion coefficients vn are shown in Fig. 3 for models with different values of g, for the case where φ = 0.
We see peaks with an alternating sign that appear every �n = 91 in n, with amplitudes that decrease at large n. The
coupling present in the Hamiltonian results in phase coherence that extends over a large range of n. When the coupling
is stronger we see that more expansion coefficients contribute to the solution. Expansion coefficients for φ = π are
shown in Fig. 4 for the same set of g values. We see very similar results except that the peaks all have the same phase.

4. Continuum Model

Our ability to calculate solutions to the eigenvalue is limited, even with the iterative algorithm discussed above, since
we require even more expansion coefficients when g and �n are large. From the results of the previous section, we
see that the solutions do not change suddenly between different values of n, which suggests that we might be able to
develop a continuum model. If so, then we would be able to extend the range over which we could obtain results even
further.
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Figure 2. Scaled indirect coupling matrix element (derived from the level splitting) as a function of the g/�n2 for�n = 91 (blue) and�n = 151
(red).

4.1. Eigenvalue equation

To proceed, we define a continuous version of the index n according to

z = n

�n
. (20)

The expansion coefficients vn in the continuum approximation is then related to a continuous function v(z) through

vn = v
( n

�n

)
. (21)

The eigenvalue equation for φ = 0 becomes

ε0v(z) = zv(z)+ g

[
v

(
z+ 1 + 1

�n

)
+ v

(
z+ 1 − 1

�n

)

+ v

(
z− 1 + 1

�n

)
+ v

(
z− 1 − 1

�n

)]
. (22)

4.2. Approximate differential eigenvalue equation

Since the expansion coefficients vary slowly with n, we would expect reasonable results from assuming that v(z) is
locally continuous. For example, we can use a Taylor series expansion to write
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Figure 3. Results for the φ = 0 expansion coefficients vn for 10 values of g logarithmically spaced between g = 10 and g = 100. Results for
g = 10 have the biggest magnitude for small n and the smallest magnitude for large n.

v

(
z+ 1

�n

)
= v(z)+ 1

�n

dv

dz
+ 1

2�n2

d2v

dz2 , (23)

v

(
z− 1

�n

)
= v(z)− 1

�n

dv

dz
+ 1

2�n2

d2v

dz2 . (24)

We can use these approximations to obtain an approximate difference-differential eigenvalue equation

ε0v(z) = zv(z)+ 2g[v(z+ 1)+ v(z− 1)] + g

�n2

d2v

dz2

∣∣∣∣
z+1

+ g

�n2

d2v

dz2

∣∣∣∣
z−1
. (25)

4.3. Discretization

To make progress, we would like to discretize the equation in order to obtain numerical solutions. Simple 3-point
discretization results in

ε0vj = zj vj + 2g[vj+N + vj−N ] + g

�n2

vj+N+1 − 2vj+N + vj+N−1

�z2

+ g

�n2

vj−N+1 − 2vj−N + vj−N−1

�z2 . (26)
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Figure 4. Results for the φ = π expansion coefficients vn for 10 values of g logarithmically spaced between g = 10 and g = 100. Results for
g = 10 have the biggest magnitude for small n and the smallest magnitude for large n.

The number of points used within a cycle N must satisfy

N ≤ �n (27)

in order to obtain numerical solutions that correspond to the solutions of the original Hamiltonian.

4.4. Iterative solution

We have had some success using an iterative algorithm very similar to that discussed above to solve it. The correction
equation that we used is

εδvj = (zj − 4α1g)δvj − α2
2g

�n2

(
δvj+1 − 2δvj + δvj−1

�z2

)
− rj (28)

with

rj = (zj − ε0)vj + 2g[vj+N + vj−N ] + g

�n2

vj+N+1 − 2vj+N + vj+N−1

�z2

+ g

�n2

vj−N+1 − 2vj−N + vj−N−1

�z2 , (29)
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Figure 5. Results for the φ = 0 expansion coefficients vn computed for g = 10 using the periodic local model (black circles), and using the
continuum approximation (blue line).

α1 = 1

2
, α2 = 1 (30)

and

v
(m+1)
j = v

(m)
j + βδv

(m)
j (31)

with

β = 0.45. (32)

The convergence rate is not great, but we are able to obtain solutions using this approach.

4.5. Numerical example

Of primary interest here is whether the solutions to the continuum model give a reasonable approximation to the
solutions of the original problem. The issue here is that even though we now have more powerful tools to analyze the
models, the number of coefficients involved in the solution grows in proportion to the product of g and �n, so that we
will end up needing to rely on a combination of analytic and numerical tools when �n becomes large.
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Figure 6. Scaled level splitting for �n = 91 expressed as a scaled indirect matrix element from the periodic local model (blue line), and from the
continuum approximation (red line).

In Fig. 5, we show the result from the continuum model (blue line) compared with the exact numerical coefficients
from the periodic local model (black circles). The agreement is good, although there is a small offset associated with
the continuum solution. The self-energy for the “exact” local periodic solution is

E(0) = − 34.4370 �E. (33)

The result from 3-pt differencing of the continuum approximation with 91 points is

E(0) = − 34.4312 �E (3 − pt discretization). (34)

We can correct this self-energy by including the contribution of the lowest-order discretization error to obtain

E(0) = − 34.4316 �E (corrected 3 − pt discretization). (35)

We conclude that the continuum model itself as an approximation is responsible for most of the energy difference.
The level splitting from the continuum model is shown in red in Fig. 6, compared with the periodic model result

in blue. We see that the continuum model result is very close to the periodic model result. We conclude from these
calculations that we should be able to make use of the continuum model for self-energy and for level splitting calculations
and get good results.
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5. Strong-coupling Limit

Direct numerical computations with the models described above becomes increasingly slow for larger values of g. This
is because the solutions that make up the expansion coefficients include a large number of peaks, which involves a
large number of points. An additional difficulty is that the iterative algorithm discussed converges more slowly as more
points are used. It is possible to make use of the models outlined above to obtain systematic results for large g, by
taking advantage of the presence of a large number of peaks. Since the peaks have nearly the same shape from one
cycle to the next it becomes possible to develop strong coupling approximations.

5.1. Large g approximation for the periodic model

We see in Fig. 5 that the φ = 0 solutions are made up of peaks that alternate in sign, and that for large g we might
expect that the peak amplitudes will become uniform. In this case we would write

vn+�n = − vn (φ = 0). (36)

The eigenvalue equation for the expansion coefficients in this limit reduces to

ε0vn = n

�n
vn − 2g(vn+1 + vn−1). (37)

In the case of φ = π , the different peaks have the same sign, so that we would expect

vn+�n = vn (φ = π). (38)

The corresponding eigenvalue equation in this large g limit is essentially the same

επvn = n

�n
vn − 2g(vn+1 + vn−1). (39)

We show the result of computations for �n = 91 for the level splitting as a function of g in Fig. 7 for this strong
coupling approximation (red) compared with exact numerical results from the periodic model (blue). We see that the
strong coupling approximation approaches the exact solution at large g, and that it deviates some at low g. This is
consistent with our expectations, since when g is small only a few peaks make up the solution, in which case the
assumption that the peaks are uniform (or linear) becomes poor.

