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Editorial

It is always a great pleasure to publish a new volume of the Journal of Condensed Matter Nuclear Science. This is
the combined effort of many authors, the reviewers, and the team doing the typesetting. While it does not compare the
excitement of the birth of a new baby in a family, still it gives one the same feeling of boundless new possibilities. This
new volume has both experimental and theoretical papers, which I hope will be of interest to readers. It is my hope that
this journal contributes to the development of this new science, in spite of the many obstacles that we face.

Jean-Paul Biberian
December 2013
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Research Article

How the Flawed Journal Review Process Impedes
Paradigm Shifting Discoveries

P.A. Mosier-Boss ∗
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

L.P. Forsley †

JWK International Corporation, Annandale, VA 22003, USA

F.E. Gordon ‡

Research and Applied Sciences Department, US Navy SPAWAR Systems Center Pacific, Retired, San Diego, CA 92152, USA

Abstract

The purpose of scientific journals is to review papers for scientific validity and to disseminate new theoretical and experimental
results. This requires that the editors and reviewers be impartial. Our attempt to publish novel experimental results in a renowned
physics journal shows that in some cases editors and reviewers are not impartial; they are biased and closed-minded. Although
our subject matter was technical, its rejection was not: it was emotionally charged. It was an agenda-laden rejection of legitimate
experiments that were conducted in US DoD and DoE laboratories. This paper describes the flawed journal review process, detailing
our own case and citing others. Such behavior on the part of editors and reviewers has a stifling effect on innovation and the diffusion
of knowledge.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

In 1989, Drs. Martin Fleischmann and Stanley Pons published a peer-reviewed claim that their palladium/deuterium
(Pd/D) electrochemical cells were generating more excess heat than could be accounted for by conventional chemistry.
[1] Over the ensuing years, researchers accumulated additional evidence that nuclear processes occur within metal
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lattices. Successful replications of these novel “Low Energy Nuclear Reaction” (LENR) results have been published
in several peer-reviewed journals.

However, potential government sponsors have stated that these peer-reviewed publications are meaningless because
the research was not published in either Nature or Science, as if these two were the only legitimate arbiters of scientific
truth. Those journals are considered to be prestigious because of their high impact factorsa of 36.280 for Nature [2]
and 31.201 for Science [3] in 2011 [4]. By comparison, the Journal of the American Chemical Society, the flagship
of the world’s largest scientific society which has published successful cold fusion replications, had an impact factor
of 9.907 in 2011 [5]. Replications have also been published in prestigious overseas journals such as the Japanese
J. Applied Physics. This is published by the Japanese Applied Physics Society, and it is thus roughly equivalent to
Science, published by the AAAS. We, and others, have attempted to publish papers in Nature, but our submissions
were returned with the admonishment, “This subject area is of no interest to our readers.” In fact, Nature has published
a number of papers on experiments that failed to replicate the Fleischmann–Pons results, such as the one written by
Lewis et al. [6], as well as negative commentaries on the field [7,8]. In light of criticisms of not having published
our results in higher-tiered journals, we attempted to publish a LENR-based paper in a higher-tier physics journal. In
this communication, we document and discuss the outcome of our experience as a case study to illustrate the larger
problem.

Unfortunately, the problem of publishing controversial papers is hardly a new phenomenon. In their book entitled
Responsible Conduct of Research, Shamoo and Resnick [9] stated:

History provides us with many examples of important theories that were resisted and ridiculed by [reviewers
of] established researchers, such as Gregory Mendel’s laws of inheritance, Barbara McLintock’s gene jumping
hypothesis, Peter Mitchell’s chemiosmostic theory, and Alfred Wegener’s continental drift hypothesis.

Campanario [10] documented instances where 24 scientists encountered resistance by scientific journal editors or
referees when they tried to publish manuscripts on discoveries that later earned them the Nobel Prize. Recently, Nature
published an editorial on the subject of peer rejection [11]. Nature acknowledged that they had rejected papers on
Cerenkov radiation; Hideki Yukawa’s meson; the work on photosynthesis by Johann Deisenhofer, Robert Huber and
Hartmut Michel; and the initial rejection (but eventual acceptance) of Stephen Hawking’s black-hole radiation. The
editorial concluded:

… rejected authors who are convinced of the groundbreaking value of their controversial conclusions should
persist. A final rejection on the grounds of questionable significance may mean that one journal has closed its
door on you, but that is no reason to be cowed into silence. Remember, as you seek a different home for your
work, that you are in wonderful company.

2. Our Rejection Experience

The journal wherein we submitted our observations publishes short, important papers from all branches of physics.
Although its impact factor was 7.37 in 2011, it is considered to be among the most prestigious publications in any
scientific discipline. In December 2009, we submitted a paper comparing fast neutron-induced triple tracks in a Solid
State Nuclear Track Detector (CR-39) that we observed as a result of our LENR experiments with those generated
by a DT fusion generator. Previously, we had published a paper in a “lower-tier” journal, Naturwissenschaften [12]
discussing our first observation of energetic neutrons in a deuterated palladium lattice (Pd/D), in addition to three other
papers using CR-39 to detect energetic particles [13–15].

aThe impact factor of a journal is a measure of the frequency with which the “average article” in a journal has been cited in a particular year or period.
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Figure 1. Comparison of DT fusion induced tracks. Palladium deuterium co-deposition tracks are in the two left columns and DoE accelerator
driven DT fusion neutron generator tracks are in the right two columns. The black and white pictures are CR-39 microphotographs. The false color
photographs are a composite of two microphotographs, one focused at the bottom of the track with one focused on the surface. This allows both the
extent of the track and its “origin” to be more clearly observed. Triple tracks are caused by a nearly 10 MeV neutron striking a carbon atom in the
CR-39, shattering it into three energetic alpha particles that create an ionization trail in the CR-39. The CR-39 is etched for several hours, enlarging
the trail until it is visible with a microscope as a track. If you cannot tell the difference, there is no difference.

2.1. Our claim: solid-state nuclear track detector — CR-39 and neutron detection

Our submission described our experiments with CR-39 neutron detection. CR-39 is a solid-state nuclear track detector
(SSNTD) that is commonly used to detect neutrons and charged particles in inertial confinement fusion (ICF) aka “laser
fusion” [16]. When an energetic, charged particle traverses a solid-state nuclear track detector it creates an ionization
track [17,18]. When the detector is etched, the tracks are enlarged until they are visible with the aid of a microscope.
However, neutrons only leave tracks under certain conditions. The neutron must either elastically scatter off or undergo
an inelastic nuclear reaction with, the hydrogen, carbon, or oxygen atoms within the CR-39 [19].

The most easily identified neutron interaction is a “triple track” that occurs when a neutron with over 9.6 MeV
shatters a carbon atom in the detector resulting in a three pronged star [19–23]. Figure 1 shows representative triple
tracks observed in CR-39 detectors that were used in Pd/D co-deposition experiments as well as their corresponding
accelerator-driven DT fusion neutron generated triple track. The tracks are clearly indistinguishable.
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2.2. The reviews

When the paper was first internally reviewed by the Journal, we were told that the paper was too long and that we
needed to shorten it. However, we could include additional material in an electronic supplement. We complied with
this request and resubmitted the paper along with the names of three potential referees, one of whom was a CR-39
expert.

2.2.1. Reviewer A

Our paper was rejected in February 2010 after being reviewed by three referees. The editor commented:

Referee A sent but a short report of no value to either of us. He or she did go over your manuscript and offered
emendations in electronic form. We enclosed the marked manuscript in case it will be of use to you elsewhere.

The emendations made by the referee clearly showed that he/she was knowledgeable on the use of CR-39 and interpreting
the tracks. We had discussed the origins of asymmetric triple tracks, suggesting,

They could also be due to reactions of the type 12C(n,α)9Be or 16O(n, α)13C. The track caused by these
reactions typically has one prong with a larger cone angle than the other which are attributed to the alpha
particle and the recoiling residual nucleus, respectively.

To this Referee A commented,

This is due to the fact that cone angle decreases with increasing ionization rate. The 9Be recoil has a higher
ionization rate and thus a smaller cone angle.

We asked the Journal’s editor if we could have Referee A’s comments. The editor steadfastly refused to send them
to us. It is unheard of for editors to deny referee’s comments to authors. In contrast, this editor had no qualms sending
us the reports of the other two referees.

2.2.2. Reviewer B: Authors should be glad they’re not dead

Referee B’s report stated:

The authors claim to produce a source that emits approximately a few Hz, perhaps 10 Hz, 14 MeV DT neutrons.
This is a formidable source. The rate of 2.5 MeV DD neutron source should be considerably (many order
of magnitudes) stronger. Such a strong source of 2.5 and 14 MeV neutrons should be easily detectable with
live electronical [sic] neutron detector. The fact that the authors did not make an attempt to measure these
neutrons with the more reliable neutron detectors speaks volume of the less than adequate research effort.

The authors are the best living evidence that this high intensity neutron source did not exist. We note from the
outset that a full body neutron dose of 500 REM (5 Sv) will cause severe radiation sickness. A slightly larger
dose will cause death within a few weeks. Such a full body dose is produced by 1010 2.5 MeV DD neutrons or
2×109 14 MeV DT neutrons.

The authors reported a “DT fusion flux of 1.25–2.5 n/cm2/s” which leads to a full body dose of 2×107 secondary
DT neutrons per hour. The flux of the primary DD fusion will thus be many orders of magnitude above and
beyond the lethal dose. A person spending one hour (in fact considerably less than one hour) in the vicinity of
the apparatus will suffer severe radiation sickness and will die shortly afterward.
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The author should be thankful for not discovering DT fusion and in any case there is no place for such a low
quality research in the pages of …[this Journal]… or for that matter in any scientific publication that adheres
to a minimum standard of quality.

2.2.2.1 Our response to Reviewer B: No lethal neutron flux reported

The Journal did not give us the opportunity to refute the comments made by reviewer B. We will take that opportunity
now. Reviewer B erroneously states the DD fusion rate should be many orders of magnitude greater than the DT fusion
rate. In fact, the fusion cross-section over a wide variety of ion energies is 100 times greater for DT fusion than DD
fusion [16]. The referee advocated the ‘dead graduate student’ argument first publicized by John Huizenga [24], the
head of the 1989 ERAB panel charged with investigating cold fusion claims. In the submitted paper we measured the
integrated DT neutron flux as 1.25–2.5 n/cm2/s. The CR-39 detectors are 4 cm2 in area. So the total number of neutrons
per hour, at most, is 3.6 × 104 and not 2 × 107, as the referee stated. It is not clear how the referee calculated over 500
times our reported value.

An integrated neutron radiation dose of 6 Gy is considered lethal [25]. This is equivalent to 6000 REM.b For
neutrons with energies between 10 and 30 MeV, the integrated number of neutrons per square centimeter equivalent to
a dose of 1 REM is 1.4 × 107 n/cm2 [26]. For the entire Pd/D co-deposition experiment (typically two weeks), the total
number of neutrons per square centimeter is 3.024 × 106 n/cm2. This is equivalent to a total dose of 0.216 REM, which
is far below the lethal limit for neutron exposure. Even if we use the referee’s erroneous value of 2 × 107 n/cm2/hr, a
neutron dose over a two-week period of 480 REM is still far below the lethal limit of 6000 REM.

2.2.3. Reviewer C

Referee C commented:

The authors report the observation of “triple tracks” in a relatively new type of detector material, which is
claimed to be proof for DT fusion events within the material.

At some points in the paper it becomes clear that the observed tracks in the detectors are “indicative” or
“consistent with” DT fusion reactions. Such phrases, along with controversy discussions about the method
that can be found in literature, make clear that the used method is far from being a solid proof for such
reactions. They try to argue with heaps of supplementary material does not replace the need to establish the
new method in peer-refereed journals. On the other hand, I am wondering why particles, be it alphas or
neutrons, cannot be detected with conventional, well established, detection methods, at least in order to show
the applicability of the new detection method relative to something else. In the end, I am not convinced that
the observed “tracks” or “bubbles” are a unique signature of 3 alpha breakup of 12C, such as claimed by the
authors.

All these are technical details, (which the general …[this Journal]… reader will have no chance to comprehend
from the present manuscript,) whereas the biggest question to this paper is what the reader is supposed to
conclude from it. Multiple times the authors assume the source for the claimed detected neutrons to be DT
fusion. However, quite artificially, the source for this DT fusion is left open until the conclusion. Even there,

bA gray (Gy) is a unit of absorbed dose, specific energy (imparted) and of kerma. One Gy is equivalent to 100 RAD (Radiation Absorbed Dose).
REM is damage produced by 1 RAD in body tissue where REM =Q× RAD. Q is the quality factor which accounts for the difference in the amount
of biological damage caused by the different types of radiation. For gamma and beta radiation, 1 RAD = 1 REM. For neutrons, 1 RAD = 10 REM.
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one finds speaking of “hot” fusion DD reactions - without mention what hot means. Presumably, it means the
energy necessary to actually fuse to deuterium nuclei. Unfortunately, the authors do not give any hint where
this necessary energy would come from.

It is quite simple: in order to get fusion you have to overcome a Coulomb barrier. The authors themselves
admit in the conclusion that the mechanism for the DD reaction is “not yet fully understood”. Not surprising,
since nothing I read explains where the necessary energy would come from. Instead, even more reactions
are mentioned in the end (Oppenheimer-Phillips stripping) which now shall account for the observed tracks
- without explanation. After that some mentioning of oscillations of atoms within the material, again with
absolutely no firm connection to the observations. I am left with the impression that nobody has a clue where
the energetic tritons (intermediate reaction products) would come from.

2.2.3.1 Our Response to Reviewer C: CR-39 was the appropriate method

Again the Journal did not give us the opportunity to refute the comments made by reviewer C. We will take that
opportunity now. CR-39 is not a new detector material. Cartwright et al [17] were the first to demonstrate that CR-39
could be used to detect nuclear particles in 1978. There are hundreds of papers in the literature describing the use and
development of CR-39 for neutron dosimetry. Countries involved in this research include Italy [27], Egypt [28,29], India
[30], Japan [31], Hungary [20] , as well as the United States [16,17,19,32]. Landauer uses CR-39 in their Neutrak®
dosimeter for neutron detection [33]. In the supplementary material that we provided to the Journal, we discussed the
use of CR-39 in neutron detection. In the text of the submitted manuscript, we wrote:

Inertial confinement fusion (ICF) experiments with DT targets generate 14.1 MeV neutrons and routinely
observe three outgoing particle tracks from a single point in SSNTDs. This is diagnostic of the 12C(n,n’)3α
carbon breakup reaction in the detector with an energy threshold ≥ 9.6 MeV [20–23]. Furthermore, these
features, which are characteristic of the carbon breakup reaction, make it easy to differentiate this reaction
from neutron recoils, charged particle tracks and background events.

Therefore, CR-39 is an established technique for identifying tracks resulting from ≥ 9.6 MeV neutrons.
The referee asked, “why the particles, be it alphas or neutrons, cannot be detected with conventional, well established

detection methods?” Presumably he/she is referring to real-time measurements. Detection of neutrons is non-trivial.
Because neutrons have no charge, there is no direct method to detect them. Consequently, indirect methods must be
used in which the neutrons are allowed to interact with other atomic nuclei. The response of that interaction is then
measured. The most common means of detecting neutrons in real-time are based upon either neutron capture or elastic
scattering. In neutron capture, the target nucleus captures the neutron to create an unstable nucleus that spontaneously
loses energy by emitting either ionizing particles or gamma/X-rays. These radioactive decay products are then detected.
However, the cross-section for neutron capture is very low at high neutron energies. As a result, this method requires
the use of moderators to slow the neutrons down so that capture can occur. A detector based upon neutron capture
will generally be unable to determine the energy of the neutrons. In the elastic scattering method, the neutron scatters
off nuclei causing the struck nucleus to recoil. The recoiling nucleus can ionize and excite additional atoms through
collisions producing detectable electrical charges and/or scintillation light. These types of detectors do not require a
moderator so that the energy of the neutrons can be determined. However, these detectors also respond to gamma/X-rays
and require a peak shape discriminator.

Other problems with real-time neutron detectors are that they are often temperature sensitive and subject to low-level
electronic noise from the local environment causing false signals. Typically long acquisition times are used to improve
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the signal to noise ratio. If neutron production is sporadic and/or at a low level, the resultant signal may be averaged
away. There is also a problem with the solid angle of detection. Neutrons are emitted from a source in all directions.
In our experiments, we reported a maximum DT fusion flux of 2.5 n/cm2/s. In 4π , this flux is 0.2 n/cm2/s. It would
be very difficult to measure such a low flux using real-time detectors. The CR-39 detectors used in these experiments
were able to detect this low flux because they are integrating detectors, meaning events are recorded accumulatively.
Nothing is averaged away. Also, these detectors were placed in direct contact with the cathode, which nearly eliminates
solid angle detection issues. Thus, CR-39 was the correct choice to detect energetic neutrons in these experiments.

The referee’s comment about using conventional, well-established methods to detect the alphas from the carbon
break-up reaction shows that he/she does not understand the problem. We stated a ≥9.6 MeV neutron could cause a
carbon atom to shatter into three alpha particles. The carbon atom that shatters to form the triple track in the CR-39
detector is part of the molecular structure of the detector. The resultant alpha particles have energies on the order
of 1 MeV. These experiments were conducted in aqueous media. Linear energy transfer (LET) curves show that, in
water, 1 MeV alphas have a range of 5.9 µm in water and 4.7 µm in CR-39. Consequently a real-time particle detector
would only be able to detect alpha particles that were generated at the surface of the plastic detector. Alphas formed
from the carbon break-up reaction occurring deeper inside the detector would not be able to get out. In the submitted
manuscript, we indicated that we observed 5–10 triple tracks on both the front and back surfaces of the CR-39 detector.
This translates into 15–30 alpha particles generated on the entire surface of the detector (4 cm 2). For a two-week
experiment, this translates into a maximum alpha flux from the carbon breakup of 6.2 ×10−6 α/cm2/s. Real-time
particle detectors cannot detect this low alpha flux in-situ. Therefore, CR-39 is the only detector capable of detecting
these alphas.

3. Discussion

The journal required us to provide a mechanism by which the triple tracks were formed. Yet, the purpose of the paper
was only to compare DT fusion tracks from a DoE accelerator with tracks generated by Pd/D co-deposition. Granted,
we mentioned that energetic tritons and 2.45 MeV neutrons had been previously detected in the Pd/D system [34]. One
source for these tritons and neutrons are conventional hot fusion reactions. The energetic triton can react with another
deuterium inside the Pd lattice producing a 14.1 MeV neutron as a secondary reaction. We noted the process of forming
energetic tritons was unknown, but theories were under development. There was no difference in the tracks, meaning
that they are one and the same, resulting from the same reaction: a >9.6 MeV neutron that shattered a carbon atom in
the detector into three alpha particles.

The submitted paper was intended to stimulate interest in the phenomenon, leading to further investigation. Yet,
neither referees B nor C commented on the data presented in the paper (Fig. 1). Instead, the reviewers relied upon
their erroneous calculations of the neutron flux and integrated dose. They castigated the research with uninformed
comments regarding the diagnostic used, although CR-39 is commonly used for both alpha particle and neutron
detection. Unfortunately, given the nature of the review process, we had no opportunity to address erroneous or
fallacious reviewer comments. One would have thought that the journal’s editors would have found something awry,
given the difference between the comments by reviewer A and those by reviewers B and C, as well as the vehemence
of the latter two reviews. These responses, as well as the actions of the editors, were unprofessional.

Even more disturbing was the lack of curiosity and the unwarranted, surprisingly emotional responses by two of the
reviewers. We reported on the unexpected observation of DT fusion neutrons in a palladium lattice. We explained how
the detector worked, and displayed equivalent tracks from a known DT fusion source. Two of the reviewers ignored
the data and denigrated the work while the journal editors blindly accepted these flawed evaluations.