5.2. Large g version of the continuum approximation

We can make a similar approximation in the case of the continuum approximation in the large g limit where there are
many peaks, and where the shapes and amplitudes are similar in the different peaks. The resulting large g approximation
is

εv(z) = zv(z)− 4gv(z)− 2g

�n2

d2v

dz2 (40)

for both φ = 0 and φ = π .
This strong coupling continuum approximation is interesting because it predicts that the level splitting depends on

the ratio g/�n2, but not on g independently. We can see this be recasting the eigenvalue equation as
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Figure 7. Scaled level splitting for �n = 91 expressed as a scaled indirect matrix element from the periodic local model (blue line), and from the
strong coupling approximation (red line).

ε′v(z) = zv(z)− 2g

�n2

d2v

dz2 , (41)

where

ε′ = ε + 4g. (42)

We noticed in our calculations that the discrete strong coupling approximation above gave very nearly the same level
splittings as a function of g/�n2 for different large values of �n. We see now that such behavior is expected, since
when g is very large, it is only g/�n2 that matters in determining the level splitting.

The calculated level splitting in this model is very close to the large g approximation result in Fig. 7.

5.3. Scaling law for indirect coupling matrix element

From the strong coupling results, we see that the indirect coupling matrix element obeys a scaling law of the form

Veff

�E
= 4

g

�n2

( g

�n2

)
. (43)

For ease of use, we have fit the function 
(x) according to
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(x) = exp
{
a + b ln x + c(ln x)2 + d(ln x)3 + e(ln x)4

}
(44)

using data in the range

0.00020 < x < 0.12. (45)

The fitting parameters that result are

a = − 1.11722, b = − 1.61939, c = − 0.780116, d = − 0.171302, e = − 0.0159906. (46)

5.4. Analytic model for the large g continuum model

We can solve the differential equation for the strong coupling continuum model using a solution of the form

v(z) = Ai

[(
�n2

2g

)1/3

(z− z0)

]
, (47)

ε = − 4g + z0, (48)

where Ai is an Airy function. A scaled version of this analytic result is shown in Fig. 8 compared with results from
exact numerical calculations with the local periodic model. We see that the agreement over most of the cycle is very
good. Deviations between the analytic solution and the exact solution on the small n side are due to the fact that the
coefficients at n−�n are zero in the exact model (the analytic model here does not know about the cut-off at n = 0).

5.5. Peak amplitudes

If we assume that the different peaks have approximately the same shape, then it is possible to develop a model for the
peak amplitudes. To proceed, we assume that the expansion coefficients for the φ = 0 case can be approximated by

vn =
∑
m

(−1)mamun−m�n, (49)

where am is the amplitude, and where un describes a single peak. For φ = 0, the eigenvalue equation is

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (50)

we can develop an equation for the amplitudes of the form

ε0〈un|un〉am = 〈un| n
�n

|un〉 − g〈un|un+1〉am+1 − g〈un|un−1〉am+1

−g〈un|un+1〉am−1 − g〈un|un−1〉am−1, (51)
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Figure 8. Expansion coefficients for g = 30 and �n = 151; φ = 0 (blue triangles); φ = π (red circles); and Airy function analytic model (black
line).

When g is large we may approximate

〈un|un+1〉
〈un|un〉 → 1. (52)

We require an estimate the expectation value 〈n/�n〉. Since each successive peak occurs at a position �n units
past the previous one, we would expect that the expectation value would be equal to m plus an offset that depends on
the width (which depends on g/�n2). From the results of numerical calculations, the following approximation seems
reasonable

〈 n
�n

〉
= m+ δn

( g

�n2

)
. (53)

We can then reduce the amplitude equation to

[
ε0 − δn

( g

�n2

)]
am = mam − 2g(am−1 + am+1). (54)

This equation can be solved analytically using a solution of the form

am = Jm+m0(4g), (55)
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Figure 9. Expansion coefficients for g = 30, �n = 151, and φ = π (blue); and results from the peak amplitude model (red).

where m0 is chosen so that the first zero of the Bessel function is matched to the boundary condition near n = 0. We
illustrate in Fig. 9 an example where we have chosen the φ = π version of the problem (in which the peaks all have
the same sign, so that it is easier to compare). In this case, we have used �n = 151 and g = 30, and we have scaled
the amplitudes to approximately match the peak amplitude. We see that this model for the amplitudes is in reasonable
agreement with the exact numerical calculation.

5.6. Continuum approximation for the peak amplitudes

When g becomes large there occur a great many peaks. In this case, we can adopt a continuum approximation

am → a(m) (56)

with

am+1 → a(m)+ da

dm
+ 1

2

d2a

dm2 (57)

am−1 → a(m)− da

dm
+ 1

2

d2a

dm2 . (58)

The eigenvalue equation becomes
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[
ε0 + 4g − δn

( g

�n2

)]
a(m) = ma(m)− 2g

d2a

dm2 . (59)

This is solved using

a(m) = Ai

[(
1

2g

)1/3

(m− δm)

]
. (60)

Here δm is chosen to match the boundary condition.

6. Dynamics for Strong Coupling

Since the indirect coupling matrix element obeys a scaling law in the strong coupling limit, it is possible to examine
coherent energy exchange under conditions where a large number of oscillator quanta are converted. From previous
work the dynamics is governed by

d2

dt2
m = 2

h̄2

d

dm
V 2(m). (61)

We assume in writing this that there are enough two-level systems present so that the nearly-degenerate set of indirectly
coupled states can be treated as degenerate. To proceed, we recall that

g = V
√
n
√
S2 −m2

�E
. (62)

In what follows we will simplify things by assuming that n does contribute to the dynamics. This would be the case if
a large n were imposed such that the energy exchange gives rise to only a small change in oscillator excitation. This
limit might also be of interest if conventional oscillator loss limited the maximum excitation of the oscillator.