Reviewers B and C clearly demonstrated their unfamiliarity with, and ignorance of, neutron detection and solid-state
nuclear track detectors. This contrasts with reviewer A whose comments upon our paper in the emendated manuscript
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clearly indicated that he/she was familiar with CR-39 and understood its use.
Previously published physics papers have discussed CR-39 as an energetic particle diagnostic. Kinoshita [35] em-

ployed CR-39 in high-energy physics experiments. Clark [36] used CR-39 for studying proton transport in magnetized
plasmas. Li et al. [37] also used it for diagnosing laser plasma interactions. Contrary to Reviewer B, CR-39 has been in
use for decades. The fact that the editor selected and then stood with reviewers who were ignorant of standard practices
in fast neutron detection indicates editorial failure, as it is incumbent upon editors to select competent reviewers.

The journal refused to provide us with the report of reviewer A as it was of “no value to either of us”. It is unheard
of for an editor to refuse to provide all responses to the authors, regardless of whether the editor thinks the responses
have merit or will do the authors any good. This is unethical. The attitude of both the editor and Reviewers B and C
demonstrate an unwillingness to examine observations contrary to accepted beliefs.

Shamoo and Resnick [9] further commented upon how the review of controversial data should be handled:

To provide objective and reliable assessments of controversial research, journal editors and review panel
leaders should be willing to do what it takes to “open the doors” to new and novel work. If they close these
doors, then they are exerting a form of censorship that is not especially helpful to science or society. What it
takes to open the door to controversial research may vary from case to case, but we suggest that editors and
review panel leaders should always try to understand controversial research within its context. For instance,
if an editor recognizes that a paper is likely to be controversial, then he or she should not automatically reject
the paper based on the one negative review; before rejecting it, he or she should seek other reviews and give
the paper a sympathetic reading.

It would appear that the editors of the Journal in question inverted Shamoo’s suggestion: upon receiving one positive
review they sought negative reviews in order to reject the paper. Again, this suggests an a priori agenda against the
subject. Shamoo and Resnick [9] also recognize this as problematic:

As a result of this controversy, it has been difficult to conduct peer-reviewed work on cold fusion, because
mainstream physics journals select reviewers with strong biases against cold fusion.

4. Conclusions

One immediate and long lasting effect of journals refusing to publish papers on as yet controversial observations is the
elimination of a field of research and the diminution of scientists and engineers working in it. Without peer-reviewed
publications, university faculty are precluded from funding as well as students, as no student will pursue an unrecognized
field where jobs do not exist. Scientists are unable to find funds or management support. Entrepreneurs are limited
because it is not likely that corporate angels or venture capitalists will risk funds on a technology, which is denigrated
by leading scientists and subject to ridicule. In 1991, Nobel Laureate Julian Schwinger [38] aptly summarized the
problem when he wrote:

“The pressure for conformity is enormous. I have experienced it in editors’ rejection of submitted papers,
based on venomous criticism of anonymous referees. The replacement of impartial reviewing by censorship
will be the death of science.”

Indeed, this whole situation is a “Catch-22” [39]; a situation named for the war novel in which a pilot who claims he
is crazy so he wouldn’t have to fly missions, but by refusing to fly missions he proved he was sane! Our Catch-22 is that
both DoE and DoD have unequivocally stated that until “first-tier” journals, like Science and Nature, publish papers in
this field, they will not fund programs. But, editors of these journals have stated they would not publish papers without
DoE acceptance of the phenomena: a Catch-22.
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Figure 2. US Patent 8,419,919.
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4.1. Prestigious journals publish fraudulent results

Prestigious journals are not infallible. There have been many disputes in the history of science; Nature and Science
have not always been on the winning side. It is not reasonable for government agencies to require publication in these
journals as proof that a phenomenon is real. Nature and several other high tier journals have also accepted papers that
were later retracted. The most egregious failure of the editors and reviewers to deal with fraudulent physics papers was
that of then Bell Laboratory’s researcher, Jan Hendrik Schoen [40]. Schoen [41] published 36 papers, all of which were
retracted, including seven from Nature, nine from Science and six from the Physical Review journal. In this case, there
was a “rush to judgment” to publish the expected. As noted above, they have also failed to publish the unexpected, as
they did when they rejected 24 papers that later won the Nobel prize [10].

4.2. The end of knowledge?

The impact of impeded discovery was recently featured in the cover story of the The Economist magazine, “The Great
Innovation Debate” [42]. They noted, “If the rate at which we innovate, and spread that innovation, slows down, so too,
other things being equal, will be our growth rate.” One of the ways in which scientific discoveries become innovative
technologies is through patents. Over six years ago the method producing the results cited in this paper were submitted
to the US Patent Office. Normally, patents are granted in less than half that time. Because of the difficulty in publishing
our results neither the US Patent Office nor other US agencies gave credence to these results, until now. US Patent
8,419,919, “System and Method for Generating Particles” was issued on April 16, 2013 (Fig. 2).

The journal review process prevents conscientious scientists from reaching beyond what is known or expected,
ignoring the fact that most scientific and technical breakthroughs arise from the unexpected. These are the paradigm
shifts that make progress in our technological civilization possible. Government agencies that refuse to fund research
because the results have not been published in specific journals put their nations at risk of technological surprise. The
dysfunctional research funding and review processes we have described here has dire consequences.

Acknowledgements

We acknowledge the financial support for the original paper, whose adverse review necessitated this correspondence,
from the Defense Threat Reduction Agency, DTRA; JWK International Corporation; and the Department of Energy
(DoE), National Nuclear Security Agency (NNSA) under Contract No. DE-AC52-06NA25946. We also appreciate the
assistance of Dr. Gary Phillips, Georgetown University, for his fruitful discussions and insight into the origin of “triple
tracks”, as well Dr. Johan Frenje, MIT, the University of Rochester, Laboratory for Laser Energetics, and the Lawrence
Livermore National Laboratory National Ignition Facility, for confirming the assignment of triple tracks to DT fusion
events [43]. We appreciate the editing assistance of Ms. Amy Rankin, Global Energy Corporation and Jed Rothwell,
librarian of LENR-CANR.org. Partial support for this paper was provided by JWK International Corporation.

References

[1] M. Fleischmann, S. Pons and M. Hawkins, Electrochemically induced nuclear fusion of deuterium, J. Electroanal. Chem. 261
(1989) 301 and errata in Vol. 263.

[2] http://en.wikipedia.org/wiki/Nature_(journal).
[3] http://en.wikipedia.org/wiki/Science_(journal).
[4] http://thomsonreuters.com/products_services/science/free/essays/impact_factor/
[5] http://pubs.acs.org/journal/jacsat
[6] N.S. Lewis et al., Searches for low-temperature nuclear fusion of deuterium in palladium, Nature 340 (1989) 525.



P.A. Mosier-Boss et al. / Journal of Condensed Matter Nuclear Science 12 (2013) 1–12 11

[7] J. Maddox, Farewell (not fond) to cold fusion, Nature 344 (1990) 365.
[8] D. Lindley, “The embarrassment of cold fusion”, Nature 344 375 (1990).
[9] A.E. Shamoo and D.B. Resnik, Responsible Conduct of Research, Oxford University Press, Oxford, 2002.
[10] J.M. Campanario, Rejecting and resisting Nobel class discoveries: accounts by Nobel Laureates, Scientometrics 81 (2009)

549–565.
[11] http://www.nature.com/nature/journal/v425/n6959/full/425645a.html
[12] P.A. Mosier-Boss et al., Triple tracks in CR-39 as the result of Pd-D co-deposition: evidence of energetic neutrons, Naturwis-

senschaften 96 (2009) 135–142.
[13] S. Szpak, et al. “Further evidence of nuclear reactions in the Pd/D lattice: emission of charged particles”, Naturwissenschaften

94 511-514 (2007).
[14] P.A. Mosier-Boss et al., Use of CR-39 in Pd/D co-deposition experiments, Eur. Phys. J. Appl. Phys. 40 (2007) 293–303.
[15] P.A. Mosier-Boss et al., Characterization of tracks in CR-39 detectors obtained as a result of Pd/D co-deposition, Eur. Phys. J.

Appl. Phys. 46 (2009) 30901, p1–p12.
[16] F.H. Séguin et al., Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Sci. Instr. 74 (2003)

975–996.
[17] B.G. Cartwright et al., A nuclear-track-recording polymer of unique sensitivity and resolution, Nucl. Instr. Meth. 153 (1978)

457–460.
[18] S.A. Durrani, Nuclear tracks today: strengths, weaknesses, challenges, Radiation Measurements 43 (2008) S26–S33.
[19] J.A. Frenje et al., Absolute measurements of neutron yields from DD and DT implosions at the OMEGA laser facility using

CR-39 track detectors, Rev. Sci. Instr. 73 (2002) 2597–2606.
[20] J.K. Pálfalvi, Cosmic ray studies on the ISS using SSNTD, BRADOS projects, 2001–2003, Radiation Measurements. 40

(2005) 428–432.
[21] S.A.R. Al-Najjar, “Fast-neutron spectrometry using the triple-α reaction in the CR-39 detector, International Journal of

Radiation Applications and Instrumentation. Part D, Nuclear Tracks and Radiation Measurements. 12 611-615 (1986).
[22] A.M. Abdel-Moneima and A. Abdel-Naby. A study of fast neutron beam geometry and energy distribution using triple-α

reactions, Radiation Measurements 37 (2003) 15–19.
[23] L. Saj-Bohus et al., Neutron-induced complex reaction analysis with 3D nuclear track simulation, Radiation Measurements.

40 (2005) 442–447.
[24] ERAB, “Cold fusion research: a report of the energy research advisory board to the United States Department of Energy”,

DOE/S-0073 DE90 005611 (1989).
[25] http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10098
[26] http://www.thelivingmoon.com/45jack_files/03files/ERW_Neutron_Bomb.html
[27] E. Vilela et al., Optimization of CR-39 for fast neutron dosimetry applications, Radiation Measurements 31 (1999) 437.
[28] A.R. El-Sersy, et al. “Determination of CR-39 detection efficiency for fast neutron registration and the absolute neutron

dosimetry”, Nuclear Instrumentation and Method in Physics Research B 215, 443 (2004).
[29] A.R. El-Sersy, Study of absolute fast neutron dosimetry using CR-39 track detectors, Nucl.. Instr. Meth. Phys. Res. A 618

(2010) 234.
[30] V. Kumar et al., Optimization of CR-39 as neutron dosimeter, Independent J. Pure and Appl. Phys. 48 (2010) 466.
[31] T. Tsuruta et al., Experimental, study of CR-39 etched track detector for fast neutron dosimetry, J. Nucl. Sci. Technol. 29 (1992)

1108.
[32] G.W. Phillips et al., Neutron spectrometry using CR-39 track etch detectors, Radiation Protection Dosimetry 120 (2006)

457–460.
[33] http://www.landauerinc.com/uploadedFiles/Healthcare_and_Education/Products/Dosimeters/Neutrak%20Specifications.pdf
[34] A.G. Lipson et al., Evidence for low-intensity D-D reaction as a result of exothermic deuterium desorption from Au/Pd/PdO:D

Heterostructures, Fusion Technol. 38 (2000) 238–252.
[35] E.L. Clark et al., Measurement of energetic proton transport through magnetized plasma from intense laser interactions with

solids, Phyl Rev. Lett. 84 (2000) 670–674.
[36] K. Kinoshita et al., Search for Highly Ionizing Particles in e + e - Annihilations at Sqr(s) = 50–52 GeV, Phy. Rev. Let. 60 (1988)

1610.



12 P.A. Mosier-Boss et al. / Journal of Condensed Matter Nuclear Science 12 (2013) 1–12

[37] C.K. Li et al., Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography, Phy. Rev. Lett.
97 (2006} 135003.

[38] http://www.lenr-canr.org/acrobat/SchwingerJcoldfusiona.pdf
[39] J. Heller, Catch-22, Simon & Shuster (1961).
[40] E.S. Reich, Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World. Palgrave Macmilian (2009).
[41] http://en.wikipedia.org/wiki/Jan_Hendrik_Schön
[42] “The Great Innovation Debate”, The Economist, January 12, 2013 p 11
[43] C. Barras, Neutron Tracks Revive Hopes for Cold Fusion, New Scientist, March 23, 2009.



J. Condensed Matter Nucl. Sci. 12 (2013) 13–17

Research Article

Using Bakeout to Eliminate Heat from H/D Exchange
During Hydrogen Isotope Loading of Pd-impregnated

Alumina Powder

Olga Dmitriyeva∗† and Garret Moddel
Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425, USA

Richard Cantwell and Matt McConnell
Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301, USA

Abstract

Earlier studies [1,2] have shown that a hydrogen–deuterium (H/D) exchange chemical reaction initiated in Pd-impregnated material
can account for at least some of the excess heat observed during gas-loading experiments. We report on using in-situ material
bakeout for an extended time to assess and eliminate the chemical heat contribution.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

Multiple studies on deuterium loading of Pd nanomaterials demonstrated consistent and repeatable anomalous heat
production [3–7]. Low-energy nuclear reaction (LENR) has been offered as an explanation for this heat production.
Excess heat production in such systems was observed only in the presence of deuterium, but not hydrogen – an isotope
effect. We replicated and analyzed the results of deuterium/hydrogen gas loading experiments. In the study reported
here, we show that a conventional heat generation process could account for these observations. Also, we proposed a
method that would help to assess this chemical heat contribution.

These anomalous effects were demonstrated in nano-Pd-on-oxide materials, which are well-known catalytic systems.
Catalysis is a surface phenomena, and hence an efficient catalyst must have a large surface area, implying that the active
particles must be small. Small metal particles can be unstable and prone to sintering in order to reduce surface area.
Therefore, most heterogeneous catalysts consist of particles inside the pores of inert substrates such as alumina, silica,
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titania magnesia, zinc oxide, zirconia, zeolite and others. Thus, Pd-impregnated alumina appears to be a suitable system
to promote chemical reactions in the presence of hydrogen isotopes. However, the question of isotope selectivity of such
a reaction still remained: why was the excess heat observed during deuterium loading but not hydrogen? An explanation
was proposed by Kidwell et al. [6], suggesting hydrogen/deuterium (H/D) exchange as a heat generation mechanism
in Pd-impregnated systems. Replacement of a hydrogen atom by deuterium in a water molecule or a hydroxyl group
on oxide support is an exothermic reaction. However, if the same material is exposed to hydrogen, no exchange takes
place and no heat is released.

In our previous work [2], we tested the isotope dependence of heat generation in Pd-impregnated alumina and
showed that Pd nanoparticles catalyze H/D exchange chemical reactions. One of the necessary reactants is a gas
atom (deuterium or hydrogen), while the other reactant is a particular water isotope trapped in the material due to its
hydroscopic nature. We called the water isotope fuel. This fuel can be supplied to the material in two ways: (1) material
can be enriched with a particular water isotope during the fabrication or (2) by subsequent exposures to deuterium or
hydrogen gas. We used both methods to enrich Pd-impregnated alumina powder with the water isotope of our choice.
By subjecting the hydrogenated material to deuterium gas we produced an exothermic H/D exchange reaction and the
system generated excess heat. While subjecting the deuterated material to hydrogen gas, we found that the system
absorbed heat from the environment This can be explained by a reverse H/D exchange. Expected gas products of the
reaction were consistent with those observed using a residual gas analyzer (RGA).

In this paper we present an approach that allowed us to control the amount of water absorbed in the material, while
measuring generated heat to quantify the contribution of the H/D exchange reaction. The detailed description is given
in Section 3:

Section 3.1 discusses TGA and RGA data that show the traces of water trapped in the material. Section 3.2 provides
the results of H/D and reverse H/D exchange in Pd-impregnated alumina powder. Section 3.3 discusses the method of
depleting material from water by baking it out in-situ at 390˚C in vacuum for at least 35 h. Section 3.4 demonstrates
reactivation of the H/D exchange and heat production in the material following reabsorption of water. Section 3.5
includes experimental data on material reabsorbing water from air. The amount absorbed is quantified.

2. Experiment

2.1. Material fabrication

We used 80–200 mesh Al2O3 powder (Fisher Scientific P/N: CAS 1344-28-1) that was baked in vacuum at 350˚C for
12 h before processing. Powder samples containing 2.0% by weight of Pd were fabricated by the incipient wetness
method [8] of impregnating hot H2PdCl2solution into alumina, forming a slurry. This slurry was then dried in air at
room temperature without calcination. Prior to loading into an experimental apparatus, the sample was baked in a
vacuum oven at 120˚C for 24 h. However, some water is still trapped in the material even after prebake (discussed in
Sections 3 and 3.1). During the loading process the sample was exposed to air for about 5 min, during which there was
a chance for more water vapor to be absorbed. This fabrication method produces nanoscale Pd clusters on the surface
of the alumina support, which was confirmed by TEM analysis.

2.2. Experimental setup

Figure 1 shows a block diagram of the experimental setup. The system was enclosed in an isothermal chamber (an HP
5890A gas chromatograph oven). The temperature of the oven can be set between 40˚C and 400˚C. The maximum
oven temperature used in our experiments was 390˚C. A removable stainless steel vessel was placed inside the oven
and connected to the gas line. The vessel contained 6 g of material. Hydrogen, deuterium or nitrogen could be supplied
through the gas line. H2 and D2 were supplied through an oxygen-removing hydrogen purifier. The D2 gas was 99.9%
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Figure 1. Schematic representation of the experimental apparatus. The sample vessel is enclosed in the oven. Hydrogen, deuterium, or nitrogen
can be supplied to the vessel through the gas line.

pure and the H2 gas was 99.99% pure. Nitrogen was used to fill the system while the vessels were exchanged and new
material was loaded.

A typical run consisted of (1) pressurization by hydrogen or deuterium, (2) a period of 2 h when system remained
under pressure, (3) an evacuation for 4 h. The system was pressurized up to 1.6×105 Pa (1200 torr). Evacuation of
the system was done using a turbo-molecular pump down to 10−4 Pa (10−6 torr). Heat released or consumed by the
system during gas load/unload cycles resulted in temperature changes that were measured by RTD sensors (Omega
RTD-NPT-72-E-MTP-HT), located in the bottom of the vessels. A residual gas analyzer (SRS RGA200) was connected
to the system. Temperature changes that exceeded oven’s background temperature fluctuations were associated with
exothermic or endothermic heat generated in the system.

System control, and temperature, pressure and RGA data acquisition were done using LabView software.

3. Results

3.1. Material characterization

Thermogravimetric analysis (TGA) of our material showed ∼10% of weight loss as the temperature was ramped up
to 1000˚C. Half of this weight was lost by the material before the temperature reached 400˚C. RGA data showed that
water (mass 18) was a major chemical released during the bakeout.

3.2. Heat generation

In previous work [2], we demonstrated (1) deuterium producing excess heat production in Pd-impregnated alumina
previously exposed to the air, (2) excess heat tapering off with repeated runs, (3) subsequent exposure to hydrogen
changing the reaction from exothermic to endothermic. The results were explained by the H/D and reverse H/D exchange
chemical reactions activated by Pd nano-catalysts. Exchange reaction products were also observed using the RGA.

Figure 2, part I, shows the excess heat produced in 26 runs, where the reaction gas was switched from deuterium
(first 16 runs – exothermic process) to hydrogen (subsequent 10 runs – endothermic process). The amount of heat was
calculated as a difference between the energy released or absorbed by the system during pressurization and evacuation.
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Figure 2. Heat generated by the material during deuterium and hydrogen pressurizations.

3.3. High-temperature treatment

The system bakeout was carried out by ramping the temperature in 50˚C increments up to 390˚C for a total time of about
35 h. The bakeout was carried out in situ, so that the material was not exposed to atmosphere between the bakeout and
subsequent testing. Figure 2, part II, shows the result of the following hydrogen and deuterium pressurizations. The
first H2 exposure resulted in an increased amount of released heat. We suggest it is due to chemical reaction of the gas
with the bakeout products. However, the temperature measurements of the subsequent 20 runs showed a significant
decrease in the amount of heat generated by the system, with no difference between deuterium and hydrogen runs. For
the subsequent runs RGA testing showed no evidence of H/D exchange reactions.

3.4. Reactivation of excess heat generation

After unloading from the apparatus the material was placed on the lab scale to monitor the reabsorption of the moisture
from air. On average our materials reabsorbed about 6% water by its weight. Due to a delay in the transfer of the
material to the scale, the percentage of absorbed water may be slightly underestimated. Twenty-four hours later the
material was loaded back to the apparatus and pressurized with deuterium. Figure 2, part III, shows reactivation of the
excess heat generation in the presence of deuterium. H/D exchange was evident from RGA data.

3.5. Calculations

Assuming that water is a fuel for the exothermic H/D exchange reaction we can calculate the amount of energy available.
6% by weight of reabsorbed water is equal to 0.36 g. The enthalpy of the exchange reaction is 8.3 kJ/mol [9], which
would result in 166 J of released heat. Based on the data presented in Fig. 2, part 1, we estimate that 165 J was
generated.

4. Discussion and Conclusions

It is important to be able to assess the chemical heat contribution when reporting on LENR in Pd-impregnated oxide
powders. In our previous work, we demonstrated that water isotopes trapped in a powdered Pd-impregnated alumina
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catalyst act as a fuel to support H/D exchange chemical reactions. These reactions were shown to be either exothermic
or endothermic. In this paper we describe a technique that allows control of the H/D chemical reaction. Extended
bakeout is necessary to remove the residual water from the absorptive powdered material. It is important to avoid any
air exposure between the elevated temperature treatment and gas-loading steps, to insure that material does not reabsorb
water from the air. We found that an in-situ bakeout at 390˚C for at least 35 h is sufficient. The reactivation of the H/D
exchange to its initial level after water reabsorption from air suggests that the Pd catalyst did not undergo any significant
physical or chemical transformation during the high temperature treatment. Thus, in-situ bakeout of the material in
vacuum for an extended period of time prior to the contact with hydrogen or deuterium is an effective method to insure
that chemical heat due to the H/D exchange is not present during gas-loading experiments.
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Abstract

Widom and Larsen have put forth a model to describe excess heat and transmutation in LENR experiments. This model is the single
most successful theoretical model that the field has seen since it started; it has served as the theoretical justification for a program at
NASA; and it has accumulated an enormous number of supporters both within and outside of the condensed matter nuclear science
community. The first step in the model involves the proposed accumulation of mass by electrons through Coulomb interactions with
electrons and ions in highly-excited coupled plasmon and optical phonon modes. Historically for us this mass increase has been
hard to understand, so we were motivated in this study to understand better how this comes about. To study it, we consider simple
classical models which show the effect, from which we see that the mass increase can be associated with the electron kinetic energy.
The basic results of the simple classical model carry over to the quantum problem in the case of simple wave packet solutions. Since
there are no quantum fluctuations of the longitudinal field in the Coulomb gauge, the resulting problem is conventional, and we find
no reason to expect MeV electron kinetic energy in a conventional consideration of electrons in metals. We consider the numerical
example outlined in a primer on the Widom–Larsen model, and find that multiple GW/cm2 would be required to support the level of
vibrational excitation assumed in the surface layer; this very large power per unit area falls short by orders of magnitude the power
level needed to make up the expected energy loss of the mass-enhanced electrons. We note that the mass enhancement of an electron
in a transverse field is connected to acceleration, so that the electron radiates. A similar effect is expected in the longitudinal case,
and a very large amount of easily detected X-ray radiation would be expected if an MeV-level mass enhancement were present even
in a modest number of electrons.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

Excess heat in the Fleischmann–Pons experiment [1,2] has proven to be particularly vexing to theorists. The original
experiment involved electrolysis in heavy water with a Pd cathode and a Pt anode, run in a configuration known to load
deuterium into the Pd cathode. A very large amount of excess heat is seen in successful experiments, but there is no sign
of commensurate chemical products, a situation which led to Fleischmann’s conjecture that the energy produced was
of nuclear origin. The absence of commensurate energetic nuclear products places the effect outside of conventional
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nuclear physics, and in addition prevents us from studying the reaction kinematics directly as we might with any normal
nuclear reaction.

During the subsequent 24 years and more, much attention has been focused on figuring out how deuterons might
tunnel, and then fuse, in a way that has something to do with the experiments. In spite of the many papers devoted
to this approach, at present it has not won over a clear majority of the field. There are issues associated with how the
Coulomb barrier might be overcome; why one should not expect to see the normal deuteron–deuteron fusion reaction
products if the deuterons managed to get together; and finally the question of what happened to the 24 MeV gamma if
helium is formed. Of course, we know now that the problem is even more perplexing; rather than being restricted to
gammas, the issue is that as far as we know in the PdD experiments there are no commensurate energetic products of
any kind.

The problem associated with overcoming the Coulomb barrier in the case of incoherent reaction schemes is suffi-
ciently difficult that there have been many efforts to look to reaction schemes that do not involve fusion at all. Largely
these have simply been ignored within the field (to be fair, nearly all theories have pretty much been ignored by the
experimentalists, and the theorists have tended to focus only on their own approaches).

The situation changed considerably with the publication of a model by Widom and Larsen in 2006 [3]. While the
theorists in the field have come from diverse backgrounds, this was the first major new theory in more than a decade
from a mainstream active particle physicist (Widom), and published initially in a mainstream journal. It was not a
fusion-based model, so there was no problem with the Coulomb barrier. In this model, electrons acquire sufficient mass
so that electron capture produces the weak interaction mediated reaction [4]

Welectric + e+p → n + νe.

Here Welectric is energy contributed from the longitudinal electric field interactions with excitations in the local envi-
ronment. Normally it is the neutron that undergoes a beta decay via

n → p+e + νe + 0.782 MeV.

To get the reaction to go in reverse sufficient energy (more than 0.782 MeV) must be supplied; the backward version
of the reaction is important in astrophysics, for example in the conversion of electrons and protons to neutrons in a
very strong magnetic field [5]. Once a neutron is created, then Widom and Larsen propose that it makes use of long
wavelength states (that diffract) in a crystal, and are transferred to other nuclei resulting in energy production and
transmutation effects.

Since it first appeared, this model has been remarkably successful. The existence of the model has been commu-
nicated to a very large number of people that follow the field but are not in it; a surprisingly large number of people
within the scientific community in general are aware of the model, and many think highly of it; and by now there have
been many presentations. Mike Melich reported receiving a widely favorable response in an unscientific polling of
high-energy physicists at a Lake Louise Winter Institute meeting. This new model has received considerable attention at
the New Energy Times web site, which some have suggested advocates for the theory. A success that cannot be similarly
claimed by any other model in the field, is that Widom–Larsen has been deemed sufficient to justify an experimental
LENR effort at NASA.

When we first encountered the model, our attention was drawn to the very large mass enhancement predicted for
electrons, sufficiently large to be able to drive the neutron beta decay reaction backward. Since there are no obvious
conventional mechanisms at play in the experiments done so far capable of doing this, we were under the impression that
the model sought to take advantage of some new exotic mechanism related to quantum fluctuations of the electromagnetic
field. For example, an argument can reasonably be made that quantum fluctuations in the transverse field produces
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a mass shift in the electron (as one term among many that appear in perturbation theory), and effect which has been
verified both theoretically and experimentally [6]. After some thought, it became clear that if we work in the Coulomb
gauge (and most applied physics is done in the Coulomb gauge) there are no quantum fluctuations in the longitudinal
field [7]. The largest mass shift obtainable in a terrestrial laboratory is much too small to be relevant for the application
under discussion.

This argument was criticized by Widom et al. [8], who suggested that we had omitted Coulomb interactions, and
by doing so had thrown out the effects of interest in the Widom–Larsen model.    From our perspective, the issue was
never whether Coulomb interactions should be included or not included (and we had included a brief discussion of the
longitudinal field in our work), but that there were no quantum fluctuations associated with the Coulomb fields in the
Coulomb gauge (while there are quantum fluctuations in the case of transverse fields). This may seem to be a minor
technical issue, but it relates to how we might think about the effect, what models we might use, and whether we can
use our intuition about the associated physics and applications. If there are no quantum fluctuations of the longitudinal
fields in the Coulomb gauge, then the effects under discussion are purely conventional (and there would be no reason
to expect mass increases at the MeV level in LENR experiments). In a sense the arguments of Ref. [8], and also of the
subsequent primer [4], are helpful in clarifying the issue since the discussion and analysis is conventional.

Some years have passed now, and we have been motivated to return to the problem once again. The Widom–Larsen
model has now more supporters by far than any other model in the field, and it is becoming clear that both the theorists
and experimentalists in the field probably need to become more familiar with the ideas and the analysis of Widom and
coworkers. According to the New Energy Times web site, this model explains LENR, and we should cease thinking
about cold fusion altogether. And we can find some guidance in Larsen’s slides as to how to think about the effect. For
example, in the Lattice Energy LLC slide set from Feb. 14, 2009, we find written: “E-M radiation on metallic hydride
surface increases mass of surface plasmon electrons.” An arrow points to the reaction

(radiation)+ e− → ẽ−, (1)

where ẽ− is a “heavy-mass surface plasmon-polariton electron.”
This, of course, is where our difficulties begin. We simply do not understand how an electron in a metal hydride can

develop a mass enhancement as large as needed by the model. However, given the importance of the model, probably
it is time to roll up our sleeves and try to understand how this might work. If electrons are going to gain mass, and a
lot of mass, then we would like to understand how it works in simple terms if possible. We know that mass is energy,
and vice versa, so this will take energy, and the energy has to come from somewhere. We would like to understand
where the energy comes from, what form it is in according to a conventional perspective, and we would like to be able
to develop intuition generally in terms of the standard microscopic picture that we use for other applied physics effects.

As mentioned above, we are motivated in part by a responsibility to understand what has been argued to be the
solution to a problem that has vexed the field for several decades. But there are other motivations as well. For example,
applied physics in the areas of atomic physics and solid state physics are mature fields, and an effect in which an electron
gains mass at the MeV level does not seem to be in the associated textbooks. One could argue that excess heat in the
Fleischmann–Pons experiment is not in the textbooks either, so new textbooks need to be written. On the other hand,
it would be nice to understand the new effects in conventional terms if possible in order to connect them to things that
we have intuition about already.

So, we proceed with determination to understand the first step of the Widom–Larsen model, which involves the
mass increase of the electron.



P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 12 (2013) 18–40 21

2. Electron Mass Increase in a Classical Model

Widom and Larsen [3] start from a description in terms of relativistic quantum mechanics, but our starting point is going
to be with a much simpler description. Given the very close connection between quantum mechanics and classical
mechanics, often it is the case that a quantum system acts very much like its classical equivalent. Our hope is that the
same will be the case here, which motivates us to consider here the classical version of the model. One of our goals in
this discussion is to familiarize ourselves with the the electron mass increase in a more familiar setting.

Unfortunately, some subtleties arise already. In the original model the effect seemed to be connected to quantum
fluctuations of the electromagnetic field. However, as discussed above and in [7] there are no quantum fluctuations in
the longitudinal field in the Coulomb gauge. Yet Widom and Larsen have formulas in terms of the associated power
spectral density of the electric field, which again seems to point to fluctuations in the longitudinal fields. As there are
no quantum fluctuations associated with the longitudinal field itself, all that is left is that there must be fluctuations in
the charge density that sources the fields. There is no difficulty in extending this notion to a classical model. We might
imagine that other charges move with some degree of randomness, producing random longitudinal electric fields. We
are able to analyze the case of an electron in free space interacting with such a field; there are no associated difficulties.

2.1. Nonrelativistic model

We then begin with the simple case of a free electron interacting with a time-dependent longitudinal electric field that
we will write as

E(r, t) = −∇�(r, t). (2)

At this point in the discussion there is no reason not to assume that it is sinusoidal in time and uniform in space.
Newton’s laws are then

d

dt
r(t) = p(t)

m
,

d

dt
p(t) = qE(t). (3)

We assert a time-dependence of the form

E(t) = E0 cos(ω0t) = Re{E0e−iω0t } (4)

and then solve to get a sinusoidal steady-state solution of the form

r(t) = Re

{
− qE0

mω2
0

e−iω0t

}
, p(t) = Re

{
i
qE0

ω0
e−iω0t

}
. (5)

Our goal was to consider things in the simplest possible terms, and it is clear that things cannot get much simpler than
this.

In this simple model, the electric field drives the free electron, and the electron moves. The total energy can be
computed from the potential plus kinetic energy, but we will focus on the kinetic energy here. We compute

EK(t) = |p(t)|2
2m

= q2|E0|2
2mω2

0

sin2(ω0t). (6)
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2.2. Electron mass

If the electron is at rest, then the mass contribution to the energy is mc2. However, here the electron is moving, so we
can determine the (rest mass and kinetic) energy of the electron according to

m∗(t)c2 =
√
(mc2)2 + c2|p(t)|2 → mc2 + |p(t)|2

2m
, (7)

where the approximate version is for the nonrelativistic case. The dynamical electron mass satisfies

m∗(t)c2 =
√
(mc2)2 + c2q2|E0|2

ω2
0

sin2(ω0t)

= mc2

√
1 + q2|E0|2

m2c2ω2
0

sin2(ω0t). (8)

The associated dynamical mass enhancement factor is then

m∗(t)
m

=
√

1 + q2|E0|2
m2c2ω2

0

sin2(ω0t). (9)

2.3. Constant electric field

Given this situation, it seems that the simplest way (consistent with this very simple approach) to develop a large
electron mass increase is to accelerate the electron in a uniform field that is constant in time. In this case if we take the
momentum to be zero initially, then the momentum evolves as

p(t) = qE0t. (10)

We can write for the dynamical mass

m∗(t)c2 = mc2

√
1 + q2|E0|2

m2c2 t2 (11)

with a mass enhancement factor given by

m∗(t)
m

=
√

1 + q2|E0|2
m2c2 t2. (12)

The thought here is that we can develop a mass enhancement factor that is substantially greater than unity by simply
accelerating an electron up to a few MeV using a static electric field accelerator.
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2.4. Random electric field

In the event that the electric field is stochastic, then we need to make use of the somewhat more complicated mathematical
tools to describe it. The momentum can be related to the field according to

p(t) =
∫ t

−∞
qE(t ′) dt ′. (13)

Assuming that the electric field is wide-sense stationary the momentum autocorrelation function can be defined as

Rpp(τ ) = E[p(t + τ)p(t)]
=
∫ t+τ

−∞
dt ′
∫ t

−∞
dt ′′
{
q2E[E(t ′)E(t ′′)]

}

=
∫ t+τ

−∞
dt ′
∫ t

−∞
dt ′′
{
q2REE(t

′ − t ′′)
}
. (14)

The corresponding power spectral density is

Spp(ω) =
∫ ∞

−∞
Rpp(τ )e

iωτdτ = q2

ω2 SEE(ω). (15)

We can use this to evaluate the kinetic energy

E

[ |p(t)|2
2m

]
= Tr{Rpp(0)}

= Tr

{∫ ∞

−∞
Spp(ω)

dω

2π

}

= Tr

{∫ ∞

−∞
q2

ω2 SEE(ω)
dω

2π

}
. (16)

Since we assumed that the electric field is wide-sense stationary, the expectation value of the mass in the nonrelativistic
limit is time-independent

E[m(t)c2] → E

[
mc2 + |p(t)|2

2m

]
= mc2 + q2

2m
Tr

{∫ ∞

−∞
SEE(ω)

ω2

dω

2π

}
. (17)

The expectation value of the mass increase in the nonrelativistic limit is then

E

[
m(t)

m

]
→ 1 + q2

2m2c2 Tr

{∫ ∞

−∞
SEE(jω)

ω2

dω

2π

}
. (18)

The generalization of this to the relativistic case looks to be problematic since we need to evaluate higher-order moments.
A way to circumvent this is to work instead with
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√
E

[
m2(t)

m2

]
=
√

1 + E[ |p(t)|2]
m2c2

=
√

1 + q2

m2c2 Tr

{∫ ∞

−∞
SEE(ω)

ω2

dω

2π

}
. (19)

This is consistent with the relevant equations given by Widom and Larsen [3]. Based on the discussion here, we will
require very large random fields to accelerate an electron to the MeV scale. The underlying problem is very little
different from the deterministic case, except perhaps that the acceleration will be more efficient in the case of constant
or sinusoidal fields. In the stochastic case we would expect cancellation effects since the fields may point in random
directions, or reverse sign randomly in a preferred direction.

2.5. Discussion

If the dynamics are nonrelativistic then we can use Newton’s laws to understand the motion that results. If the dynamics
are relativistic, then the trajectory is more complicated, but we would get the same solution for the momentum. An
electron in motion has kinetic energy because it moves. Finally, we can evaluate the mass increase once we know the
kinetic energy, since in this way of looking at things the kinetic energy and mass provide two ways of describing the
same thing. We find that the mass increase is dynamic (as expected because the momentum is dynamic). The situation
in the presence of a stochastic field is very closely related; if anything, we would expect a somewhat weaker mass
increase due to cancellation effects.

The mass increase comes about due to a momentum increase, which means in the classical version of the free
electron problem, terms containing the electric field only arise because we have solved for the momentum in terms of
the electric field. The mass enhancement from this perspective is only due to the contribution of the momentum (a point
we will think about again later on).

Perhaps the most useful result here is that we have a picture now which we can understand simply, and that shows
us precisely what the mass shift is all about. The mass shifts because the electron acquires kinetic energy when it is
accelerated by the electric field. There is no mysterious quantum effect here that conspires to arrange for collective
effects to increase the mass of the electron. In essence, knowing the mass increase of the electron in this case is
equivalent to knowing its kinetic energy.

Given this, then if the electron mass in free space is increased by ten percent for example, we know that this is
because it has gained kinetic energy equal to ten percent of the rest mass.

3. Electron Mass Increase in a Quantum Mechanical Model

At this point in the discussion we are generally pleased that mass shifts similar to what is discussed by Widom and
Larsen can be understood simply in the classical case. In turning our attention to the quantum mechanical case, once
again there are several issues to be thought about. Perhaps the first is the establishment of a suitable starting place for
the discussion, which motivates us to consider a generalized Foldy–Wouthuysen transformation. Although not pursued
by Widom and Larsen, it is clear that a sizable mass shift can be developed in the case of a bound electron; this becomes
of interest to us in connection with the issue of the electron mass shift in general, but it will lead to a clarification of
whether we should focus on the energy or the mass shift (or whether there is a difference). This discussion generally
will put us in a better position to think about mass shift for an electron in a metal.
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3.1. Electron interacting with a potential and a field

We consider now a Hamiltonian of the form

Ĥ = α · cp̂ + βmc2 − eα · Â(r)+ V (r). (20)

If the potential is equal to zero

V (r) → 0, (21)

then we can carry out a Foldy–Wouthuysen transformation leading to a rotated Hamiltonian of the form

Ĥ ′ = Û†
[
α · cp̂ + βmc2 − eα · Â(r)

]
Û = β

√
(mc2)2 + c2

∣∣∣p̂ − e

c
Â

∣∣∣2. (22)

If we include the potential, things quickly become more complicated; we may write

Ĥ ′ = Û†Ĥ Û = β

√
(mc2)2 + c2

∣∣∣p̂ − e

c
Â

∣∣∣2 + V (r̂′), (23)

where

r̂′ = Û†rÛ . (24)

The transformation of the position coordinate is straightforward, but untangling the results leads to all kinds of terms.
From our perspective, we will view the rotated version of the model as

Ĥ ′ = β

√
(mc2)2 + c2

∣∣∣p̂ − e

c
Â

∣∣∣2 + V (r)+ · · · (25)

The idea here is that in the Coulomb gauge the transverse field operator transforms as the momentum operator, but to
the potential remains outside the square root. This is consistent with our earlier arguments [7] that it is the transverse
fields that contribute to a mass shift, while the longitudinal fields in this way of thinking do not.