6.1. Scaled Dicke number

In what follows, it will be convenient to work with a scaled version of m; hence, we define y according to

y = m

S
. (63)

The equation of motion can then be written as

d2

dt2
y(t) = 2

h̄2S2

d

dy

[
4�E

g

�n2

( g

�n2

)]2
. (64)

We can simplify the subsequent algebra if we introduce gmax which we define as

gmax = V
√
nS

�E
. (65)
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This allows us to write

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 d

dy

[(gmax

�n2

)2
(1 − y2)
2

(
gmax

�n2

√
1 − y2

)]
. (66)

6.2. Characteristic frequency

The scaling law here involves y appearing in the same way in the different terms. We can extract the physical parameters
by introducing the scaled variable

ξ = gmax

�n2

√
1 − y2. (67)

This allows us to write

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 d

dy

[
ξ2
2 (ξ)

]
= 32

S2

(
�E

h̄

)2 dξ

dy

d

dξ

[
ξ2
2 (ξ)

]
. (68)

We can evaluate the derivative in y to obtain

dξ

dy
= − gmax

�n2

y√
1 − y2

. (69)

This leads to

d2

dt2
y(t) = − 32

S2

(
�E

h̄

)2 (gmax

�n2

)2
y

(
1

ξ

d

dξ

[
ξ2
2 (ξ)

])
. (70)

We can define a characteristic frequency �0 for this model to satisfy

�2
0 = 1

S2

(
�E

h̄

)2 (gmax

�n2

)2
. (71)

This can be recast as

�2
0 = 1

�n4

(
V

√
n

h̄

)2

. (72)

The characteristic frequency �0 can then be written in the two equivalent forms

�0 = 1

S

(
�E

h̄

)(gmax

�n2

)
= 1

�n2

(
V

√
n

h̄

)
. (73)
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Figure 10. Function F(ξ) discussed in the text plotted as a function of ξ .

6.3. Nonlinearity

Ultimately we end up with the dynamics of a nonlinear oscillator which can be expressed as

d2

dt2
y(t) = −�2

0y

(
32

ξ

d

dξ

[
ξ2
2 (ξ)

])
. (74)

To compute the dynamics of this system, it is convenient to define

F(ξ) = 32

ξ

d

dξ

[
ξ2
2 (ξ)

]
. (75)

We have evaluated this function (see Fig. 10 ), and fit it to the form

F(ξ) = exp

{
a + b ln ξ + c(ln ξ)2 + d(ln ξ)3 + e(ln ξ)4

}
(76)

with

a = 2.46013, b = − 3.22909, c = − 1.60184, d = − 0.362187, e = − 0.0332753. (77)
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6.4. Solutions

Using this function we may write for the evolution equation

d2

dt2
y(t) = −�2

0yF

(
gmax

�n2

√
1 − y2

)
. (78)

In Fig. 11, we show non-periodic solutions that we computed for different values of gmax/�n
2. We scaled the time

axis of the different solutions by the maximum rate for the different cases in order to compare them. To do this, we
start with the maximum reaction velocity

∣∣∣∣
dm

dt

∣∣∣∣
max

= 2

h̄
max{Veff} = 8

(
�E

h̄

)(gmax

�n2

)


(gmax

�n2

)
. (79)

The maximum rate for the normalized version of m can be written as

�0 = 1

S

∣∣∣∣
dm

dt

∣∣∣∣
max

= 8

S

(
�E

h̄

)(gmax

�n2

)


(gmax

�n2

)
= √

2�0

(gmax

�n2

)
. (80)
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6.5. Connection between the maximum rate and the coupling

One of the key questions that relates to these models concerns determining how large the coupling matrix element must
be in order for coherent energy exchange to occur at a given rate. In the large �n scaling that we have considered in
this section, we can determine the maximum reaction rate from the coupling matrix element by expressing�0 in terms
of V in the expression above to obtain

�0 = √
2

1

(�n)2

V
√
n

h̄



(
gmax

(�n)2

)
. (81)

The coupling matrix element in this model is V
√
n, so it is natural to expect V

√
n/h̄ as providing the underlying

rate scale. The maximum rate is then smaller by a factor of (�n)2, which is essentially the penalty in this model for
fractionating the large two-level system quantum �E into a large number of oscillator quanta with energy h̄ω0. The
function
 is shown in Fig. 7, and we might regard this factor as an additional penalty factor required for insufficiently
strong coupling. Finally, we need to arrange for gmax/(�n)

2 to be sufficiently large so that our penalty
 is not too great,
which we can interpret as a constraint on the number of two-level systems required to fractionate the large quantum.

7. Discussion and Conclusions

The lossy spin-boson model is interesting in that it exhibits a strong coherent energy exchange effect between a set
of two-level systems and an oscillator under conditions where the large energy quantum of the two-level systems is
divided into a large number of oscillator quanta. In previous papers, we have examined this using perturbation theory
[10], and using a second-order formulation [12]. Our interest in the problem stems from seeking models for the excess
heat effect in the Fleischmann–Pons experiment, where we interpret the experimental results as splitting a large nuclear
quantum of energy into a very large number of atomic scale quanta associated with phonon modes of the lattice. We
are interested in this paper in the question of whether the lossy spin-boson model is capable coherent energy exchange
under such conditions.

In a previous paper we introduced the periodic local approximation [13], which is a powerful tool which allows us
to reduce a large and difficult two-dimensional (m and n) problem into a much smaller and easier one-dimensional (n)
problem when a resonance condition is satisfied. In this paper we have exploited the local approximation to compute
eigenfunctions, self-energies, and indirect coupling matrix elements for examples when the dimensionless coupling
constant is reasonably large and when many oscillator quanta are exchanged. After a number of such calculations, we
have found that the system appears to obey a scaling law for the self-energy, and a scaling law for the indirect coupling
matrix element. The is interesting in its own right, since we had no reason a priori to expect such behavior. Also
interesting is that the self-energy and indirect matrix elements show convergence to the strong coupling limit result in
a regime where we can perform calculations directly, enabling us to verify the behavior of the system independently.

With the aid of the scaling law for the indirect coupling matrix element, we are able to carry out computations of
the resulting system dynamics in the strong coupling regime where coherent energy exchange occurs with a very large
number of oscillator quanta. In the end, we see that this lossy spin-boson model is able to exchange energy efficiently
even when the two-level system transition energy is very much less than the characteristic energy of the oscillator. For
this to work, the system must be in a very strong coupling regime, which can be done by simply increasing the number
of two-level systems. The price to be paid for such a large mismatch is a reduction in the coherent energy transfer
rate. In the large n model, the rate �0 scales as (�n)−2 when �n is increased and gmax/�n

2 is held fixed. Such
scaling is relatively gentle, which encourages us in exploring it for application to excess heat in the Fleischmann–Pons
experiment. The coherent energy transfer rate in the finite n model discussed in the Appendix is much faster.
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In looking forward, much work remains to develop a usable theory for the Fleischmann–Pons experiment. We will
need to generalize the model to describe donor and receiver two-level (as well as n-level) systems. Our computations in
this paper were carried out in an infinite loss approximation, and we will need to develop models with finite oscillator
loss at �E in order to connect with experiment. In our computations in the strong coupling limit in this work, a
characteristic feature of the solutions is that a very large number of different oscillator n-states are occupied when g is
large. In the physical system the oscillator sees loss at ω0, so that one would expect the results to depend on this loss.
We would like to examine models which shed light on this. We will also need to connect this simple two-level system
and oscillator models to the physical system, which will require a derivation of the model as well as an evaluation of
the coupling matrix elements.