Note that in light of the arguments of the previous section, it is still the case that we can think of a mass shift resulting
from longitudinal interactions, but this additional analysis will be required (since the mass enhancement is still due to
an increase in the kinetic energy, which may depend on the potential).

In light of our earlier work [7], the largest mass shift that can be developed from transverse field fluctuations in the
absence of an intense laser field are very small. Correspondingly, either we can absorb them into the mass here and
continue, or else we can simply neglect them. In either case there is no reason to carry transverse fields further in this
discussion.

3.2. Mass effect due to localization in a bound state

If we seek a sizable mass shift for an electron in a potential, it seems the place to look for it is in the case of a bound
electron, and the more strongly bound the better. In the case of a hydrogenic ion, the deeply bound 1s electron has a
(nonrelativistic) kinetic energy given by
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〈|p̂|2〉
2m

= Z2IH. (26)

The corresponding (nonrelativistic) mass enhancement factor is

m∗

m
= 1 + 〈|p̂|2〉

2m2c2 = 1 + Z2IH

mc2 = 1 + 1

2
(Zα)2. (27)

At large Z the electron has sufficient kinetic energy that relativistic effects are important and one can see the effects of
the increase mass on the wavefunction itself.

In this case we can generate a substantial mass increase, however this is under conditions where the electron is tightly
bound. The mass increase in this case corresponds to a great deal of energy that can contribute in a weak interaction,
but there is also a corresponding potential energy that is twice as large and opposite in sign

〈V 〉 = −2
〈|p̂|2〉

2m
(28)

in the nonrelativistic problem.

3.3. Mass and energy

We know that mass and energy are the same thing; however, probably here we need to think about the issue for a bound
electron. The mass of the electron and nucleus as a composite in the 1s state is reduced by the binding energy Z2IH,
of this we can be sure. Should we think of the electron as having a reduced mass in this case, instead of an increased
mass as we have argued above? In the case of a free electron things seemed to be much clearer, since we could identify
the mass increase of the electron with the kinetic energy.

But on second thought perhaps things should not have been so clear. For the classical problem of the last section,
we might have written for the total energy the sum of the kinetic and potential energy

E(t) = |p(t)|2
2m

+ V (r(t), t). (29)

We might have sought to equate mass with the total energy, which might be problematic. For example, in one way
of thinking the potential here is not specified to within a constant, so the total energy in such a calculation could be
negative. Clearly under these conditions, it would make sense to consider the kinetic energy in connection with the
mass increase. On the other hand, it might be the case that the electron is attracted to ions that are moving by slowly.
In this case, we know that if the electron is (weakly) bound to these moving ions that the mass of the electron and ions
would be reduced by the amount of the binding energy. In such a picture the notion of mass in connection with the
potential becomes sensible, but perhaps only when thinking about the total mass of the electron and ions.

3.4. Electron wave packet in free space and uniform field

In the classical version of the problem (in free space with a uniform dynamic external field), once the longitudinal field
is given, we can solve for the electron momentum directly in terms of the field, and then solve for the electron mass.
In the quantum mechanical version of the problem it would be most elegant to rotate out the uniform field, and end up
with a Hamiltonian with an explicit dynamical mass. Unfortunately, as yet we have not found publications where this
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kind of unitary transformation is studied (but we would expect it to exist). So instead, we will rely on the less elegant
use of wave packet solutions.

For the nonrelativistic case we consider the Schrödinger equation

ih̄
∂

∂t
ψ(r, t) =

[
− h̄

2∇2

2m
− qE(t) · r

]
ψ(r, t). (30)

We can develop a Gaussian wave packet solution of the form

ψ(r, t) = 1

(πL)3/4

1

(1 + ih̄t/mL2)3/2
e−i
(t) eiP(t)·[r−R(t)] e−|r−R(t)|2/2L2(1+ih̄t/mL2), (31)

where R(t) and P(t) satisfy the classical equations of motion

d

dt
R(t) = P(t)

m
,

d

dt
P(t) = qE(t). (32)

The phase factor satisfies

h̄
d

dt

(t) = −|P(t)|2

2m
− qE(t) · R(t). (33)

The kinetic energy in this case is

〈|p̂|2〉|
2m

= |P(t)|2
2m

+ h̄2

4mL2 . (34)

The nonrelativistic mass enhancement is then

〈m∗(t)〉
m

= 1 + |P(t)|2
2m2c2 + h̄2

4m2c2L2 . (35)

In this case we see that the mass shift includes the classical contribution as well as a contribution due to the original
localization of the wave packet. This result demonstrates that for a Gaussian wave packet we can take the classical
results over directly to the quantum version of the problem. If we consider a random external electric field, and ignore
the localization energy, then the nonrelativistic mass increase for this wave packet solution would be

E

[ 〈m〉
m

]
→ 1 + q2

2m2c2 Tr

{∫ ∞

−∞
SEE(jω)

ω2

dω

2π

}
. (36)

The construction of wave packets in the relativistic case is technically more complicated, but can be done as discussed
in Ref. [9]. We would expect to recover a comparable relativistic relations between the mass enhancement and the
classical momentum in this case.
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3.5. Discussion

This discussion helps us in developing intuition about the electron mass increase generally. We know that the contribution
of the transverse fields is small in laboratory experiments that do not involve an intense laser field, and we see that the
longitudinal fields rotate differently than transverse fields under a Foldy–Wouthuysen transformation. A modest mass
enhancement can be developed for a tightly bound electron, but in this case we need to focus on the total electronic energy
(including the potential) rather than on the mass shift, unless we wish to work with the total mass of the composite.

Since the analysis for the quantum version of the problem is more complicated than the classical version, we
probably need to think some about the connection between the classical and quantum versions of the problem. A
reasonably general unitary transformation capable of rotating out a field uniform in space would be very useful in this
context, and would allow for an elegant treatment of the problem. Probably such a rotation exists, in spite of our not
having found a relevant publication. Instead we can work with wave packet solutions, which exhibit explicitly the
classical relations in the context of the quantum problem. This is very useful because it shows that both the classical
and quantum mechanical models describe essentially the same physics of interest to us.

4. Electrons in a Metal

At this point we have developed a sufficient foundation to begin considering the situation of an electron interacting
with other electrons in a metal. Widom and Larsen have proposed that there is a mass enhancement in this case, so
this motivates us to consider longitudinal Coulomb interactions between a reference electron and other electrons in the
metal. >From the arguments of Section 2, the picture that is suggested is one in which the electron in the metal is in
some ways like a free electron, and that it experiences longitudinal electric fields due to Coulomb interactions with the
very large number of other electrons in the metal. These interactions are random, so if we think classically we end up
with a situation very much like the one considered above. In this case we found that the momentum resulting from a
stochastic electric field comes into the problem as a mass shift, and we were were able to recover a formula analogous
to Widom and Larsen’s equation for the mass enhancement.

There are of course issues to be considered in such a picture. For example, the electrons are not free electrons;
but instead are either Bloch electrons, or quasi-particles, or perhaps something more complicated depending on the
theoretical perspective adopted. In the original version of the problem there appear Coulomb interactions which all
of the other electrons in the metal; however, we know that conduction electrons are effective at screening, so that
interactions are only significant with a few at a time. We know that large electric fields can be generated with strong
plasmon excitation. In this case the plasmon fields are coherent (and not stochastic), which given the discussion above
presents no particular difficulty in thinking about or analyzing.

4.1. Conduction in a static field

The simplest model for conduction in a metal is one in which the electrons are treated as classical, are accelerated by a
field, and lose momentum by scattering treated as friction. This is the metal version of the uniform constant accelerator
field problem from Section 2. In this case we may write

dp
dt

+ p
τ

= qE. (37)

The momentum in this case is constant

p = τqE. (38)



P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 12 (2013) 18–40 29

The kinetic energy is then

|p|2
2m′ = τ 2q2|E|2

2m′ . (39)

The electron mass in a metal in connection with the Bloch picture, the quasi-particle picture, or in connection with
experiment, is in general different from the free electron mass. It is usually denoted as m∗, which in the context of the
present discussion is a notational headache. Consequently, we will use m′ instead in this section. If we decide that the
mass enhancement is consistent with this kinetic energy, then we end up with

m∗

m
=
√

1 + τ 2q2|E|2
mm′c2 . (40)

This mass enhancement in general is small, unless the applied electric fields are enormous (in which case the mass
enhancement will still be small but but plasma formation would be expected follow).

The problem is straightforward, but ultimately we would imagine that a better approach might be to use an external
high-current accelerator to produce a beam of MeV electrons, and drive them into the metal. At least until they degrade,
a situation will be produced in which there will be a large number of electrons with increased mass.

4.2. ARPES and correlation contributions

In textbooks on solid state physics, one can find discussions of the problem of an electron in a periodic potential, which
have periodic Bloch solutions. The energy eigenvalues associated with these solutions depend on the wave vector, and
people use the results to construct band diagrams. The effective mass tensor of the Bloch states can be determined from
the energy bands through

1

m′
i,j

= 1

h̄2

∂2

∂ki∂kj
E(k). (41)

In the case of insulators and semiconductors, once an energy band has been established (fitted to experimental data),
one can use it to determine the effective mass for modeling.

In the case of metals, there are electron-electron and electron-ion interactions which are present beyond the effects
of a periodic potential. The importance of these additional effects became particularly evident once angular-resolved
photoelectron spectroscopy (ARPES) began to be used to study electron bands in metals [10–12]. Although electronic
band structures in metals had been calculated for decades, there had not been a good way to extract an electron band
directly from a set of experimental measurements. Once data was taken in the case of simple metals, and band diagrams
began to be constructed, it became evident that the experimental results differed considerably from the theoretical band
diagrams. This motivated the theorists to bring to bear more powerful theoretical tools, which led to the adoption
of the G-W formalism and the quasi-particle picture [13,14], and other techniques [15]. Correlation effects (which
include exactly the effect described by Widom and Larsen, among others) and phonon exchange are well modeled in
this approach, with the result that the band diagrams from quasi-particle models are in good agreement with experiment.

The results can be understood in this case as O(eV) corrections to the band diagram. Effective masses can be
developed from the corrected band diagrams which differ from those obtained from Bloch theory. Substantial corrections
to the effective masses are found.
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4.3. Plasma oscillations

Plasma oscillations are known to occur as organized longitudinal modes in metals, and have been proposed to contribute
to the enhancement of the electron mass. It seems useful to consider this briefly here.

Collective oscillations in conduction electrons in metals was described many years ago by Pines and Bohm [16].
The plasma frequency (in MKS) is

ωp =
√
ne2

ε0m′ . (42)

It varies from a few eV to more than 10 eV in different metals. Since the electric field varies sinusoidally, the dynamical
mass increase can be computed directly from

m∗(t)
m

=
√

1 + q2|E0|2
(m′)2c2ω2

p
sin2(ωpt) (43)

in the case of a long-wavelength plasmon wave. Generally the associated momentum enhancement will be much
smaller than the Fermi momentum, so that the incremental kinetic energy of an individual electron is much less than 1
eV (which does not get us close to the regime of interest for a reverse beta decay reaction).

However, the plasmon resonance in metals can be at a sufficiently high energy to result in observable physical
effects. One example of interest in the literature is enhanced surface desorption resulting from plasmon excitation (see
e.g. Hoheisel, Vollmer, and Träger [17]). In this case, the average electron kinetic energy is small, but the energy
exchange with an electron involved in the plasmon excitation occurs near the plasmon energy h̄ωp.

It is possible to drive plasmon oscillations in a metal sufficiently hard that much higher electron energies are produced
using intense laser excitation. An example of this is reported by Fennel et al. [18], in which electron energies up to a
few hundred eV were detected at a laser intensity near 1014 W/cm2 incident on metal clusters. Presumably we might
expect MeV-level electron acceleration at much higher incident laser intensity.

4.4. Electron–phonon interactions

In [4] a discussion is given as to how energy exchange between moving ions in a metal might interact with electrons
in order to contribute to a mass enhancement in the electrons. As might be expected, the interaction between vibrating
ions in a metal and conduction electrons has been of interest for a very long time and there is a corresponding extensive
literature.

In the earliest of these models, a uniform positive charge distribution up to a fixed radius away from the nucleus is
used. The corresponding potential is

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Z
∗e2

4πε0

(
3r2
s − r2

2r3
s

)
r ≤ rs,

− Z∗e2

4πε0r
, rs ≤ r.

(44)

This is consistent with the electron–phonon interaction used by Bardeen [19], and by many other authors up until about
1960. This interaction is much softer than an unscreened ion potential, which was required to obtain agreement with
experimental conductivity data. The interaction comes about when the ion is displaced, so that [20]
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V (r − R) = V (r − R(0))+ (R − R(0)) ·
[
∇V (r − R)

]
R0

+ · · · (45)

It was found to provide at least a plausible description for the phonon dispersion relation of Na by Toya [21,22].
Subsequently, people have relied on pseudopotentials for the electron–phonon interaction. In the case of hydrogen, one
might imagine that a bare Coulomb potential is appropriate. However, a free-electron picture is used in a description
such as in Refs. [21,22] under conditions where the electrons are better described by Bloch waves. As such, an
electron–phonon matrix element calculated with free-electron wavefunctions and a Coulomb potential for conduction
electrons will greatly overestimate the coupling, as compared to an electron–phonon matrix element computed with
Bloch waves.

We would expect electron–phonon coupling (for conduction electrons) in a metal hydride to be much weaker than
would result from the picture assumed in Ref. [4]. On the other hand, very energetic electrons would see the full
Coulomb field of a proton at close range well inside of the 1s radius.

4.5. Discussion

Metals are made up of individual atoms, and most of the electrons in a metal are tightly bound to the nuclei in the lattice.
Bloch conduction electrons, even in the case of alkali metals which most closely match a free-electron model, have
localized components which are for the purpose of the discussion more like bound electrons than free. Consequently,
our focus really should be on the electron energy, rather than on the mass enhancement determined from the rest mass
and kinetic energy.

Nevertheless, free-electron models have been very important for describing conduction electrons in metals, and
there is no reason not to consider the mass increase associated with the kinetic energy. For electron conduction it is
straightforward to determine the momentum and corresponding mass enhancement as above, and we find that the mass
enhancement is above unity by only a trivially small amount (expect perhaps in exploding wire experiments, and other
fast electron plasma systems).

The analysis of electron-electron interactions in metals is a worthy topic of discussion in its own right. Electron-
electron correlations are most readily treated in jellium [23], and come about due to potential contributions (rather than
indirectly through the resulting momentum as we have interpreted the Widom–Larsen formalas). These contributions
are included in modern GW calculations, and in related models; corrections are at the eV level (and not at the MeV
level).

Bulk and surface plasmon modes are well studied in metals, and are interesting for all kinds of reasons in solid state
physics and for applications. We would not expect plasmon excitation to result in MeV electrons unless driven by a
very intense laser.

5. Mass Enhancement in PdH

In contrast to the possibly discouraging conclusions one might come to in light of the arguments outlined above, we
can find in Ref. [4] a discussion of the mass enhancement in PdH where the authors come to a decidedly optimistic
conclusion. This motivates us to examine the arguments, given that we would not have expected an optimistic conclusion
in this case.

In our view there are a host of issues that could be touched on in connection with this single example. Rather
than attempting to deal with even a subset of them, we will follow a simple line of thought. Our first goal is to orient
ourselves with an example of an electronic vibration which would correspond to a mass increase sufficiently large to
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Figure 1. Trajectory of a relativistic electron with h̄ω0 = 60 meV and maximum β = 5.

be relevant for neutron production from a proton. Once we have develop some intuition about the problem, we turn our
attention to the practical issues of energy, power, and the transfer of energy from the vibrations to the electrons.

5.1. Model electron oscillation trajectory

It would seem that the place to start is with the end result, specifically the electron oscillations, which are already
enormously interesting. Suppose that we consider free-space oscillations with β = 5, using the frequency consistent
with the phonon frequency of 60 meV assumed in [4]. The trajectory that results is illustrated in Fig. 1; we see that the
electron in this model travels close to 10 µm and has a roughly saw-tooth appearance since it spends most of the time
moving close to c.

In Fig. 2 is shown the derivative of the kinetic energy with respect to time, which we see goes from about -30 to
30 W for one electron. The rate of energy exchange in this case for a single electron is prodigious. This brings out
the biggest headache associated with the development of a mass shift through either uniform field that is sinusoidal in
time, or random Coulomb fields; that an extremely large amount of power exchange is required to produce or maintain
the electron energy.

5.2. Electron energy loss in Pd

However, in the Widom–Larsen model it is proposed that the electrons experience a mass enhancement in a metal
hydride, rather than in free space. Energetic electrons lose energy rapidly through collisions and by radiative in solid
matter, and it is of interest here to examine the rate of this energy loss. In Fig. 3 is shown the stopping power for
energetic electrons in Pd (from the NIST ESTAR online database). From this stopping power we can estimate the rate
of energy loss for an electron executing the above trajectory in Pd (the contribution of the H to this energy loss is minor);
the results are shown in Fig. 4. We see that energy loss is minimized when the electron has acquired an energy near 1
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Figure 2. Rate of energy exchange dE/dt in Watts as a function of time (solid line); trajectory as in Fig. 1 (dotted line).

MeV, so that the electron loses only about 70 mW. The loss is very much larger when the electron energy is much less
than 1 MeV.

An addition issue of interest is radiative loss, which would be expected to lead to penetrating X-rays that could be
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Figure 3. Electron stopping power in Pd.
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Figure 4. Rate of energy loss due to collisions and radiation for the trajectory above in Pd.

measured readily outside of the cell. For an MeV electron in the vicinity of 1 MeV, the fraction of the total rate of
energy loss is about 6% of the total power loss due to collisions and radiation. Hence we would expect the radiated
power to be near 4 mW per electron for at the 1 MeV electron minimum. This effect would seem to be useful in this
context, as a positive signature for this radiation could be used to prove the existence of the effect.

5.3. Energy and power for phonon–electron coupling

It was suggested in [4] that a very highly excited optical phonon mode might couple with electrons in such a way as
to produce MeV-level electron mass shifts. The arguments above suggest that maintaining an electron mass shift at the
MeV level will involve substantial energy exchange, so this motivates us to examine the associated energy per unit area
and exchanged power per unit area.

For simplicity we will consider a harmonic lattice model. The hydrogen motion is dominant for the optical phonon
modes in PdH, so we can develop a reasonable estimate by neglecting the motion of the Pd atoms. In this case we can
write for the vibrational energy

∑
j

1

2
Mω2

0〈|Rj |2〉 → NH
1

2
Mω2

0〈|R|2〉. (46)

We can evaluate the average vibrational energy of one hydrogen atom according to

1

2
Mω2

0〈|R|2〉 → 430 meV

( 〈|R|2〉
1 Å2

)
. (47)

The total energy would be twice this in a harmonic lattice model. Note that vibrational amplitude in the bulk at the
1 Å level in this case could be considered to be positively heroic; certainly the vibrations would no longer be in a linear
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regime, and the hydrogen atoms would have no difficulty moving from site to site. This is relevant because surface
vibrations will couple to near surface layers, so most of the vibrational energy will be away from the surface.

In Ref. [4] an estimate for the number of surface electrons and protons involved is taken to be 1016 per cm2. We
can use this to obtain a vibrational energy estimate of

Evib

area
= 1.4

mJ

cm2

( 〈|R|2〉
1 Å2

)
. (48)

This perhaps seems like a manageable number; however, since optical phonons lose vibrational energy very rapidly,
the power per unit area required to sustain this level of vibrations is roughly

Pdiss

area
=
( ω0

2π 10

) Evib

area
= 1010

2π

W

cm2

( 〈|R|2〉
1 Å2

)
. (49)

This is a very high surface power.
Unfortunately, based on the estimates for power loss above, this falls far short of what is required to sustain an

electron mass shift large enough to do what is proposed. Let us take the 70 mW power loss number per electron, and
turn this into a surface power density using 1016 electrons/cm2 (and for this estimate not worry about how such energetic
electrons would manage to remain localized to a few Angstrom surface layer); the result is

Ploss

area
= 70 mW × 1016 cm−2 = 7 × 1014 W

cm2 . (50)

In the electrochemical experiments the power dissipation at the surface is on the general order of 10 W/cm2, which
falls far short of being able to provide sufficient power to the electrons or the hydrogen atoms required by the example
of Ref. [4].

5.4. Number of excited electrons

We might expect some of the input electrochemical energy to find its way into exciting optical phonon modes, and
there is no question that some of this energy will couple to conduction electrons. In a conventional picture individual
electrons would be promoted with an energy increment of one phonon (60 meV in this example). We could begin to
estimate how many individual electrons would be excited through this mechanism at a time; we estimate

Ne = ηpηe

(
Pelectrochem

h̄ω0

)
τe, (51)

where ηp is the fraction of the electrochemical energy going into optical phonon excitation; where ηe is the fraction of
the phonon energy going into electron excitation; and where τe is the relaxation time of an excited electron. We can
parameterize to obtain

Ne = 105 ηpηe

(
Pelectrochem

1 W

)( τe

1 fs

)
. (52)

We conclude from this that we might expect fewer than 1000 electrons to retain the 60 meV phonon energy at any
particular time per watt of electrochemical power.
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5.5. Discussion

A significant issue in working with the ideas put forth by Widom and Larsen is the clarification of what the mass shift is.
For example, if we regard the effect as some benign interaction of the electron with its environment that simply makes
the electron heavier, then we would be talking about a new physical picture very different from what is commonly
understood as how electrons work in applied physics applications. On the other hand, if we understand the mass shift as
connected with the electronic kinetic energy in a free-electron model, then there is nothing new or exotic to be worried
about, and we can use standard pictures and analysis to bear.

In this case, independent of how a large mass enhancement is produced, we know that a great deal of energy must be
involved. The purpose of the oscillating electron example was to allow us to study this in the case of a simple example
where we can quantify every relevant number. The consideration of this example showed us that there is no particular
difficulty in specifying a trajectory which has a large associated mass enhancement, but the rate at which energy much
be exchanged to maintain it is astronomically large, and if we try to maintain such oscillations in PdH the power loss
is prodigious.

If we pursue the numerical example of Ref. [4], we find that even though the example restricts consideration to
only the outer monolayer of an idealized metal hydride, the energy involved even in the atomic vibrations are orders of
magnitude higher than what is available. The amount of power needed to maintain a sizable mass shift in the number
of electrons under consideration are even more orders of magnitude larger. How energetic electrons with MeV level
mass increase might remain localized to a surface layer is problematic. Were we to carry out a conventional analysis of
electron promotion in a this kind of highly idealized model for the the outer skin of a cathode, we would conclude that
fewer than a thousand electrons on average would retain even one phonon of energy per watt of electrochemical power.

6. Mass Enhancement and Radiation

An accelerating charge accelerates, so we would expect an electron which is accelerated sufficiently to develop a mass
increase on the order of the rest mass to radiate. For linear motion the radiated power is

Prad = 2

3

e2

4πε0

1

m2c3

(
dp

dt

)2

. (53)

6.1. Linear oscillations

In the case of our example with a field uniform in space and sinusoidal in time, this becomes

Prad = 2

3

e2

4πε0

e2|E0|2
m2c3 cos2(ω0t). (54)

It seems useful here to relate the time averaged radiated power to the time average mass shift; we may write

P rad = 1

3

e2

4πε0

e2|E0|2
m2c3 (55)

and

(
m∗(t)
m

)2

= 1 + q2|E0|2
2m2c2ω2

0

. (56)
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We can use this to write for a single electron

P rad = 2

3

e2

4πε0

ω2
0

c

[(
m∗(t)
m

)2

− 1

]

= 0.592 µW

[(
m∗(t)
m

)2

− 1

]
. (57)

Even a modest number of electrons so excited would give a very clear signal that is detectable.

6.2. Discussion

It is possible to develop an exact solution for a Dirac electron in a classical electromagnetic field which exhibit a mass
shift due to interactions with the field. From our perspective, the mass shift in this case is due to the electron acquiring
considerable kinetic energy. The accelerating electron in this case is known to radiate [24]. Consequently, we would
expect generally that when an electron interacts with a dynamic electric field, whether it is transverse or longitudinal,
that it will radiate. The only question then is how much radiation is expected. We have estimated here the radiated
power in the case of periodic linear oscillations.

Although the radiated power for a single electron is modest (about half a microwatt), in the example considered in
Ref. [4] there are 1016 electrons/cm2 with a substantail mass enhancement assumed. In this case the radiated power
that could be associated with the electron acceleration is in the range of 1010–1011 W/cm2. This radiation is readily
detectable if present, and it could be taken advantage of to verify the presence of enhanced mass electrons.

7. Summary and Conclusions

Widom and Larsen have put forth a new model to account for excess heat and transmutation in LENR experiments. As
mentioned in the Introduction this model has proven to be the most successful model since the field started; it has an
enormous number of supporters within and without the CMNS community; and it has been judged of sufficient merit
to justify an experimental effort at NASA.

The model itself is complicated, with a great many individual pieces. Our focus in this work has only been on
issues associated with a single issue in the model; the proposed increase of the electron mass. When we started this
study, one of our goals was to understand this issue. Now, after many pages of discussion the conclusion is at best
mixed. Inasmuch as the effect under discussion is conventional, we can understand it in terms of relatively simple
classical and quantum mechanical models; in this case we would not expect a significant mass enhancement under
conditions relevant to experiments in the field. On the other hand, it may be that there remain subtleties associated with
the approach, which somehow allows a benign accumulation of mass through a large number of random low-energy
Coulomb interactions. If so, then Widom, Larsen, and coworkers have some work left to do in explaining how such a
thing might happen.

In our earlier work, the main conclusion relevant to this work was that the longitudinal field comes into the problem
conventionally (since there are no quantum fluctuations for longitudinal electric fields in the Coulomb gauge). At the
time we considered this to be significant, with the implication that no MeV-level mass increases would be expected due to
conventional physics under the experimental conditions of the Fleischmann-Pons experiment and related experiments.
As our work was criticized in Ref. [8], it seems that we did not succeed in making the point, or that perhaps there were
aspects of the model that we did not understand. In the end, we were motivated to return to the problem once again,
determined to understand things better.



38 P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 12 (2013) 18–40

We first considered the classical problem, where things are perhaps simplest and clearest. For an external field
uniform in space, the electron acquires momentum, which in turn produces an increase in the electron mass. In this
problem we are able to take advantage of this relation to express the mass increase in terms of the electric field. This
was demonstrated for a constant field, a sinusoidal field, and a random field. Some of the formulas that we ended up
with seem to be very close to those given by Widom and Larsen; where in our case we have very simple pictures and
models that go with the formulas.

Ultimately we expect the quantum version of the problem to be very close to the classical problem, due to the
close connections that exist between classical mechanics and quantum mechanics. We are able to develop a quantum
wave packet solution in which the average position and momentum variables satisfy Newton’s laws, and which the
kinetic energy is related to the expectation value of the momentum very much like in the classical problem (with
an additional contribution from the localization of the wave packet). This connection works for constant external
longitudinal fields, sinusoidal fields, and fields with random time-dependence on equal footing. In all cases, classical
and quantum mechanical, the mass increase of the electron is a result of its kinetic energy, acquired in interactions with
the longitudinal fields. We find a modest increase in the electron mass for tightly bound electrons, where we conclude
that the electron energy is more important if we focus on the electron (although mass is still relevant if we work with
the composite instead of the electron).

In conventional models of electrons in metals, a great deal of work has been done, and there is no MeV-level mass
increase of electrons. We can generate an increase in the electron kinetic energy in conduction, in Coulomb interactions,
and in the case of plasmons; in all cases the problems are well known. But in no cases do we find MeV energy increases.
We did note that in the case of an intense laser interacting with the plasmon mode of a metal cluster that electrons with
several hundred eV energies result.

Given the rather dismal expectation for MeV mass enhancement from the conventional models, we turned our
attention back to the example described in the primer of Ref. [4]. We find immediately that if we make use of the
simple models from earlier in the paper, that an enormous amount of energy exchange would be required to support an
electron trajectory that reaches a mass increase of 5 in free space. The power loss that such an energetic electron would
sustain in a metal due to scattering and radiating is on the order of 70 mW per electron over most of its cycle. When
we considered the proton vibrations in the model, then we find that GW/cm2 would be required to sustain the assumed
motion of a monolayer of protons at the surface assuming the loss occurs at a rate comparable to optical phonon loss
rates in metal hydrides. Even though the power level associated with the assumed vibrations is astronomical, it is short
by orders of magnitude of what would be needed to sustain the requisite electron mass shift of the small number of
surface electrons in the model.

In the interaction of electrons with an electromagnetic traveling wave field, an exact analytic solution is available in
which the dressed electron motion is described simply in terms of an effective mass (which is increased by interactions
with the field). In a sense, this problem is the reference problem which is then generalized greatly by Widom and
Larsen, which motivates us to consider it in similar simple terms. The interaction with the transverse fields causes the
electron to execute a complicated trajectory, and to acquire kinetic energy as a result of the field interactions. This
situation is similar to the one described in this work, in which the electron gains kinetic energy due to interactions with
longitudinal fields. An electron interacting with an intense laser field radiates, and this radiation is well accounted for
from a classical model where the radiation is computed by averaging the square of the acceleration over the trajectory.
Similarly, an electron accelerated by longitudinal fields is going to radiate, simply because it has a charge that undergoes
acceleration. The amount of radiation that would be produced by an electron with a 5-fold mass increase is in the vicinity
of a microwatt. The large amount of penetrating X-rays that would result if even a modest number of electrons had this
much kinetic energy could be readily measured. The absence of such signals in the few cases where relevant X-ray
measurements have been done under conditions where excess heat has been observed would seem to preclude this as
an explanation.
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Our goal in this study was to understand the electron mass increase in the Widom and Larsen model. In the end, we
have considered a variety of scenarios under which an electron mass enhancement can occur, but none of these have
anything to do with LENR experiments. We have considered the example in the case of PdH which they have put forth to
support the approach, but the example assumes an astronomically large level of vibrational excitation, which falls orders
of magnitude short of being able to provide the amount of power needed to maintain the target level of electron kinetic
energy required by the model. Electrochemical power at the watt/cm2 level could support in a conventional analysis
the promotion of less than 103 electrons/cm2 at a time with one 60 meV phonon worth of excitation, rather than the
several MeV level excitation in 1016 electrons/cm2 discussed in the model. We conclude that we do not understand how
Widom and Larsen’s model could account for anomalies in LENR experiments. Since accelerated electrons radiate, if
electrons were present according to the Widom and Larsen model, there would be a readily detected X-ray signal. The
absence of such hard X-ray signals in experiment argues against this model.

We note that we are not alone in noticing issues in connection with the Widom-Larsen model; Vysotskii has
earlier commented on a variety of issues with the model [25,26]. Although we had seen Vysotskii’s presentation at
ICCF17, we had clearly not appreciated the points which he made (points which became clear when a reviewer provided
encouragement to look at his papers). One issue is that the large electric fields in the vicinity of a nucleus are localized,
and do not persist over a large spatial region; so the use of the large local atomic field strength to estimate the coherent
extended plasmon field strength is an overestimate (our arguments are consistent withVysotskii on this point). Vysotskii
makes an argument concerning the development of a mass enhancement without an associated momentum increase in
a static electric field; an argument with seems qualitatively inconsistent with our conclusions (since the mass increase
in the dressed description in our view arises from the momentum increase). Vysotskii argues that the efficiency of
the electron-proton reactions in the Widom–Larsen model will be reduced because energy loss through ionization and
radiative losses by orders of magnitude from that claimed by Widom and Larsen; we note here that by implication
Vysotskii has already recognized the rapid energy loss of energetic electrons in the Widom–Larsen model. Finally,
Vysotskii pointed out the very high surface power requirements implied in the Widom–Larsen model; qualitatively
we are in agreement with Vysotskii on this, but the contributing factors are somewhat different, and our estimates are
higher than those of Vysotskii.

The biggest issue in the consideration of the part of the Widom–Larsen model from our perspective is the origin
of the mass enhancement in the Coulomb gauge when transverse fields are not present. Consequently, our focus
initially was on examining how such a mass enhancement could come about, since in the Coulomb gauge there are no
quantum fluctuations associated with the longitudinal field. Our conclusion is that when the electron is accelerated, the
momentum that results can be described through a mass enhancement (a result that should persist in a dressed picture).
Vysotskii for the most part appears to have for the most part presumed this to be the case based on the starting point for
his discussion. Widom and Larsen seem to consider the mass enhancement to be associated with mass renormalization,
perhaps with the implication that the excess mass is benign in the same sense as the rest mass. However, the formulas
which they obtain to evaluate the mass shift in the case of a longitudinal field are very similar to ours, and the mass
enhancement in our formulas come about from a momentum increase.

In connection with the last issue, one might assert that mass renormalization in QED itself is modified in the presence
of an external longitudinal field. Probably there is literature on this issue that could be dug up which would shed light
on things. On the other hand, the issue is in a sense moot, since all of the longitudinal fields in the problems at hand
originate from other electrons and ions (there is no significant “external” field if we include all of the relevant electrons
and nuclei in our description). Hence if there is a mass renormalization effect due to an external field, then we would
expect that if we replaced the external field with a larger description so that no external field were needed, we should
be able to make use of conventional mass renormalization. In this case, there would be no physical basis for a benign
electron mass shift (i.e. one that is unconnected with an enhanced momentum). Presumably Widom and Larsen will
clarify things in their future publications.
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Abstract

The long-established electron-capture reaction e− + p+ = n + ν may be considered to be a prototype reaction in the nascent field
of physics known as low-energy nuclear reactions (LENR) since it involves an interface between electron and atomic physics (EAP)
on the left-hand side and nuclear physics on the right-hand side of the reaction. It is a form of inverse beta decay n = p+ + e− + ν,
which is understood using a conceptual and mathematical methodology (forces mediated by the exchange of bosons known as force
carriers and specifically for beta decay the W− boson as the force carrier for the electroweak force) which is totally foreign to
EAP but well-supported by copious nuclear experimental data. Since no such established experimental database exists in LENR,
an equation of motion (EOM) is proposed for the neutrino in analogy to Dirac’s equation, which is the EOM for the electron. The
combined electron and neutrino EOM’s support temporary neutrino-electron binding and discover the mass and length scales of a
nucleon on an ab initio basis. It is believed that the bound pair is a form of W boson, symbolized here by W±

s for binding of a
neutrino to a positron or electron (±) and for spin (s) equal to 0 or 1. It is also believed that W±

s bosons may be useful as building
blocks in constructing models in the LENR regime which may be physically equivalent to quarks and the known W± boson in the
high-energy regime.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

A small theoretical and experimental community exists in low-energy nuclear reactions (LENR); however it appears
that a overwhelming majority of the general theoretical-physics community has reached a consensus that LENR obser-
vations cannot be explained by quantum mechanics using Coulombic forces [1]. Remarkably a prototype of a LENR
experimental observation, namely electron capture by a nucleus, has long been known,

e− + p+ = n + ν, (1)

where ν represents a neutrino. Pauli first postulated the existence of the neutrino in beta decay,
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n = p+ + e− + ν (2)

and Fermi successfully calculated the rate of beta decay using first-order perturbation theory (Fermi’s Golden Rule) with
a phenomenological nuclear interaction for the nuclear internal-conversion transition. Modern theory has postulated
a fundamental electroweak interaction which causes a nuclear internal conversion from an up to a down quark, which
cancels the net unit positive charge of the proton’s two up and one down quarks. The electroweak interaction is supported
by experimental observation and is understood as a force mediated by the W− boson, which decays immediately into
an electron and a neutrino.

A fundamental difference in the mathematical and conceptual methodologies between high-energy physics and
electron and atomic physics (EAP) is already obvious from the description I have just given of beta decay such that it
is no mystery that never the twain shall meet between the high-energy and low-energy communities, thereby leading to
the negative conclusions of particle theorists regarding the validity of LENR experiments. In particle physics forces are
mediated by the exchange of bosons or force carriers. Taking this picture to EAP the Coulombic force is mediated by
the exchange of photons. The force-carrier formalism is based on perturbation theory with free-particle zeroth-order
basis and is therefore largely inapplicable to bound states. The nonperturbative theory appropriate for bound states is
lattice quantum chromodynamics (QCD), whose set of difficulties include its totally numerical nature such that there
are no analytic test problems available to mitigate numerical uncertainties as in other computationally-intensive fields
of physics. Curiously one could not easily, if at all, repeat the highly accurate nonperturbative calculations of atomic,
molecular, and condensed-matter physics using the force-carrier formalism, even though remarkably lattice QCD is the
primary tool available for elucidating the internal structure of nucleons and of nucleon–nucleon forces generally.

Of greater importance however is the need in high-energy physics to understand the nature of forces as mediated by
intermediate particles which are bosons and are known as force carriers. Using this picture we may attempt to formulate
the decay of an excited atom which lies above one or more ionization thresholds such that the atom spontaneously emits
an electron. The forces are Coulombic such that the intermediate particle is a photon. The photon is unobserved so
that it must be considered to be a virtual particle. In beta decay however the intermediate particle, the W− boson,
must be considered to be a real since the experimental observation is its decay into an electron and a neutrino. The
fragmentation of the W− boson is “immediate” compared to the electroweak up to down quark transition mediated by
the W− boson, which requires nearly 15 min.

In practice the lifetime of the force carrier is determined experimentally by the range of the interaction which varies
from infinite (photons) to very short (W± bosons). The conceptual difference from the nonperturbative calculations of
EAP, in which the force can be expressed mathematically without the need to postulate an intermediate particle at all,
is striking. Most importantly in the low-energy theory of matter the particles are the same before and after a transition,
whereas in nuclear theory the particles are different, for example quarks andW± bosons initially and quarks, electrons,
and neutrinos finally. The vague description of an “immediate” decay of the W± intermediate particle into a positron
and neutrino or an electron and neutrino is a “black box” with respect to further physical elucidation of the internal
structure of theW± boson before its fragmentation. The darkness of our knowledge of any possibleW± boson internal
structure is mandated by the binomial logic of particle methodology in which particles are created or destroyed with
respect to a particle field which possibly comprises an incomplete physical description of the particle itself.

I discuss this point at length in the appendices of [1] in which I point out that that radiation-free matter does not
exist in nature. But yet theoretical physics has evolved, reflecting the separate developments historically of mechanics
and electrodynamics, into a radiation-free quantum theory of matter, a matter-free quantum theory of radiation, and a
theory of the mutual interaction of radiation and matter. This piecemeal approach leads to an infinite energy for the
Lamb shift and other “radiative corrections” of the electron in absence of the use of physical argument and mathematical
adjustments to “renormalize” theory in order to obtain a finite result which remarkably agrees with high accuracy with
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experimental observation. One may question however if perfect theoretical agreement with a specific set of experiments
should be accepted with uncritical acclaim in absence of a theory which explains the source of the infinities and provides
a divergence-free result. It is hard to imagine that renormalization theory with its mathematical recipes for the removal
of divergent contributions could be a general theory of nature, not withstanding its high degree of accuracy.

Indeed one may say that particle fields for matter-free photons or photon-free electrons represent incomplete physical
descriptions of these particles. This is the lesson which we may take away from Lamb’s experiments, which definitively
demonstrate the existence of permanent radiative shifts in atomic energy levels, namely that radiation-free matter does
not exist in nature such that a photon- free material particle field or a particle-free photon field, however neat and pleasing
this it is mathematically, is not a complete picture either of the material particle or of the photon. The renormalization
scheme itself confirms this view since infinities are removed from radiation-matter calculations by postulating that
photons are always present in the structure of a free electron such that when the free-electron radiative shift is added
back to bound-electron calculations the unphysical infinities are removed.