Appendix A. A Finite n Model

We chose the simple model discussed in the previous subsections in part because it was simple and informative.
However, the restriction that the number of oscillator quanta is not changed by the dynamics is a strong one, and we
are interested here in the generalization to the case where the change in the number of oscillator quanta is significant.

Appendix A.1. Energy conservation

In this case, the number of oscillator quanta n would depend explicitly onm. If we assume that the oscillator loss at ω0
can be neglected, then we may use energy conservation to write

n0 = n+�n(S +m). (A.1)

In this model the number of oscillator quanta decreases when the number of excited two-level systems increases.

Appendix A.2. Evolution equation

The relation between the local g and m is modified to read

g = V
√
n0 −�n(S +m)

√
S2 −m2

�E
. (A.2)

We use this to generalized the definition of ξ to

ξ = g

�n2 = V S
√
n0 −�nS(1 + y)

√
1 − y2

�E�n2 . (A.3)

We then compute

dξ

dy
= − g

�n2

[
y

1 − y2 + S�n

2n

]
, (A.4)

where we note that g and n both depend on y.
The evolution equation in general can be written as

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 dξ

dy

d

dξ

[
ξ2
2 (ξ)

]
. (A.5)
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Using the expression above for the derivative dξ/dy, we obtain

d2

dt2
y(t) = − V 2n

h̄2�n4

[
y + S�n

2n
(1 − y2)

]
F(ξ). (A.6)

Note that n and ξ depend explicitly on y in this evolution equation.

Appendix A.3. Steady-state condition

If all of the two-level systems are initialized in the ground state, and if the oscillator is initialized in an excited state,
we would expect that some of the two-level systems would become excited. We can determine how many are excited
in the steady state by solving

y + S�n

2n
(1 − y2) = 0. (A.7)

We use

n = n0 −�nS(1 + y) (A.8)

to obtain the constraint

3y2 + 2
(

1 − n0

�nS

)
− 1 = 0. (A.9)

We assume that the amount of excitation is small, and obtain the approximate result

y = − 1 + n0

2�nS
. (A.10)

The number of excited two-level systems in this case is

m+ S = 1

2

n0

�n
= n

�n
. (A.11)

This is the condition at which the contributions that increase the indirect matrix elements are the same for the two-level
systems as for the oscillator.

Appendix A.4. Discussion

In the large n model described in Section 6, if the oscillator is initially excited and the two-level systems are in the
ground state, then the model predicts that in time all of the two-level systems would be excited. One of the reasons for
going to a finite n model is that now the matrix elements increase when the number of oscillator quanta increases, so
that the two-level systems in such a model want to give up their energy to the oscillator. In this new model, the rate at
which the two-level systems give up their energy is increased by roughly S�n/n over that of the large n limit, a factor
which can be very large.

If the two-level systems are initially in the ground state, then we would expect that they can be excited if the
oscillator is highly excited. The evolution equation for this model gives this result. The large n model and this energy
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conserving finite n model exhibit two different limits for coherent energy exchange. Unfortunately, there are issues
with both models in connection with modeling excess heat in the Fleischmann—Pons experiment. If we are interested
in coupling energy to optical phonon modes, it can never be the case that the system can reach a large n limit, because
the associated thermal power would be so high as to be physically unreasonable (since the thermalization time of these
phonon modes is so short). Since optical phonon modes are so lossy, a model which enforces energy conservation
without optical phonon loss also seems not so realistic. To do better, we will need to include phonon loss.
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Abstract

Energy in the Fleischmann–Pons experiment is produced without commensurate energetic particles, and 4He is seen in amounts
proportional to the energy produced (with a ratio of energy to number near 24 MeV). Correspondingly we focus on the D2/ 4He
transition as a two-level system coupled to an oscillator, in order to make a connection with the lossy spin–boson model considered
in previous work. Because of the strong Coulomb repulsion between the deuterons, the associated coupling matrix element is very
small, and there is no possibility of converting the transition energy to oscillator quanta within a simple lossy spin–boson model. This
motivates us to generalize to more complicated model that includes a set of (donor) two-level systems for the D2/ 4He transition, and
a set of (receiver) two-level systems that are strongly coupled to the oscillator. We analyze the resulting model in the limit that the
receiver system is very strongly coupled. Within this formulation, the associated dynamics can be interpreted in terms of a transition
from D2 to 4He with direct conversion (and fractionation) of the large energy quantum to the oscillator, once the coupling with the
receiver system is sufficiently strong.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

In the previous papers, we introduced the lossy spin–boson model, and we studied the ability of the model to describe
the fractionation of a large quantum [1–5]. Our goal in these studies has been to develop new models relevant to excess
heat production in the Fleischmann–Pons experiment [6], where a large amount of energy is made [7], 4He is observed
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in amounts commensurate with the energy produced [8,9], and where no commensurate energetic particles are observed
[10].

The fundamental question that was the focus of our earlier work is whether a large nuclear-scale quanta can be
fractionated into a large number of much smaller quanta relevant to condensed matter degrees of freedom. Our approach
in this study was to focus on equivalent two-level systems and an oscillator, in an effort to simplify the problem as
much as possible (since the associated models and coherent dynamics are much more complicated than for incoherent
reactions). As a result, it was not important to specify precisely which levels were involved. Had our ultimate conclusion
been otherwise (that fractionating a large quantum was impossible), then there would have been no need to examine
specific cases.

1.1. General mathematical models versus specific physical models

Our results suggest that a large quantum can be fractionated, and we have explicit models which show the effect and
which we can analyze quantitatively. This now opens the door to trying to connect the general model to specific
examples of models of this type for evaluation. This new problem that we face now must be viewed as a significant
problem in its own right. One new task is to identify upper and lower levels of the two-level systems with specific
nuclear states, and another is to associate specific condensed matter oscillatory modes to the harmonic oscillator in the
model.

Ideally, we would like for experiment to provide an unambiguous positive identification for us the states that are
involved, and to make perfectly clear which oscillator is relevant. Unfortunately, in the experiments that have been done
so far, and we generally lack the experimental clarity that would result in unambiguous choices. Consequently, there is
not agreement within the community of scientist working on the problem as to what states should be focused on, and at
this point some discussion of the problem is worth while. In the remainder of this Introduction, we summarize briefly
some of the discussion that has occurred within our group over the years.

1.2. Lossy spin–boson model for the D2 to 4He transition

If we select molecular D2 (keeping in mind that there are a number of such states) for the upper state of the two-level
system, and 4He for the lower state, then the resulting model would predict a ratio of excess energy to the number of
4He atoms to be 23.85 MeV, which is consistent with the two experiments that measure the ratio under conditions where
an attempt was made to recover the helium retained in the cathode [11,12].

Unfortunately, the associated coupling matrix element is exceedingly small because of Coulomb repulsion. If we
model the system using a lossy spin–boson model, then we quickly conclude that it is impossible to fractionate the
large quantum with these states alone since the associated coupling matrix element is so small.

1.3. Generalization of the model and excitation transfer

Because of this, we decided (many years ago) to generalize the model in order to have a more complicated system in
which the D2/ 4He transition would supply the large energy quantum, and another transition would be involved in the
fractionation of the quantum.

For this to work, we require a new fundamental mechanism that takes the energy associated with a transition at one
site, and transfers it to another site. There is precedence for such a physical effect in biophysics, in which an excited
molecule is observed to transfer its excitation (through a Coulomb interaction) to another molecule. In this case, the
effect is termed “resonance energy transfer”, or “Förster effect” (in honor of the physicist who first gave a quantitative
model for the effect [13,14]). There is no reason to believe that a nuclear version of the Förster effect should not be
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able to exist for nuclei, but from calculation we know that a version of the effect that depends on Coulomb interactions
alone cannot do what we require (because the Coulomb dipole–dipole interaction is of short range).

For us, the solution to this problem was to focus on phonon exchange instead of Coulomb exchange, since we found
that a much longer range for the effect could work in the case of phonon exchange with a highly excited phonon mode.
This is very closely connected with the kinds of models we discussed earlier. For example, one can establish the effect
using perturbation theory in a model with two different two-level systems each coupled linearly to an oscillator. As
a result, this new excitation transfer mechanism comes into the problem in a natural way in the generalization of our
model from one set of two-level systems to two sets of two-level systems, both coupled to a common oscillator.

1.4. But what transition would fractionate the large quantum?

From the beginning of our research on this generalization, we have faced the issue of specifying a second set of two-level
systems which would fractionate the large quantum, and convert the energy to a condensed matter mode. Models with
different choices have been studied, and from these studies we have begun to understand what the relevant issues are.

In the early days of our work, we thought that the most important issue in the selection of the second set of two-level
systems was the degree of resonance with the D2/ 4He transition energy. As a result, it seemed natural to consider
transitions between 4He as the ground state, and whatever two-deuteron states were available near the initial transition
energy (23.85 MeV), since we would come closest to obtaining a resonance.

Once we began to understand phonon exchange in association with nuclear transitions better, and when we also
understood the coherent models better, it became clear that the Pd isotopes should be considered as candidates. Arguing
for this approach is that Pd is the primary constituent of the host lattice, so that we might expect it to be numerically
dominant.

We focused at one point on transitions to excited states, composed of a neutral plus daughter, that seemed to be
favored in exchanging phonons; one such example was the 110Pd/106Pd+4n transition. This transition is probably not
such a close match in energy to the D2/ 4He transition, so the issue of energy exchange in connection with excitation
transfer becomes important.

Recently, we undertook a systematic effort to see whether we could identify candidate transitions that would be able
to serve as receivers in the donor-receiver model under discussion in this work. The general approach that we used was
to derive constraints directly from our model, and we examined several hundred nuclear and atomic transitions to see
how closely the constraints could be satisfied. It quickly came clear from this analysis that no physical transition can
stand in for the receiver-side of this model, since we ask for too much. Perhaps the biggest issue in this study is that
we require a large coupling matrix from the ground state, and also a long lifetime so that coherence can be preserved;
yet generally a large coupling matrix element implies a short radiative lifetime.

Because of this, we have adopted a revised point of view concerning this simple donor-receiver model, with two
sets of two-level systems coupled to an oscillator, and augmented with loss. Certainly it is the simplest model that
demonstrates the basic physical effects we require: the ability to exhange energy coherently under conditions where
a large quantum is fractionated, and the ability to transfer excitation from one two-level system to another. But since
the receiver system doesn’t correspond to a simple physical transition, we view it as a likely idealization of a more
complicated receiver system that involves three or more levels. But the two-level systems of the donor side of the model
appears relevant to the D2/ 4He transition, allowing us to study the donor dynamics in the presence of an idealized
receiver system.

1.5. But what about the oscillator?

The oscillator in the general two-level system and oscillator models can in principle represent any condensed matter
oscillatory mode, and the question at issue is what modes are involved. The candidates in principle include acoustic
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phonon modes, optical phonon modes (with compressional modes at the�-point and L-point apparently preferred in the
two-laser experiment), and plasmon modes (which we expect to be mixed with optical phonon modes, and which are
implicated in single laser experiments). There is no reason to exclude any of these modes in the basic Fleischmann–Pons
experiment, based on measurements done so far. In the single laser experiment, probably a plasmon mode is involved.
In the two-laser experiment [15,16] specific optical phonon modes are involved. In what follows our focus will be on
optical phonon modes, primarily since the resulting model seems “cleanest” to us (optical phonon modes couple well
with the D2/ 4He transition).

2. Generalization of the Lossy Spin–Boson Model

Based on the above discussion, we generalize the lossy spin–boson model to include two different sets of two-level
systems

Ĥ = �E1
Ŝ
(1)
z

h̄
+�E2

Ŝ
(2)
z

h̄
+ h̄ω0â

†â + V1e−G(â† + â)
2Ŝ(1)x
h̄

+ V2(â
† + â)

2Ŝ(2)x
h̄

− i
h̄

2
�̂(E). (1)

The first set of two-level systems will have transition energy �E1, and will be considered to be the “donor” system
within the model (in the sense that excitation is transferred from this system); the second set of two-level systems (the
“receiver” system) in general has a different transition energy�E2. The oscillator has a characteristic energy h̄ω0. We
include linear coupling terms between the oscillator and each of the two sets of two-level systems, with the coupling
constant V1e−G for coupling from the first set of two-level systems (where e−G accounts for transitions from the first
set of two-level systems being hindered by the tunneling factor associated with tunneling through the Coulomb barrier),
and V2 for coupling with the second set of two-level systems. Loss is included through a Brillouin–Wigner type of loss
operator as we have discussed previously.

3. Local Approximation for the Generalized Lossy Spin–Boson Model

We are interested ultimately in a regime in which the coupling between the receiver system and the oscillator is very
strong. In our previous work on coherent energy exchange, we found that the system could be understood by taking
advantage of the local approximation, since direct calculations when the coupling is very strong are computationally
expensive. For the generalized lossy spin–boson model we would like to make use of the local approximation for our
analysis.