In this paper I return to the fully relativistic, Lorentz-invariant potential methodology of relativistic quantum me-
chanics as a powerful tool available for use in particle theory. As an application I propose a neutrino equation of motion
(EOM).

It is shown that a neutrino–positron or neutrino-electron pair can form a mutually bound state with lifetime against
breakup into a free neutrino and positron or a free neutrino and electron of the same order as the lifetime of the
neutron against beta decay. The temporarily bound pair is given the symbolW±

s for a positron-neutrino (+) or electron-
neutrino (−) boson where the subscript denotes the two possible spin states 0 or 1. It is possible therefore to postulate
that the unstable W±

s bosons aggregate to give a physical equivalency for the proton. One such aggregate might be
e−W+

0 W
+
0 nν ↔ UUD for the two up and one down quarks of the proton. Since the zero-mass, zero-charge neutrinos

would not be expected to undergo mutual repulsion or add mass or charge, it is possible that a large number of neutrinos
(n � 1) could be dragged along as internal constituents of the proton, where in a spin unpolarized state the net spin
of the aggregate of n neutrinos would be zero such that the net spin and charge of the proton is given by the two W±

s

bosons and the electron. Then it can be further postulated that electron capture given by Eq. (1) proceeds as follows,

e−W+
0 W

+
0 nν + e− = e−W+

0 W
+
0 W

−
1 (n− 2)ν + ν (3)

such that an equivalency exists for the neutron

e−W+
0 W

+
0 W

−
1 (n− 2)ν ↔ UDD

for the one up and two down quarks of he neutron. The neutron decay is then determined by the decay of W−
1 ,

e−W+
0 W

+
0 W

−
1 (n− 2)ν = e−W+

0 W
+
0 (n− 2)ν + e− + ν (4)

such that our postulate for the proton (first term on the right-hand side of Eq. (4)) holds if (n − 2)ν ∼= nν. Neutrino
emission in LENR has also been proposed by authors using a “selective resonant” theory [2] in which the rate of
tunneling through the deuterium–deuterium Coulomb barrier matches the rate of decay of an excited state of the helium
nucleus by the electroweak interaction accompanied by neutrino emission [3].

We close this section by reminding readers of the Lorentz covariance of Dirac’s equation even in the presence of the
potentials [4] by writing Dirac’s equation in manifestly covariant form using the Clifford algebra of 4 × 4 γ -matrices,

(γ0, �γ ) ·
((
ih̄

1

c

∂

∂t
− e

c
�

)
,
(
ih̄ �∇ + e

c
�A
))
ψD (�r, t) = mcψD (�r, t) , (5a)
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[
γ0

(
ih̄

1

c

∂

∂t
− e

c
�

)
+ �γ ·

(
ih̄ �∇ + e

c
�A
)

−mc

]
ψD(�r, t) = 0, (5b)

where Eq. (5b) follows on carrying out the 4-vector operations indicated in Eq. (5a), (�, �A) is the electromagnetic
4-potential, and ψD(�r, t) is Dirac’s 4-component vector wave function. Notice in Eq. (5a) Dirac’s equation has been
written formally as the scalar product of 4-vectors (scalar product of γ 4-vector and the electron’s 4-momentum)
operating on ψD(�r, t) on the left-hand side equal to the Lorentz constant mc times ψD(�r, t) on the right-hand side.
Readers are reminded that

(γ0, �γ ) =
((

I 0
0 −I

)
,

(
0 �σ
−�σ 0

))
,

where I is the 2 × 2 identity matrix, �σ is Pauli’s vector,

�σ = î

(
0 1
1 0

)
+ ĵ

(
0 −i
i 0

)
+ k̂

(
1 0
0 −1

)
,

and

ψD(�r, t) =
(
ψ(�r, t)
χ(�r, t)

)
in which ψ(�r, t) and χ(�r, t) respectively are the “large” and “small” two-component spinors. As pointed out in [4] the
transformation properties of the γ -matrices guarantee the Lorentz covariance of Eqs. (5a) and (5b) even in the presence
of the 4-potential since the frame transformation is now carried out on the vector difference of the 4-momentum and
the 4-potential, namely

(
ih

∂

c∂t
− e

c
�, ih �∇ + e

c
�A
)

rather than on the free-particle 4-momentum by itself, and the vector difference is still a 4-vector such that Lorentz
covariance is preserved.

I believe that it is possible to use first-quantized relativistic quantum mechanics and potential theory to understand
nuclear reactions such as electron capture, e− + p+ = n + ν, which take place in the low-energy regime. This belief
is supported by the success of Dirac’s equation to give an exact ab initio description of the hydrogen atom in absence
of radiative corrections and nuclear recoil. It is necessary then to discover neutrino-matter forces on an ab initio basis,
which has been accomplished here by deriving a neutrino EOM which is compatible with the electromagnetic equation
of continuity, in analogy to the electron EOM (Dirac’s equation with electromagnetic 4-potential), which is compatible
with the material equation of continuity. The latter criterion was essential to Dirac in his program to derive a correct
Lorentz-invariant relativistic EOM for the electron. Remarkably the neutrino EOM is used in combination with the
electron EOM to find a neutrino-electron or neutrino-positron temporarily bound state which has the mass and length
scales of a nucleon and whose lifetime has the time scale of the neutron’s lifetime.

2. Neutrino Equation of Motion (EOM)

Since the neutrino is ubiquitous in nuclear reactions it would be useful in the theory of LENR to have an EOM for the
neutrino which could be then be combined with the EOM for the electron, which is Dirac’s equation, in a theory which
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is general enough to make some progress in explaining LENR observations. In their classic text Morse and Feshbach
discuss the theorem that the scalar product of 4-vectors is always Lorentz-invariant [5]. Two examples are the Lorentz
gauge equation, which is the scalar product of the 4-gradient and the electromagnetic 4-potential,

(
1

c

∂

∂t
, �∇
)

· (�, �A) = 1

c

∂�

∂t
+ �∇ · �A = 0, (6)

and the equation of continuity, which is the scalar product of the 4-gradient and the 4-current,

(
1

c

∂

∂t
, �∇
)

· (cρ, �j) = 1

c

∂ρ

∂t
+ �∇ · �j = 0. (7)

Proceeding heuristically Dirac’s equation for a free electron can be inferred from a form of Lorentz gauge equation, in
which the electromagnetic 4-potential is replaced by a generalized 4-potential (	, �X) posited for the electron,

(
1

c

∂

∂t
, �∇
)

· (	, �X) = 1

c

∂	

∂t
+ �∇ · �X = 0. (8)

The scalar and vector potentials can be written in the form of carrier-wave expansions for an assumed dominant frequency
component, thusly,

	 = χ(�r, t) e−iωt + ψ(�r, t) eiωt , (9a)

�X = �X−(�r, t) e−iωt + �X+(�r, t) eiωt . (9b)

On substituting Eqs. (9a) and (9b) into Eq. (8) and separately setting the coefficients of the exponential factors
equal to zero, we obtain (

ih̄
∂

∂t
−mc2

)
ψ(�r, t)+ ih̄c�σ · �∇χ (�r, t) = 0, (10a)

(
ih̄
∂

∂t
+mc2

)
χ (�r, t)+ ih̄c�σ · �∇ψ (�r, t) = 0, (10b)

which are identically Dirac’s pair of first-order equations for a free electron on setting

ω = mc2

h̄
,

�X+(�r, t) = �σχ (�r, t),

�X−(�r, t) = �σψ (�r, t),
where �σ is Pauli’s vector and the wave functions are the Dirac two-component spinors. Dirac’s own derivation, which
flows from the tradition of matter as opposed to radiant physics [6], follows from his demands that a correct relativistic
equation of motion (EOM) for the electron should satisfy the relationship between energy and momentum of special
relativity (E = γmc2, for Lorentz factor
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γ =
√

1 + p2

m2c2

subject to the quantization rules

E → ih̄
∂

∂t

and �p → −ih̄ �∇) and further should satisfy the equation of continuity given by Eq. (7). The latter demand is satisfied
by Dirac’s equation, giving a current,

�j(�r, t) = c[ψ+(�r, t)�σχ (�r, t)+ χ+(�r, t) �σψ (�r, t)], (11)

where the superscripts denote Hermitian conjugates. Notice that the only identification of Eqs. (10) with the electron
is in the mass term since Pauli’s vector, originally identified with the electron by Pauli, can be generally identified with
any spin-1/2 particle or fermion. This means that the Dirac equation with m = 0 can sensibly be considered to be the
EOM for a neutrino, although again the free-particle EOM tells us nothing about the property of charge either for the
electron or the neutrino.

The neutrino shares its zero-mass and charge neutrality with electro- magnetic radiation. It is therefore assumed
that a 4-potential exists for the neutrino such that its EOM can be inferred from the Lorentz invariant found from the
scalar product of an electromagnetic 4-momentum and the neutrino’s posited 4-potential thusly,(

h̄

c

∂

∂t
, h̄ �∇ + eh̄

mc2
�E, �H

)
· (�ν, �Aν) = h̄

c

∂

∂t
�e +

(
h̄ �∇ + eh̄

mc2
�E, �H

)
· �Aν = 0 (12)

for either electric or magnetic fields �E, �H . The electromagnetic 4-momentum is found from h̄ times a 4-gradient,

(
∂

c∂t
, �∇ + e

mc2
�E, �H

)
,

whose scalar product with the electromagnetic 4-current,

⎛
⎝c

⎛
⎝u+

t∫
0

dt ′ �j · �E
⎞
⎠ , �S

⎞
⎠ ,

where

u = 1

8π
( �E · �D + �H · �B)

is the electromagnetic energy density and �S = c
4π

�E × �H is the electromagnetic 3-current, gives the Lorentz-invariant
electromagnetic continuity equation,

∂u

∂t
+ �∇ · �S + �j · �E = 0. (13)
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This is simply the electromagnetic analog of writing the Lorentz-invariant material continuity equation given by
Eq. (7) as the scalar product of the known 4-gradient,

(
∂

c∂t
, �∇)

,
and the known material 4-current, (cρ, �j). Notice that in the theory developed above the known 4-gradient is simply
renormalized by the replacement

�∇ → �∇ + e

mc2
�E, �H,

which gives a Lorentz- invariant electromagnetic continuity equation since the scalar product of �E or �H with the
electromagnetic 3-current, �S, vanishes. As with the electron the neutrino scalar and vector potentials can be written in
the form of carrier-wave expansions for an assumed dominant frequency component, thusly,

�ν = �ν−e−iων t +�ν+eiων t , (14a)

�Aν = �Aν−e−iων t + �Aν+eiων t , (14b)

from which on substituting Eqs. (14a) and (14b) into Eq. (12) and separately setting the coefficients of the exponential
factors equal to zero, we obtain,

(
1

c

∂

∂t
+ i

ων

c

)
�ν+ +

( �∇ + e

mc2
�E, �H

)
· ⇀Aν+ = 0, (15a)

(
1

c

∂

∂t
− i

ων

c

)
�ν− +

( �∇ + e

mc2
�E, �H

)
· ⇀Aν− = 0. (15b)

On setting�ν+ = ξE,H , �Aν+ = �σνζE,H ,�ν− = ζE,H , �Aν− = �σνξE,H , where �σν is Pauli’s vector for the neutrino’s
spin, we obtain a Dirac form for the neutrino EOM,

∂ξE,H

c∂t
+ i

ων

c
ξE,H + �σν ·

( �∇ + e

mc2
�E, �H

)
ζE,H = 0, (16a)

∂ζE,H

c∂t
− i

ων

c
ζE,H + �σν ·

( �∇ + e

mc2
�E, �H

)
ξE,H = 0 (16b)

including the interaction of the neutrino with the electron. Writing ξE,H = e−iωtψE,H and ζE,H = e−iωtχE,H in Eqs.
(16a) and (16b) we derive stationary equations forψE,H and χE,H ; then we eliminate the equation for χE,H in favor of
a second-order equation for ψE,H ,obtaining equations for the neutrino wave functions which have the Helmholtz form

{
∇2 + ω2 − ω2

ν

c2 + e

mc2

[ �∇ · �E + 2 �E · �∇ + i �σν · ( �∇ × �E)+ e

mc2E
2
]}
ψE = 0, (17a)

{
∇2 + ω2 − ω2

ν

c2 + e

mc2

[ �∇ · �H + 2 �H · �∇ + i �σν · ( �∇ × �H)+ e

mc2H
2
]}
ψH = 0, (17b)
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where we have used the identity, (�σν · �A) (�σν · �B) = �A · �B+ i �σν · ( �A× �B). On setting ων = 0 the 0-mass, charge-neutral
neutrino EOM is obtained. On setting �E = �H = 0 Dirac’s 0-mass equation is recovered. The neutrino EOM given
by Eq. (17b) has also been interpreted as the EOM for the radiant aspect of the electron, for which it has been used to
calculate a divergence-free Lamb shift [11] and the electron’s anomalous magnetic moment [12]. The material aspect
of the electron is of course described by Dirac’s equation, whose physical interpretation regarding the phenomena of
matter versus antimatter states and of Zitterbewegung are discussed at length in previous work [13–15].

Notice that the proposed neutrino EOM agrees with observation that (a) the neutrino is a spin-1/2 particle, (b) the
neutrino has zero mass (or for

ων = mνc
2

h̄
> 0

a finite mass mν to be determined from experiment), and (c) the neutrino interacts with the electron in a scaled
electromagnetic interaction which is weaker than the electromagnetic interaction between charged particles such that
it is sensible to investigate if the neutrino-matter interaction terms in Eqs. (17a) and (17b) arise from fundamental
electroweak forces.

Finally, in order to highlight the structural similarity of the neutrino and electron EOM’s, Dirac’s equation for an
electron in the presence of electro-magnetic fields follows if the 4-gradient in Eq. (8) for (	, �X) is replaced by the
electron’s 4-momentum as follows

(γmc,−γm�υ) =
(
ih̄

∂

c∂t
− e

c
�, ih̄ �∇ + e

c
�A
)
, (18)

where γ is the Lorentz factor, and the scalar and vector components of the 4-momentum on the left-hand side of Eq. (18)
have been replaced by substitution using the classical relativistic expressions for the energy and canonical momentum,
�P ,

E = γmc2 + e�, (19a)

γm�υ = �p = �P − e

c
�A, (19b)

where the quantized forms of energy and the kinetic momentum have been used,

E → ih̄
∂

∂t
, (20a)

�P → −ih̄ �∇. (20b)

The scalar product of the electron’s 4-momentum and the 4-potential posited for the electron is,

(
ih̄

∂

c∂t
− e

c
�, ih̄ �∇ + e

c
�A
)

· (	, �X) =
(
ih̄

∂

c∂t
− e

c
�

)
	 +

(
ih̄ �∇ + e

c
�A
)

· �X = 0. (21)

Using the same carrier-wave expansions for (	, �X) as we used in Eqs. (9) for a free electron we obtain,

(
ih̄
∂

∂t
− e�−mc2

)
ψ(�r, t)+ �σ · (ih̄c �∇ + e �A)χ (�r, t) = 0, (22a)



Burke Ritchie / Journal of Condensed Matter Nuclear Science 12 (2013) 41–53 49

Figure 1. Electron energy versus variational parameter. The ordinate numbers above the origin are the energies in MeV to be added to 0.510 MeV
at the origin. The binding energy is the energy difference from 0.511 MeV (positive-energy threshold) to the minimum of the well at 0.510 MeV or
about 1 keV.

(
ih̄
∂

∂t
− e�+mc2

)
χ(�r, t)+ �σ · (ih̄c �∇ + e �A)ψ(�r, t) = 0, (22b)

which is identically Dirac’s equation on setting h̄ω = mc2, �X+(�r, t) = �σχ(�r, t), and �X−(�r, t) = �σψ(�r, t). Notice
that Eqs. (22a) and (22b) follow from Eq. (8) on renormalizing the 4-gradient as follows

1

c

∂

∂t
→ 1

c

∂

∂t
− e

ih̄c
� and �∇ → �∇ + e

ih̄c
�A.

.
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Figure 2. The “potential” function S(r) in Eq. (28a) versus r. The rate of tunneling through the barrier is roughly equal to the reciprocal of the
lifetime of the neutron (≈ 15 min) for an energy behind the barrier Eν = 1.7 MeV.

3. Mutual Binding of the Neutrino and Electron

The EOM’s for the neutrino and electron, as discussed in the previous section, are given respectively by Eq. (17a) and
by the second-order form of Dirac’s equation (Eqs. (22a) and (22b)) for � = 0 as follows,

neutrino : E2
νψE + h̄2c2

{
∇2 + e

mc2

[ �∇ · �E + 2 �E · �∇ + e

mc2E
2
]}
ψE = 0; (23a)

electron : (E2
e −m2c4)ψ + h̄2c2

{
∇2 − e

h̄c

[
i �∇ · �A+ 2i �A · �∇ + e

h̄c
A2 − �σ · �H

]}
ψ = 0, (23b)
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where in Eq. (17a) ων = mνc
2/h̄ = 0 (neutrino assumed to have zero mass), ω = Eν/h̄, and only electrostatic

interaction terms have been retained in both equations. Eq. (23b) is essentially Pauli’s equation, which is Dirac’s
equation for � = 0 and for E2

e
∼= m2c4 + 2mc2Enr, where Enr is an energy in the nonrelativistic regime. Notice that

the interaction terms in the neutrino EOM are weaker by a factor of c−1 than the electromagnetic interactions of the
electron EOM, such that they may possibly be associated with the electroweak interaction. This difference occurs due
to the scaling of e �E as a force (energy divided by length) in the neutrino EOM rather than to the scaling of e �A as an
energy in the electron EOM. The interaction of the neutrino with the electron is given by the electric field arising from
the charge density of the electron (or positron), e �E = −�∇V , where

V = e2

⎡
⎣1

r

r∫
0

dr ′r ′2(G2−1 + F 2−1)+
∞∫
r

dr ′r ′(G2−1 + F 2−1)

⎤
⎦ , (24)

where the electronic density is that inferred from Dirac’s equation using the large and small components of Dirac’s
wave function for the electron ψ = Gκ(r)χκµ(θ, φ) and χ = iFκ(r)χ−κµ(θ, φ). The interaction of the electron with
the neutrino is given solely by theA2 interaction and the Pauli interaction �σ · �H since �∇ · �A = 0, which is demonstrated
below, which means that the �A · �∇ term also gives a zero contribution by parts integration of its expectation value.
The A2contribution is found to be negligible compared to the Pauli contribution. The magnetic field interaction of the
electron with the neutrino is calculated from Maxwell’s equation,

∇2 �A = −4πe

c
�jν, , (25)

where the current arises from the permanent magnetic moment due to the neutrino’s spin, �jν = c(ξ+
E σνςE + ς+

E σνξE),
which follows from Eqs. (16a) and (16b) due to the Dirac form of the neutrino EOM, such that the spinor analysis for
the neutrino is the same as that for the electron, for which ξE = gκ(r)χκµ(θ, φ) and ςE = ifκ(r)χ−κµ(θ, φ). The radial
parts for the electron are of course different and are given by G−1(r) and F−1(r) for the large and small components,
respectively. The cartesian components of the current for κ = −1 are

jνx = c

2π
ŷR, jνy = − c

2π
x̂R, and jνz = 0,

where R = g−1(r)f−1(r). Finding the divergence of both sides of Eq. (25) the reader may easily verify that �∇ · �A = 0
due to the transverse nature of the current. The magnetic field is found by taking the curl of both sides of Eq. (25),

∇2 �H = −4πe

c
�∇ × �jν. (26)

Only the diagonal or z-component of �H is considered here; the z-component of the curl of the current is given by