3.1. Eigenvalue equation for the expansion coefficients

To proceed, we begin with a finite basis expansion for this more complicated system in the form

� =
∑
m1

∑
m2

∑
n

cm1,m2,n|S1,m1〉|S2,m2〉|n〉. (2)

For the wave function � to satisfy the time-independent Schrödinger equation, the expansion coefficients cm1,m2,n

satisfy
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Ecm1,m2,n =
[
�E1m1 +�E2m2 + h̄ω0n− i

h̄

2
�(E)

]
cm1,m2,n

+ V1e−G√
n+ 1

√
(S1 −m1)(S1 +m1 + 1)cm1+1,m2,n+1

+ V1e−G√
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√
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+ V1e−G√
n+ 1

√
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+ V1e−G√
n
√
(S1 +m1)(S1 −m1 + 1)cm1−1,m2,n−1

+ V2
√
n+ 1

√
(S2 −m2)(S2 +m2 + 1)cm1,m2+1,n+1

+ V2
√
n
√
(S2 −m2)(S2 +m2 + 1)cm1,m2+1,n−1

+ V2
√
n+ 1

√
(S2 +m2)(S2 −m2 + 1)cm1,m2−1,n+1

+ V2
√
n
√
(S2 +m2)(S2 −m2 + 1)cm1,m2−1,n−1. (3)

3.2. Limit of many oscillator quanta and two-level systems

Previously we used large n and large S approximations to develop a local approximation. Here we need to do the same.
We assume that n is large to write

√
n+ 1 ≈ √

n. (4)

For the different two-level systems, we make the approximation

√
(Sj −mj)(Sj +mj + 1) ≈

√
S2
j −m2

j , (5)

√
(Sj +mj)(Sj −mj + 1) ≈

√
S2
j −m2

j . (6)

If each Sj is very large, and if each mj is not close to ±Sj , then these approximations should be good ones.

3.3. Local approximation

The coupling coefficients become the same to different states when we make this approximation, which leads directly
to a local approximation for this model

Ecm1,m2,n =
[
�E1m1 +�E2m2 + h̄ω0n− i

h̄

2
�(E)

]
cm1,m2,n

+ V1e−G√
n

√
S2

1 −m2
1 (cm1+1,m2,n+1 + cm1+1,m2,n−1 + cm1−1,m2,n+1 + cm1−1,m2,n−1)

+ V2
√
n

√
S2

2 −m2
2 (cm1,m2+1,n+1 + cm1,m2+1,n−1 + cm1,m2−1,n+1 + cm1,m2−1,n−1). (7)

It is convenient to define two dimensionless coupling constants according to
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g1 =
V1

√
n

√
S2

1 −m2
1

�E1
, (8)

g2 =
V2

√
n

√
S2

2 −m2
2

�E2
. (9)

We can rewrite the eigenvalue equation for the expansion coefficients as

Ecm1,m2,n =
[
�E1m1 +�E2m2 + h̄ω0n− i

h̄

2
�(E)

]
cm1,m2,n

+�E1g1e−G (cm1+1,m2,n+1 + cm1+1,m2,n−1 + cm1−1,m2,n+1 + cm1−1,m2,n−1)

+�E2g2 (cm1,m2+1,n+1 + cm1,m2+1,n−1 + cm1,m2−1,n+1 + cm1,m2−1,n−1). (10)

This is consistent with a local configuration space Hamiltonian of the form

Ĥ = �E1m1 +�E2m2 + h̄ω0n− i
h̄

2
�(E)

+�E1g1e−G(δ̂n+ + δ̂n−)(δ̂
m1+ + δ̂

m1− )

+�E2g2 (δ̂
n+ + δ̂n−)(δ̂

m2+ + δ̂
m2− ). (11)

4. Periodic Donor and Receiver Models

In the strong coupling limit direct calculations of eigenfunctions, eigenvalues, and indirect coupling matrix elements
becomes increasingly difficult the stronger the coupling. In the periodic model the problem simplifies, allowing us to
make use of numerical and analytic approaches. We use this approach here to analyze donor–receiver models under
conditions where the coupling between the oscillator and the receiver two-level systems is very strong.

4.1. Periodic approximation and resonance condition

One of the most important tools that we have for analyzing coherent energy exchange in the strong coupling regime is
the periodic approximation. Since we would like to understand the generalized lossy spin–boson model when �n is
very large for the receiver system, it seems reasonable to once again make use of the period version of the problem.
Since there are two sets of two-level systems, we are going to require two distinct resonance conditions. For coherent
energy exchange between the receiver system and oscillator, we require

�E2 = �n2h̄ω0. (12)

For excitation transfer transitions, we require

�E1 = �E2 +�n12h̄ω0. (13)
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Even though we do not expect direct coherent energy exchange between the donor two-level systems and the oscillator,
it is useful to define �n1 to satisfy

�E1 = �n1h̄ω0. (14)

4.2. Periodic solution

When the above resonance condition is satisfied, we can construct a locally periodic solution of the form

� =
∑
m1

∑
m2

∑
n

dm1,m2un+m1�n1+m2�n2 |S1,m1〉|S2,m2〉|n+m1�n1 +m2�n2〉. (15)

It is possible to develop eigenfunction solutions for the local Hamiltonian using

dm1,m2 = ei(m1φ1+m2φ2). (16)

4.3. Eigenvalue equation

We assume that the wavefunction satisfies the time-independent Schrödinger equation, and then we use orthogonality
to obtain an eigenvalue equation for the expansion coefficients

Edm1,m2un+m1�n1+m2�n2

=
[
�E1m1 +�E2m2 + nh̄ω0 − i

h̄

2
�̂(E)

]
dm1,m2un+m1�n1+m2�n2

+ g1e−G�E1[dm1+1,m2(un+1+(m1+1)�n1+m2�n2 + un−1+(m1+1)�n1+m2�n2)

+ dm−1,m2(un+1+(m1−1)�n1+m2�n2 + un−1+(m1−1)�n1+m2�n2)]
+ g2�E2[dm1,m2+1(un+1+m1�n1+(m2+1)�n2 + un−1+m1�n1+(m2+1)�n2)

+ dm1,m2−1(un+1+m1�n1+(m2−1)�n2 + un−1+m1�n1+(m2−1)�n2)]. (17)

If we make use of Eq. (16), then this can be simplified to

E(φ1, φ2)un =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
un

+ g1e−G�E1[eiφ1(un+1+�n1 + un−1+�n1)+ e−iφ1(un+1−�n1 + un−1−�n1)]
+ g2�E2[eiφ2(un+1+�n2 + un−1+�n2)+ e−iφ2(un+1−�n2 + un−1−�n2)], (18)

where we have focused as before on the special case of m1 and m2 equal to zero.