( �∇ × �jν
)
z

= c

2π

[
2
R

r
+
(
R′ − R

r

)
sin2 θ

]
,

where the prime denotes derivative with respect to r. Solving Eq. (26),

Hz = 4

3
e

⎡
⎣1

r

r∫
0

dr ′r ′2
(
R′ + 2

R

r ′

)
+

∞∫
r

dr ′r ′
(
R′ + 2

R

r ′

)⎤⎦ . (27)
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Proceeding heuristically the radial equations (for κ = −1) are solved variationally using the unnormalized trial
forms G−1(r) = e−wr and g−1(r) = e−w′r for the “large” components, where w = 1.15w’. The “small” components
are calculated using the trial forms,

f−1(r) = h̄c

mpc2 g
′
−1 and F−1(r) = h̄c

mc2G
′
−1

for the neutrino and electron respectively, where mp is the proton mass, which is the only empirical parameter in the
calculation. The electron energy versus the variational parameter w is shown in Fig. 1, in which the minimum energy
lies below 0.511 MeV indicating binding to the neutrino with binding energy of about 1 keV. Notice that the minimum
energy occurs for w approximately equal to the reciprocal of the proton Compton wavelength, w ∼= mpc/h̄, which is
consistent with our choice in the denominator of the variational form forf−1(r) given above. Indeed the scaling of

f−1(r) as f−1(r) = − h̄cw′

mpc2 g−1 (r) ∼= −g−1(r),

in which the large denominator mpc2 is cancelled by the numerator h̄cw near the minimum of the electron energy
versusw (Fig. 1), is consistent with the inverse relationship of particle range and particle mass in particle theory. Once
the derivative operation has been carried out on the trial function Eq. (23a) has the standard Schroedinger form,

[
E2
ν + h̄2c2∇2 − S(r)

]
ψE = 0, (28a)

S(r) = −e
2h̄2

m

(
ρr + V ′

e2 w
′ + 1

mc2e2V
′2
)
, (28b)

where S(r) is plotted versus r in Fig. 2. The first and third terms on the right-hand side of Eq. (28b) are attractive while
the second term is repulsive such that a neutrino can bind to an electron or positron behind the potential barrier shown
in Fig. 2. Standard WKB theory [16] can be used to estimate the energy levels behind the barrier and the tunneling rate
through the barrier, whence

I =
r2∫
r1

dr

√
κ2
ν − S(r)

h̄2c2
=
(
n+ 1

2

)
π, (29)

where κν = Eν/h̄c and the limits of integration are over the classical region in which the argument under the square-root
sign is positive, and

R = h̄

m

e
−2

r3∫
r2

dr
√

S(r)

h̄2c2
−κ2

ν

4
r2∫
r1

dr
[
κ2
ν − S(r)

h̄2c2

]−1/2
s−1, (30)

where the integration limits in the exponential term are over the barrier width For the value of w giving the minimum
electron energy in Fig. 1 (w ∼= mpc/h̄) an energy Eν is chosen for which the reciprocal of the tunneling rate is
nearly equal to the lifetime of the neutron. The calculated rate is 8.41 × 10−4 s−1, whose reciprocal gives a lifetime
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of 1.19 × 103, which is close to the observed lifetime of nearly fifteen minutes. In Eq. (29) this rate corresponds to
1.7 MeV and a principal quantum number close to n = 3. The rate would of course be slower for smaller n and
faster for larger n. In atomic units the numerator in Eq. (30) is 1.52 × 10−30 and the integral in the denominator is
1.87 × 10−11, such that the quotient is 2.34 × 10−20, which, converted to CGS units by division by the atomic unit of
time, 2.42 × 10−17, gives the the rate cited above.

4. Conclusions

An EOM has been presented for the neutrino which contains an interaction with charged matter. For zero interaction
with matter the EOM reduces to the zero-mass Dirac equation, which is the generally accepted EOM for the neutrino.
I believe that the postulated bosons, which we denote by the symbolW±

s for binding of a neutrino and a positron (+) or
of a neutrino and an electron (−) and for spin s equal to 0 or 1, since they discover the mass, length, and lifetime scales
of a nucleon, should be useful in future work as building blocks to construct a nucleon with constituents physically
equivalent to quarks and intermediate force-carrier bosons.
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Simulation of Crater Formation on LENR Cathodes Surfaces

Jacques Ruer ∗

Abstract

Many authors reported the presence of small-size craters on the surface of cathodes after Low-energy Nuclear Reaction (LENR)
electrolysis experiments. It is conjectured the craters result from violent reactions, perhaps of nuclear origin. Nagel proposed a
correlation between the crater diameter and the energy involved in its formation. Starting from this assumption, it can be estimated
that the enthalpy released can raise the temperature of the crater content to about 2000 K. A simple model is used to calculate the
crater cooling by conduction and radiation. It gives the order of magnitude of the maximum event duration in order to achieve some
melting of the cathode material. The duration of the eruption is estimated from the gas pressure developed within the crater. A value
of 6 ns is obtained for a 2 µm diameter, and 600 ns for a 20 µm crater. In large craters, a part of inner material can be molten. Small
craters are strongly cooled by the surrounding metal and do not show signs of fusion.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Cooling, Craters , Explosion, LENR, Melting

1. Introduction

Several authors observed small-size craters on the surface of metals after electrolysis experiments. They have been
reported on different metals, but mostly on palladium cathodes [1–5].

The morphology of these structures is very similar to the craters created by the impact of high-speed objects, like
meteorites or bullets [6]. A round shaped void can be seen with the periphery protruding from the original surface. In
the case considered here, the dimensions of the craters are small, in the range of a few micrometres to a few tens of
micrometres.

The similarity of the shape of these craters with the large ones raises the question of the phenomenon responsible
for their formation. It is tempting to assume that local reactions led to the melting and eruption. Elemental analysis in
and near the craters suggests that the craters could mark the location of LENR events [2–5]. The relation between the
presence of craters and excess heat is not yet fully established [6]. However, craters are frequently seen on cathodes,
which gave excess heat. The simple fact that craters could be the sites of creation of at least a fraction of the LENR
energy makes it interesting to further investigate the question of the energetics and dynamics of their formation.

This paper presents some estimations of the typical time scales involved for the different phenomena taking place
during the formation of craters and discusses the main results.

∗E-mail: jsr.ruer@orange.fr

© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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Figure 1. Large crater with a rounded shape. There are evident signs of melting of the ejected material, some of it solidified around the crater rim.
The diameter is 50 µm. The original point of the explosion seems to be located several tens of µm below the surface [3].

2. Examples of Craters Observed on Palladium Cathodes of LENR Experiments

Nagel discussed the different types of craters observed [6]. The observed diameters are generally between 2 and 50µm,
and a few are larger. In most cases, the craters exhibit a circular shape. The ratio between the crater depth and diameter
ranges between 0.5 and 5.

3. Energy of Crater Formation

Kim [7] calculated the energy required to melt or vaporize the quantity of metal located in a cone having the dimensions
of the crater considered. For a crater with a diameter of 50 µm and a depth of 25 µm, the energy calculated is
3.2×10−5 J, if we consider that the metal is molten, or 6.5×10−4 J if the metal is vaporized. Assuming these energies
result from D–D fusion into He4, they correspond respectively to 8.3 × 106 and 1.7 × 108 nuclear reactions.

Nagel [6] compared the dimensions of craters of very different origins and the energy involved for their formation.
A simple correlation can be drawn between the size and the energy. The relationship obtained is reproduced in Fig. 5.
Nagel compared the values given by Kim with his own investigations. The orders of magnitude agree quite well. The
energy given by the correlation falls between the values calculated assuming melting and vaporization.

Figure 2. Two adjacent craters, 15 and 10 µm in diameter. The larger one is fully rounded, while a hexagonal shape can still be recognized in the
small one. Although both embedded within a common mass of molten material, they do not seem to be obviously correlated [3].
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Figure 3. Micrograph showing a 6 µm diameter crater. One can notice the round shape, the concentric rings of ejected material and the deformation
of the surrounding metal surface [5].

In the following, we assume that the energy required for cratering is given by the correlation of Fig. 5. The
corresponding energy is 10−3 J for a crater 100 µm diameter and 50 µm deep, with a volume of 1.31 × 105 µm3. The
energy density is then 7.6×109 J m−3, or 640 kJ kg−1. Accordingly, the correlation can be described by the equation:

Ei = αi · V, (1)

where Ei is the energy input (J), αi = 7.6 × 109 J m−3 (equivalent to 640 kJ kg−1) and V is the crater volume (m3).
Figure 6 shows the relationship between the temperature and the specific enthalpy of palladium [8]. It can be seen

that the enthalpy mentioned above corresponds to a temperature close to 2000 K.

4. Simple Modelling of the Main Phenomena

4.1. Basis of the simulation

The estimation of the energy does not give information about the kinetics of the crater formation. The simple model
presented here gives some insight.

The only features, which can be observed, are the craters left after the eruption. The precise sequence of the
phenomena cannot be directly observed, but can at most be derived from a simulation.

The only things known at the beginning are as follows:

• Craters are present on the surface, showing that some material is ejected away from the cathode.
• The largest craters have a circular shape and show signs of melting.
• The smallest ones may have a non-circular shape and do not exhibit traces of molten metal.
• According to Nagel and the discussion of the previous paragraph, the energy involved in the crater formation

corresponds to the heating of a hot core up to 2000 K before the eruption.
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Figure 4. Micrographs of small craters from Super-wave experiments by M. Tsirlin . Published by Nagel [6]. The diameters range from 1µm to 2
µm. There are no signs of melting. The shapes appear to be influenced by the cathode crystal structure.

The simulation must be able to explain these observations. We are going to follow three distinctive steps in order to
introduce the main phenomena

• In the first step, we examine the temperature evolution of a hot core before the eruption. This will show that a
hot core having small dimensions cools down very fast. The cooling time gives a upper bound of the possible
LENR event duration.

Figure 5. Correlation between the crater diameter and the energy necessary for its formation [6].
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Figure 6. Specific enthalpy of palladium [8] The value αi from Eq. (1) is indicated. It corresponds to a heating of the metal up to 2000 K.

• The dynamics of the eruption is evaluated. The comparison of the time required for the ejection of the crater
content and of the cooling time explains why melting is only observed in large craters

• The fact that most craters are circular suggests that the initial LENR sites are smaller than the craters observed
on the surface. The logical consequences of this last assumption are discussed.

At this stage, the model uses very rough assumptions. However, they are enough to find out the orders of magnitude of
the different phenomena involved:

(1) Thermal flow between the crater and the surrounding metal
(2) Heat radiated out of the crater considered as a black body
(3) Eruption and ejection of the crater content

4.2. Hot core cooling

A small volume with dimensions of a few micrometres cools down very fast. The purpose of the simulation is to obtain
a quantitative figure of the duration during which a hot core can retain a high temperature. Obviously, the duration
of the LENR event responsible for the formation of the hot core must be shorter than the cooling time, otherwise the
energy is dissipated away while it is released by the LENR event and the hot core temperature remains limited.

4.2.1. Thermal flow by conduction

We assume that the energy input is supposed to be confined in a spherical core which has the same volume as the final
crater. The energy is in the form of enthalpy within the material contained inside the crater just before the eruption and
is given by Eq. (1). The heat is transferred to the surrounding metal by conduction.

In order to simplify the calculation, we consider in a first approach that the hot core is deeply embedded below the
surface, as shown in Fig. 7. The reaction does not create a crater on the surface and cooling only results from conduction
in the solid metal surrounding the hot core.

Hypotheses:

• The matrix is made of palladium.
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Table 1. Palladium properties.

Density 12 023 kg m−3

Melting 1555˚C = 1828 K
Boiling 2963˚C = 3236 K
Specific heat 245 J kg−1 K−1

Thermal conductivity 71 W m−1 K−1 at 20˚C
Velocity of sound 3070 m s−1

• Before the reaction, the base metal is a solid body.
• The reaction takes place uniformly throughout the core, a sphere with a radius, R.
• No eruption takes place.
• The energy input Ei is proportional to the core volume, as per Eq. (1).
• The reaction evolves at a constant pace, during a reaction time τ . This duration is taken as a variable to study

its influence.
• The energy is transferred by conduction.
• The heat capacity and the thermal conductivity are constant, taken for pure palladium

The last hypothesis neglects the fact that the metal is loaded with deuterium. This simplification is addressed below. It
should not alter the orders of magnitude of the results.

The heat flow is computed according to a spherical model using the Fourier equation of heat conduction, see Fig. 8.
Within the core with a radius R, some energy αi is released per unit volume. It is assumed that this energy evolves at
a constant pace during the reaction time τ . Between time t = 0 and time t = τ the reaction creates in the volume dV a
local energy input dW :

dW

dV
= αi

τ
dt. (2)

The solid taken into account in the model has the properties of pure palladium, as listed in Table 1.
In fact, in LENR experiments, the palladium is loaded with deuterium, so that at least a part of the metal is

transformed into hydride PdDx . The values of x are larger than 0.6 and can be close to 1. The properties of the hydride
differ from metallic Pd. In particular, the density is lower, about 104 kg m−3. The other properties are not well known.

Figure 7. Schematic representation of hot core cooling – The hot core is the volume heated up to 2000 K by the LENR event – defined by Nagel’s
equation.
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In any case, as only the orders of magnitude are calculated, the precise characteristics are not absolutely necessary at
this stage, so that pure palladium properties are used for this first approach.

The results of the heat flow model are presented for two different core diameters: 2 and 20 µm. The energy inputs
Ei are proportional to the volumes according to Eq. (1). They are, respectively, 2.12 × 10−8 and 2.12 × 10−5 J.

Figure 8. Schematic representation of the heat flow model.

Figure 9. Evolution of the temperature for a 2 µm diameter core – Assumed reaction time is 0.001 µs.
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The temperature reaches a maximum at the end of the reaction timeτ .
If τ is small, as shown in Fig. 9 for τ = 1 ns and Fig. 11 for τ = 100 ns , the heat loss towards the surrounding metal

is still very limited at the end of the reaction. Most of the energy is still confined within the core and the temperature
reaches 2000 K in both cases, as can be deduced from Eq. (1) and Fig. 6.

Figure 10. Evolution of the temperature at the centre of a 2 µm core – Influence of the reaction time.

Figure 11. Evolution of the temperature for a 20 µm diameter core – Assumed reaction time is 0.1 µs.
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Figure 12. Evolution of the temperature at the centre of a 20 µm core – Influence of the reaction time.

The subsequent cooling by conduction is, however, very rapid. If we define t1/2 the time necessary to reduce by
half the temperature rise of the core centre, Figs. 10 and 12 show that t1/2 is 0.013 µs for the 2 µm core and 1.3 µs for
the 20 µm core. We can generalize :

t1/2 = 3250 d2, (3)

where d is the hot core diameter.
If we use longer reaction times τ , the maximum temperatures reached at the end of the reaction are markedly lower.

Conduction takes away the heat as it evolves. Nagel’s correlation does not depend on the time. This can be easily
explained by this model if we accept that the reaction time τ is probably very short.

τ is probably less than 6 × 10−9 s for the 2 µm crater and less than 6 × 10−7 s for the 20 µm crater. From that, we
can even derive a criteria giving the maximum value of τ as follows :

τ < 1500D2, (4)

where τ is the maximum value of the reaction time (s), and D the crater diameter (m).
This relation does not mean that the reaction kinetics depends on the crater dimension. It only indicates what the

longest duration can be. It may be faster, with no relation to the size. However, this equation shows that very small
craters can only be created by very fast reactions.

4.2.2. Hot spot cooling by radiation

When the reaction takes place close to the surface, a crater is formed. The surface exhibits a hot spot at this location
and the crater ejects some material.

Let us first consider the energy loss into the environment. Because of the high temperature, the hot spot radiates
strongly, so that it is necessary to evaluate how much energy the hot core looses by radiation. To do this we assume
that:

• The hot spot is a flat circular disk with the same diameter as the crater (an overestimate).
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• The temperature is 2000 K.
• The duration is t1/2 as per Eq. (3).
• The hot spot radiates like a black body.

The Stefan–Boltzmann equation gives the quantity of energy Er lost by radiation:

Er = π

4
D2 σ T 4 t1/2, (5)

where D is the crater diameter, σ the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4 ).
We find Er = 3.7 × 10−14 J for the 2 µm crater and Er = 3.7 × 10−10 J for the 20 µm crater. These values

are orders of magnitude lower than Ei.We can therefore conclude that radiation cooling is not a relevant factor in this
problem.

4.3. Crater eruption

We now have to examine the crater eruption itself. If the material originally located inside the crater is ejected, this is
because mechanical forces are acting on it. It can be assumed that the driving force results from the evolution of gases
within the crater. The sources of gas may be:

• Metal vapour resulting from the high temperature.
• Hydrogen (deuterium) present in the palladium hydride.
• Nuclear reaction products.

In the above, it is considered that the temperature reached at the beginning of the crater eruption is about 2000 K. This
is much below the palladium boiling point (3236 K). Therefore, the palladium vapour pressure is probably low during
the eruption itself.

The quantity of nuclear ashes is probably negligible and can be disregarded.
When LENR reactions are observed, the palladium is heavily loaded with deuterium. At high temperature, the

hydride is dissociated [9]. The solubility of deuterium is known to decrease as the temperature increases. In our case,
during the eruption, the palladium is molten. The gas pressure build-up is difficult to quantify, because the reaction is
very rapid. It is unclear how fast the atoms of deuterium present in the liquid phase combine into D2 molecules, how
gas bubbles can germinate, etc.

Facing these difficulties, we are again obliged to use a very simple model in an attempt to find out the main orders
of magnitude of the eruption mechanism.

Should the quantity of hydrogen (deuterium) contained in the hydride instantaneously evolve as gas, the local
pressure could be estimated as follows:

• Mass of hydride : 104 kg m−3 = 8.85 × 104 mol PdD per cubic meter.
• If the gas is released as monoatomic hydrogen, considered as a perfect gas, the equivalent pressure of the

gas would be 1.98 × 103 bar at 0˚C. Because the temperature is 2000 K, the gas pressure may be as high as
1.45 × 104 bar.

The actual pressure is difficult to assess. We can nevertheless estimate that the pressure is quite high, possibly ranging
between 100 and 20,000 bar.

The mechanism of eruption is probably complicated, but as we are only looking after approximations, the following
ad hoc model is a first approach:

• The gas pressure P is taken as a variable to study its influence.
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Figure 13. Schematic view of a crater in eruption and simplified modelling. The cylinder in the model has the same volume as the crater.

• The pressure is constant during the eruptive phase and appears instantly.
• The crater having a diameterD is represented by a cylinder perpendicular to the surface, with the same diameter
D and a depth D/3 to account for the fact that the actual crater has a conical shape, see Fig. 13.

• The gas pressure is exerted on the bottom face of the cylinder and creates a force pushing out the content of the
cylinder, as if it were solid.

The eruption duration is defined as the time required to lift the cylinder along a distance equal to its height D/3.
We can write the force F exerted at the base of the cylinder:

F = π

4
D2P = mγ = π

12
ρD3γ, (6)

where P is the gas pressure and γ is the acceleration of the cylinder.
The time te required to travel the distance D/3 during the eruption is:

1

2
γ t2e = D

3
. (7)

Replacing the value of γ obtained in Eq. (5), we get:

t2e = 2

9
ρ
D2

P
. (8)

Taking ρ = 104 kg m−3 for the hydride, it gives:

te = 47 .1DP−0.5. (9)

Figure 14 shows the eruption time calculated for different diameters and pressures.
It is instructive to compare the values of te with the values of τ given by Eq. (3). Both values are equal when the

following equations are satisfied :

1500D2 = 47.1DP−0.5, (10)
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Figure 14. Eruption time calculated for different crater diameters and gas pressures.