4.4. Solution for the second set of two-level systems

In this problem, the first set of two-level systems is weakly coupled to the oscillator, while the second set of two-level
systems is strongly coupled. As a result, we would expect that the strong coupling associated with the second set of
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two-level systems would dominate the problem. We have considered such a problem previously. It is possible to adapt
it here by first taking

g1e−G → 0 (19)

and writing

E2(φ2)vn(φ2) =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
vn(φ2)

+ g2�E2[eiφ2(vn+1+�n2(φ2)+ vn−1+�n2(φ2))

+ e−iφ2(vn+1−�n2(φ2)+ vn−1−�n2(φ2))], (20)

where the vn(φ2) are the same coefficients that we studied previously in Ref. [5], and where E2(φ2) is the associated
energy eigenvalue. We found previously that this energy eigenvalue in the strong coupling regime with large �n2 is
approximately

E2(φ2) → �2(g2)+ 2V eff
2 cosφ2, (21)

where �2 is the self-energy which we found previously in the strong coupling limit to be

�2(g2) → − 4g2 (22)

and where V eff
2 is [5]

V eff
2 → 4g2

�n2
2

�E2�

(
g2

�n2
2

)
. (23)

4.5. Perturbation theory estimate for the energy eigenvalue

We can use this as a starting point to estimate the energy eigenvalue. We can use perturbation theory to write

E(φ1, φ2) ≈ E2(φ2)+
〈
vn(φ2)

∣∣∣∣g1e−G�E1

[
eiφ1

[
vn+1+�n1(φ2)+ vn−1+�n1(φ2)

]

+e−iφ1
[
vn+1−�n1(φ2)+ vn−1−�n1(φ2)

]]〉
. (24)

We saw from earlier work that the expansion coefficients are slowly varying in the strong coupling limit, so that

vn+1−�n1(φ2) ≈ vn−�n1(φ2). (25)

Hence, we may write

E(φ1, φ2) ≈ E2(φ2)

+ 2g1e−G�E1[eiφ1〈vn(φ2)|vn+�n1(φ2)〉 + e−iφ1〈vn(φ2)|vn−�n1(φ2)〉]. (26)
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The bra and kets here denote summations over the different n, and we may write

〈vn(φ2)|vn+�n1(φ2)〉 = 〈vn(φ2)|vn−�n1(φ2)〉∗. (27)

Hence

E(φ1, φ2) ≈ E2(φ2)+ 4g1 e−G�E1Re{eiφ1〈vn(φ2)|vn+�n1(φ2)〉}. (28)

5. Dynamics of the Donor System

Our attention is first drawn to the dynamics of the donor system. Instead of dealing with the more complicated problem
associated with both the donor and receiver systems, we wish to first study the donor dynamics independently. Aside
from the fact that it greatly simplifies the problem, this study will emphasize a key feature of how this coupled system
works. We will see that under some conditions it becomes possible for the transition energy of the donor system to be
converted directly to the oscillator, as a result of the oscillator being strongly coupled with the other two-level system.

5.1. Dynamical equations for the expansion coefficients

We begin with a wave function definition of the form

� =
∑
m1

∑
m2

∑
n

dm1(t)e
im2φ2un+m1�n1+m2�n2 |S1,m1〉|S2,m2〉|n+m1�n1 +m2�n2〉. (29)

The associated evolution equation becomes

ih̄
d

dt
dm1(t)e

im2φ2un+m1�n1+m2�n2

=
[
�E1m1 +�E2m2 + nh̄ω0 − i

h̄

2
�̂(E)

]
dm1(t)e

im2un+m1�n1+m2�n2

+ g1e−G�E1[dm1+1(t)e
im2φ2(un+1+(m1+1)�n1+m2�n2 + un−1+(m1+1)�n1+m2�n2)

+ dm−1(t)e
im2φ2(un+1+(m1−1)�n1+m2�n2 + un−1+(m1−1)�n1+m2�n2)]

+ g2�E2[dm1(t)e
i(m2+1)φ2(un+1+m1�n1+(m2+1)�n2 + un−1+m1�n1+(m2+1)�n2)

+ dm1(t)e
i(m2−1)φ2(un+1+m1�n1+(m2−1)�n2 + un−1+m1�n1+(m2−1)�n2)]. (30)

We first simplify the phases to write
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ih̄
d

dt
dm1(t)un+m1�n1+m2�n2

=
[
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2
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]
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+ g1e−G�E1[dm1+1(t)(un+1+(m1+1)�n1+m2�n2 + un−1+(m1+1)�n1+m2�n2)
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We then approximate

un → vn(φ2) (32)

and obtain

ih̄
d

dt
dm1(t) ≈ E2(φ2)dm1(t)

+ 2g1e−G�E1[dm1+1(t)〈vn+m1�n1+m2�n2 |vn+(m1+1)�n1+m2�n2〉
+ dm−1(t)〈vn+m1�n1+m2�n2 |vn+(m1−1)�n1+m2�n2〉], (33)

where we have used a reference energy offset based on m1 = 0 and m2 = 0. This can be denoted more simply as

ih̄
d

dt
dm1(t) ≈ E2(φ2)dm1(t)

+ 2g1e−G�E1[dm1+1(t)〈vn(φ2)|vn+�n1(φ2)〉 + dm−1(t)〈vn(φ2)|vn−�n1(φ2)〉]. (34)

5.2. Interpretation

In the solution � that we adopted, the basis states are presumed degenerate as an ansatz of the model. As a result,
we expected to obtain evolution equations with indirect coupling between distant expansion coefficient of degenerate
states (distant in n, but nearest neighbors in m1), and this corresponds to our result of Eq. (34). However, this result
deserves some consideration in its own right in terms of the associated physical mechanism that has come out of the
model we proposed. In previous work we considered models in which the donor system would transfer excitation to
the receiver system, and then the receiver system would convert it to oscillator energy.

However, what we have found using this formulation in the strong coupling limit is qualitatively different, and much
simpler. In essence, once there is sufficient coupling between the oscillator and receiver system, then the oscillator states
become spread, allowing the donor transition energy to be accepted directly by the oscillator. This differs qualitative
from our earlier proposals and models.

The overlap integral 〈vn(φ2)|vn+�n1(φ2)〉 is a function of the dimensionless coupling of the receiver system g2, even
though we have not denoted this dependence explicitly. When the coupling between the receiver system and oscillator
is too weak, then the overlap integral becomes vanishingly small. When the coupling is strong, and the donor transition
energy is approximately matched to a multiple of the receiver system transition energy, then the overlap approaches
unity.
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5.3. Evolution equations for expectation values

We may write for the evolution equation for the expansion coefficients an equivalent dynamical equation of the form

ih̄
d

dt
dm1 = Vm1+ 1

2
dm1+1 + Vm1− 1

2
dm1−1, (35)

where we have discarded the unimportant constant energy offset. In the event that φ2 is 0 or π , then the coupling
coefficients are real; otherwise they can be complex. In such cases we may write

Vm1+ 1
2

= |Vm1+ 1
2
|eiθ , (36)

Vm1− 1
2

= |Vm1− 1
2
|e−iθ . (37)

If we define scaled expansion coefficients according to

em1 = dm1 eim1θ (38)

then the associated evolution equation is

ih̄
d

dt
em1 = |Vm1+ 1

2
|em1+1 + |Vm1− 1

2
|em1−1. (39)

We define the expectation value of the Dicke number m1 as

〈m1〉 =
∑
m1

m1|em1 |2. (40)

The associated evolution equations are

d

dt
〈m1〉 = 〈v̂1〉, (41)

d

dt
〈v̂1〉 = 2

h̄2

∑
m1

|em1 |2
(|Vm1+ 1

2
|2 − |Vm1− 1

2
|2). (42)

5.4. Classical limit

In the classical limit we may write

d2

dt2
m1(t) = 2

h̄2

d

dm1
[V eff

1 ]2 (43)

using
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V eff
1 = 2g1e−G�E1|〈vn(φ2)|vn+�n1(φ2)〉|. (44)

Most of the factors that make up the indirect coupling coefficient for the donor system V eff
1 do not depend on m1; the

overlap matrix element depends on parameters associated with the receiver system, but not the donor system. As a
result, we may write

d2

dt2
m1(t) = 2

h̄2 4e−2G(�E1)
2|〈vn(φ2)|vn+�n1(φ2)〉|2 d

dm1
g2

1

= 2

h̄2 4e−2GV 2
1 n|〈vn(φ2)|vn+�n1(φ2)〉|2 d

dm1
(S2

1 −m2
1)

= −
[

16V 2
1 n

h̄2 e−2G|〈vn(φ2)|vn+�n1(φ2)〉|2
]
m1(t). (45)

It may be most useful to write this as

d2

dt2
m1(t) = − [�1(g2, φ2)]2m1(t) (46)

with

�1(g2, φ2) = 4

(
V1

√
n

h̄
e−G

)
|〈vn(φ2)|vn+�n1(φ2)〉|. (47)

The characteristic frequency associated with the donor system is seen to be four times the coupling matrix element
(including the Gamow factor) divided by h̄, times a hindrance factor (magnitude of the overlap matrix element) that
depends on the receiver system.

5.5. Analytic solution when the receiver system is static

In the event that we impose (mathematically) a condition of steady state on the receiver system, the associated dynamics
of the donor system will be oscillatory. As an example, if all of the two-level systems of the donor system are initially
excited, then the relevant classical solution is

m1(t) = S1 cos(�1t). (48)

We see that the dynamics are determined by the characteristic frequency.

6. Discussion and Conclusions

Since the coupling is so weak in the case of the D2/ 4He transition, we have generalized the lossy spin–boson model to
the present donor-receiver model that includes two sets of two-level systems coupled to an oscillator. We recognize this
model as an simplification of a more complicated model, as the two-level system of the receiver side is an idealization
of a system involving more levels.
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Figure 1. Expansion coefficients for g = 30, �n = 151, and φ = π (blue); and results from the peak amplitude model (red).

We have made use of the tools and analysis that we presented earlier in our discussions of the lossy spin–boson
model to analyze the donor-receiver model in the local and periodic approximation, under conditions where the coupling
between the receiver two-level systems and the oscillator is strong. We find that in this limit the dynamics of the donor
system in our formalism appears to execute simple sinusoidal dynamics, including coherent energy exchange with the
lattice where the large donor quantum is fractionated by the receiver system. We anticipate that in a more sophisticated
version of the model, the addition of loss at ω0 in the oscillator model with prevent reverse reactions (in which energy
from the oscillator results in splitting of 4He to D2).

We note that the dynamics in this model are coherent, so that the rate at which D2 make transitions to 4He states
is linear in the matrix element. The Gamow factor due to tunneling through the Coulomb barrier which hinders the
matrix element then appears as e−G in the rate, in contrast to the incoherent case which is typical in hot fusion where
the reaction rate is proportional to e−2G.

Because the donor dynamics are determined by the donor-side coupling matrix element in the limit that the receiver
system is strongly coupled (and also resonant), this donor-receiver model seems already to have some applicability for
comparing experimental results with candidate models for D2 inventory, screening energy, and reaction rate.

There is more to be gleaned from this donor-receiver model from an examination of the overlap matrix element
〈vn(φ2)|vn+�n1(φ2)〉. For simplicity, we show expansion coefficients vn(π) for a model with �n2 = 151 and g = 30
in Fig. 1 along with the associated overlap matrix element (Fig. 2). In the event that the donor and receiver transitions
are assumed resonant, then we would look at Fig. 2 to see how big the overlap is when �n1 = 151. In this case,
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Figure 2. Overlap integral for g2 = 30, �n2 = 151, and φ=π as a function of �n1.

the overlap integral is close to unity, in which case the donor dynamics would be determined nearly completely by the
strength of the donor coupling matrix element.

However, there are other peaks present in Fig. 2 which attract our attention. Suppose that the transition energy of
the donor system were twice as large as the transition energy of the receiver system, then we would look to see how big
the overlap matrix element is near �n1 = 302. We see that a peak occurs there, and that the overlap matrix element is
near 0.9. In this case, the resonance appears because the donor energy is twice the receiver energy, and we can think
of the system responding as if we first converted the donor excitation into the excitation of two receiver systems, and
then subsequently fractionated.

This is interesting because we know from our earlier studies of the lossy spin–boson model that the larger the
quantum is, the harder it is to fractionate. If we can break up the donor quantum into many smaller receiver quanta,
then it is much easier to fractionate the smaller receiver quanta. The overlap integral in this example is showing us
qualitatively how this subdivision works. We also see that the subdivision resonance need not be perfect, because the
receiver system is able to make up a mismatch in the resonance.

So, even though the simple donor-receiver model is idealized in the sense that our two-level receiver does not
correspond directly to a physical transition, we are able to get some guidance as to how to make a better model. To
maintain coherence, we probably want to make use of long-lived metastable states which have a transition energy
that is close to an integer subdivision of the donor transition energy. But such a long-lived metastable state will have
essentially no coupling with the ground state (since it is metastable). This tells us that we need to include in a more
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realistic receiver model the intermediate strong transitions that take us from the ground state to the metastable state.
We are at present exploring such models as candidates to account for the excess heat effect in the Fleischmann–Pons
experiment.
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