D = 0.03P−0.5. (11)

For example, if the gas pressure is 1000 bar (108 Pa), we have D = 3 µm.
Craters smaller than this value are cooled down before the eruption is completed. They cannot contain molten

material because the metal is quenched by the wall as the eruption proceeds. Larger craters erupt faster than they cool,
so that molten material is present in the ejected debris.

5. Discussion of the Results

The correlation established by Nagel gives the energy input for the formation of micro-craters, as seen on the palladium
cathodes of LENR experiments.

The simplified modelling approach presented here lacks precision, but gives the orders of magnitude of the time
scales of the related phenomena. The event duration ranges from a few nanoseconds to less than a microsecond
depending on the crater size.

The cooling of small craters is very fast. It may be so fast that the LENR energy is dissipated by conduction before
the temperature reaches the metal melting point. The gas released must however find its way to the outside, tearing off
the base metal.

In larger craters, the energy results in the melting of at least a part of the crater content, which is subsequently blown
away by the gas, see Fig. 15.

This simple model may explain why the small craters shown in Fig. 4 do not exhibit signs of melting, while the
large ones in Figs. 1 and 2 show accumulation of molten metal around the rim.

This model does not give any hint of the LENR mechanism itself. However, the occurrence of such craters, assuming
they result from LENR events, invites the following remarks, most of them already pointed out by Nagel [6] :

• LENR reactions are said to be related to some particular behaviour of deuterium atoms incorporated in Pd
crystalline structure. The Pd crystals are not rounded, contrary to the large craters. This means that the
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Figure 15. Criteria for the presence of molten material in LENR craters.

dimensions of the LENR sites may be markedly smaller than the final craters.
• Shortly before the reaction starts, the site is obviously at the same temperature as the base metal. The reaction

is not initiated because of a high local temperature.
• If all the energy is generated within a site smaller than the crater, the temperature level reached at the end of

the nuclear event, before the crater expansion, is considerably higher than the 2000 K value estimated by the
crater formation energy correlation (1). Dividing the volume by 10 means a reaction temperature of 20 000 K
for example. May be, the multiplication factor is much higher.

• If the LENR site is smaller than the crater, the duration of the nuclear reactions is even shorter than the values
given for τ in equation (4)

• The crystalline structure supposed to be the matrix of LENR events is completely destroyed by the high
temperature. If LENR reactions occur in such sites, they take place in a medium completely out of equilibrium.

• Such high temperatures developed in a very short time mean huge instantaneous powers. If we consider again
the Nagel’s correlation, the 50 µm conical crater represent an energy of 10−4 J. If the LENR site dimension is
a 10 µm large cube, the energy density is 1011 J m−3, released in less than 150 ns. The instantaneous power
is then larger than 6 × 1017 W m−3. These are really microscopic explosions.

• It is tempting to relate such phenomena to some explosions which have been reported by several researchers
[10]. It is however not easy to explain how small size explosions can trigger an explosion in a large volume.

• The LENR energy is probably transferred to the surrounding metal via a shock wave, resulting in the formation
of the crater, very much like during an underground explosion.

• A possible sequence of the formation of a crater is proposed in Fig. 16:

– LENR reactions starts on a given site, initially cold, for some reasons which remain to be explained,
– The reactions develop very fast within the site and the temperature reaches a very high temperature, maybe

in the order of several thousands of Kelvins,
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– A shock wave transfers the energy to the surrounding metal. The temperature decreases gradually. When
the event takes place close to the surface, the shock wave reaches the surface. The temperature is close to
2000 K, at least for the large craters,

– The gases contained in the hot metal create a pressure build-up, which leads to the ejection of the crater
content.

• The explosions are probably accompanied by flashes of visible light. In fact, hot spots have already been
observed in the infrared domain [3,11]. The direct observation of the cathodes during the experimentation with
a monitoring of the images should make it possible to confirm the mechanisms proposed here.

• Many craters have a depth of several µm. If we accept that the LENR reactions at the origin of the crater are
located near the bottom, this means that the reactions arise far below the surface, measured according to the
atom scale.

• It is even possible that reactions are present at greater depths, not revealed by craters on the outer surface. Szpak
et al. detected events underneath the surface during their co-deposition experiments [3]. It would be interesting
to check if special metallic features possibly related to deep LENR sites can be observed within the palladium
cathodes, which gave excess heat, several tens to hundreds of µm below the surface. This can be done with
metallographic techniques on transverse cuts of the cathodes.

• Such investigations should help to understand better the mechanism of formation of the craters themselves, and
to confirm or infirm the hypotheses made here.

• It is beyond the objective of this paper and the competencies of the author to draw any conclusion regarding
the nature of LENR phenomena, but the above raises many points which should deserve further thoughts.

Figure 16. Schematic representation of the formation of a crater.

6. Conclusions

Simple models of heat flow and eruption kinetics give some orders of magnitude of the time scales involved during the
formation of the micro-craters observed on palladium cathodes after LENR experiments. The reactions durations are
measured in nanoseconds. The model explains the presence or not of molten material around the craters according to
their size. The values of time and dimensions mentioned here lead to the conclusion that LENR seem to evolve like
microscopic nuclear explosions, at least as far as deuterium loaded palladium cathodes are concerned.
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The reactions start in a cold material, so the reactions are not initiated because of a high temperature. Another
unexplained phenomenon is responsible for the onset. However, the temperature increases very quickly in an explosive
fashion. It is not clear if the reactions continue within the site because of the high temperature, but at the beginning of
the shock wave expansion phase, the temperature is so high that any ordered arrangement of atoms can no longer exist.

Further investigations are suggested in order to clarify several aspects:

• Is there a clear relationship between excess heat, LENR phenomena and the presence of craters (as supposed
here) , or is excess heat obtained without observation of craters?

• The explosions responsible for the craters must be accompanied by flashes of visible light which may be detected
using appropriate experimental setups.

• Metallographic studies on cuts made perpendicular to the cathode surface could show remnants of LENR sites
near the bottom of craters. This would give the possible dimension of the LENR sites at the origin of the crater,
and hence the maximum temperature reached

• Similar investigations could reveal reactions which occurred deep below the surface without cratering. Their
presence would reinforce some theories, and their absence others.

References

[1] D. Cirillo and V. Iorio, Transmutation of metal at low energy in a confined plasma in water, in Eleventh Int. Conf. on Condensed
Matter Nucl. Sci., 2004, Marseille, France. http://www.lenr-canr.org/acrobat/CirilloDtransmutat.pdf

[2] Y. Toriyabe, T. Mizuno, T. Ohmori and Y. Aoki, Elemental analysis of palladium electrodes after Pd/Pd light water critical
electrolysis , Proc. ICCF12 (2005), www.icmns.org/iccf12/ToriyabeY.pdf.

[3] S. Szpak, P.A. Mosier-Boss and F.E. Gordon, Experimental evidence for LENR in a polarized Pd/D lattice, NDIA 2006 Naval
S&T Partnership Conference, Washington DC, http://lenr-canr.org/acrobat/SzpakSexperiment.pdf.

[4] W. Zhang and J. Dash, Excess heat reproducibility and evidence of anomalous elements after electrolysis in Pd/D2O + H2SO4
electrolysis cells,13th International Conference on Condensed Matter Nuclear Science, Sochi, 2007.

[5] I. Dardik, T. Zilov, H. Branover, A. El-Boher, E. Greenspan, B. Khachaturov, V. Krakov, S.Lesin, A. Shapiro and M. Tsirlin,
Ultrasonically-excited electrolysis experiments at energetics technologies, In ICCF-14 International Conference on Condensed
Matter Nuclear Science, Washington, DC, 2008.

[6] David J. Nagel, Characteristics and energetics of craters in LENR experimental materials, J. Condensed Matter Nucl. Sci. 10
(2013) 1–14.

[7] Y. E. Kim, Theory of Bose–Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale
metal grains and particles, Naturwissenschaften, Published online 14 May 2009, DOI 10.1007/s00114-009-0537-6.

[8] C. Cagran and G. Pottlacher, Thermophysical properties of palladium, Platinum Metals Rev. 50 (3) (2006) 144–149, DOI
10.1595/147106706X129079.

[9] F.A. Lewis, The hydrides of palladium and palladium alloys, Platinum Metals Rev. 4 (4) (1960) 132–137.
[10] J.P. Biberian, Unexplained explosion during an electrolysis experiment in an open cell mass flow calorimeter, J. Condensed

Matter Nucl. Sci. 2 (2009) 1—6.
[11] M. Swartz, G. Verner and A. Weinberg, Non-thermal near-IR emission linked with excess power gain in high impedance and

codeposition PHUSOR-LANR devices, ICCF 14 International Conference on Condensed Matter Nuclear Science, 10-15 –
August 2008, Washington, DC.



J. Condensed Matter Nucl. Sci. 12 (2013) 69–104

Research Article

Born–Oppenheimer and Fixed-point Models for
Second-order Phonon Exchange in a Metal

Peter L. Hagelstein ∗
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Irfan U. Chaudhary
Department of Computer Science and Engineering, University of Engineering and Technology. Lahore, Pakistan

Abstract

We have been interested in the development of a model for anomalies in condensed matter nuclear science, and over the past few years
we have developed new models that describe coherent phonon exchange between a highly-excited vibrational mode and nuclei under
conditions of fractionation. When we modeled collimated X-ray emission in the Karabut experiment, we found that the conditions
required by the model did not match the conditions of the experiment. One possible reason for this might be the neglect of phonon
fluctuations due to coupling with conduction electrons. We would like to add a description of this effect to our phonon–nuclear model;
however, models normally used for electron–phonon interactions in metals are based on the Bloch picture, and we were concerned
that it may not be well suited to the problem. This has motivated us to develop a new model for phonon fluctuations in a metal
that is based on the Born–Oppenheimer picture, within the context of a Brillouin–Wigner formulation. The Born–Oppenheimer
results are complicated, so we have reduced them in a simpler fixed-point picture (which is based on a Taylor series expansion
of the Born–Oppenheimer approximation around fixed nuclear equilibrium points). In order to verify the resulting formalism, we
constructed a simplified model for the monatomic crystal phonon dispersion relation, which is well known in the Bloch picture
literature. From this model we are able to extract the longitudinal dielectric constant. We find that the fixed-point dielectric constant
at second order is more accurate than the Bloch picture equivalent, and that it includes dynamic corrections that match the result
from field theory up to O(ω2). This model is used in a subsequent paper for the development of phonon fluctuation models, where
it is found that the Bloch picture is appropriate when the metal sample is micron scale or larger, and that the Born–Oppenheimer
picture is appropriate for nano-scale samples.
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1. Introduction

We remain interested in the theoretical problem associated with how excess heat in the Fleischmann–Pons experiment
[1–4] works. The key problem for us is the absence of energetic nuclear radiation in amounts commensurate with
the energy produced [5], in experiments where the origin of the energy is thought to be nuclear. More than a decade
ago we found that coherent energy exchange between two-level systems and a highly excited oscillator could occur
efficiently when the characteristic energies were highly mismatched [6], in the lossy spin-boson boson model. In this
case, energy conservation required that an (odd) integer number of oscillator quanta were needed to make up a large
two-level system quantum. Coherent energy exchange in this situation in the spin-boson model is a very weak effect
[7,8]; but when the model is augmented with loss, the destructive interference which hinders energy exchange can be
eliminated, resulting in efficient coherent energy exchange in the lossy version of the spin–boson model [9–15].

More recently, we have developed a new physical model that is closely related to the lossy spin–boson model
[16–18], and which implements the same mechanism for efficient coherent energy exchange under conditions where
a large quantum is fractionated. In a sense, the new model is just the direct generalization of the nonrelativistic solid
state Hamiltonian to include a relativistic description of nuclei as relativistic composite particles. In the relativistic
version of the problem there is a strong coupling between the lattice vibrations and the internal nuclear degrees of
freedom. Under conventional conditions, a generalized Foldy–Wouthuysen transformation rotates out this strong first-
order coupling, resulting in a relativistic model not very different from the nonrelativistic one (in which the coupling
between vibrations and internal nuclear degrees of freedom is very weak). The situation is very much analogous to the
spin–boson model, where the first-order coupling between the oscillator and two-level systems can be removed with a
Foldy–Wouthuysen type of transformation. However, when the loss is sufficiently strong to modify the occupation of
the off-resonant states, then the transformation becomes unhelpful, and the model is best analyzed by brute force in the
unrotated frame. The relativistic generalization of the condensed matter Hamiltonian is closely related, so when loss
becomes important we propose that the Foldy–Wouthuysen transformation similarly becomes unhelpful. In this case
the strong first-order coupling is available to mediate coherent dynamics on low-loss transitions. This in our view is
the origin of the anomalies in condensed matter nuclear science [18].

Over the past year or two we have accumulated some experience with this new physical model. It is very interesting,
in that it seems to predict anomalies very much like those seen in experiment (at least qualitatively). Since this model is
capable of fractionating large quanta, it can be used to model coherent deuteron-deuteron reactions going to 4He, with
energy going into vibrations. Low-level gamma emission, and also transmutation effects, follow naturally as a result
of coupling to internal nuclear excited state [19,20]. In our view, the simplest of the anomalies is direct vibrationally
induced nuclear excitation [17], which we have proposed as responsible for collimated X-ray emission in the Karabut
experiment [21–26]; this effect is also predicted by the new model. However, for all of its good things about the new
theory that we have enumerated here, it is offset by the difficulty that the theory, particular model, and interpretation of
the Karabut experiment are not in agreement yet quantitatively [18]. Our conclusion given this situation is that we are
“close;” but some issue remains either with the theory, the model, or the interpretation.

The motivation for this work is the possibility that the theory is deficient in the case of metals generally, because
coupling between vibrations and conduction electrons has not been included. We are interested in developing a model
for phonon fluctuations due to this coupling to see whether it impacts, and perhaps increases, the ability of the coupled
phonon–nuclear system to fractionate a large quantum.

The argument is subtle, and perhaps worth some thought here. In the lossy spin–boson model, the coupling between
the two-level systems and oscillator produces a mixing between states that are far apart in energy. This coupling with
off-resonant states produces a second-order indirect coupling between neighboring phonon basis states with the same
two-level excitation, but different by two phonons. In the lossy spin–boson model it is this second-order interaction
that determines how fast coherent energy exchange occurs under conditions of fractionation. It is no accident that
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the relevant dimensionless coupling strength for coherent energy exchange goes like g/�n2, since the second-order
indirect coupling between phonon states different by two is what produces this coupling strength [13].

Consequently, we might expect that the lossy spin–boson model will be sensitive to the addition of mechanisms
which produce a coupling between neighboring phonon states. And because the new physical model is so closely related
to the lossy spin–boson model, we would expect the same to be true for it as well. The coupling between vibrations and
conduction electrons in a metal results ultimately in fluctuations in the phonon distribution. These fluctuations cause
a spreading of the phonon distribution, caused by indirect coupling between phonon states different by two phonons,
very similar to the indirect coupling resulting from the phonon–nuclear interaction. Consequently, we would expect
the rate at which energy exchange occurs between phonons and nuclei under conditions of fractionation would depend
on the amount of fluctuations induced in the phonon system by coupling to conduction electrons.

If so, then all that remains is to include phonon fluctuations due to phonon–electron coupling into the model. Our
goal seems clear, and one might expect that all we need to do is to apply some analysis to the problem and we should
be able to obtain a resolution. After all, electron–phonon coupling in metals is one problem that has been worked on a
great deal over many decades. There is more than enough literature available to make clear the models and approaches
available. However, amazingly enough some technical issues arise which are subtle, and these have motivated us to
review the formulation of the problem.

The issue concerns two different physical pictures that appear in the literature to model phonon exchange. The
leading formalism is of course the Bloch picture [27,28], which is based on periodic Bloch electron waves, and their
interaction with phonons. The great majority of all calculations involve electron–phonon coupling has been done in
the Bloch picture. A different approach altogether is available in the Born–Oppenheimer picture [29,30]. In this case,
electrons are described using more general adiabatic wavefunctions, and phonon exchange is computed using the non-
adiabatic terms in the Born–Oppenheimer Hamiltonian. Now, one might hope that the same physics is described in
both cases. Most of the calculations that involve the electron–phonon interaction in metals is centered on the problem
of electron screening. A much smaller number of papers are concerned with phonon decay rates resulting from resonant
absorption by conduction electrons. For these problems, good answers are obtained in the Bloch picture.

But in our model, we are concerned with the coupled phonon–nuclear problem, in which states that are very much
off of resonance are important. In this case it is important for us to work with a formulation that is well suited to
the problem (and also which we can understand intuitively). For example, it can be shown that the phonon exchange
matrix element in the Bloch picture and in the Born–Oppenheimer picture coincide when the phonon energy matches the
difference in the electron energies [29]. However, we are interested in phonon fluctuations induced by the coupling with
electrons, which involves off-resonant interactions. In this case, it seems we should want to use the Born–Oppenheimer
picture (since there are no issues for off-resonant states). Unfortunately, we were not aware of anyone pursuing this
kind of problem in a Born–Oppenheimer picture previously when we started (the formal development given by Sham
and Ziman [27] covers many of the issues); so when we began it wasn’t clear that a suitable foundation was available
in the literature that we could use for phonon fluctuations. It seems in the literature that the two pictures are considered
to be essentially equivalent, and results known so far are essentially the same in both (we will pursue this question in a
following work).

Consequently, one task will be to examine the development of a suitable formulation for electron–phonon interactions
in a metal that we can use to evaluation phonon fluctuations. In principle the starting place for our model is pretty
clear. There is a strong electron–phonon interaction present initially, which we would like to rotate out in order to
recover a model for dressed phonons that don’t interact at first order. Unfortunately we do not have available an exact
transformation that can do this. So instead we will work with an algebraic Brillouin–Wigner type of formulation which
is well adapted to second-order models of this type, and which is also consistent with our formulation of the coupled
phonon–nuclear problem. We can use it to obtain a version of the rotated problem that is good to second order, and
which we could improve further later on if we wished.
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With a suitable starting place and approach to follow, there is no particular difficulty in the development that follows.
Unfortunately, since the Born–Oppenheimer picture describes very general configurations, the resulting formulas are
quite complicated. We are able to develop a reduced version of this model in which we expand the Born–Oppenheimer
wavefunctions around equilibrium positions; the model that results is a fixed-point approximation. We might consider
this fixed-point model as constituting an important picture in its own right; it might be thought of as a Born–Oppenheimer
version of the Bloch picture.

The development involves a fair number of pages and lots of formulas, so some effort is needed to determine whether
we might have confidence in the results. For example, we would like to be able to make a connection with some known
problem where the answer is available from previous work. In this case we can extract a result from the longitudinal
dielectric constant directly from the model, and compare it with known results from the Bloch picture. We find that our
second-order formulation results in a model for the longitudinal dielectric constant which includes frequency-dependent
terms up to second order in ω, and which we are able to verify is in agreement with literature results.

In the end, we have a Born–Oppenheimer based model that allows us to specify the coupling matrix elements that
describe phonon fluctuations due to coupling with conduction electrons. These matrix elements can be evaluated then
in order to develop a model for phonon–nuclear coupling that includes fluctuations due to phonon–electron coupling.
Such a model is analyzed in a following paper.

2. Basic Model and Sector Decomposition

The tasks that lie before us are at the same time easy (since the basic problem of electrons and nuclei is well known,
and since the Born–Oppenheimer formalism is also well known) and hard (since there are some subtleties, a great
many issues, and since the Brillouin–Wigner formalism is not as well known in the literature as it might otherwise be).
Unfortunately, the path forward in the development that follows is not linear. Linear steps that are well motivated in
each case are preferred, but in what follows we consider two independent paths that converge only after a fair amount
of development and discussion.

The headache is that the separation of the phonon and electron degrees of freedom that we desire can be done
effectively within the Brillouin–Wigner formalism; but sadly, the Brillouin–Wigner formalism requires a fair amount
of structure within the model in order to make use of it. In particular, we need a definition of the phonon modes in order
to make sense of the Brillouin–Wigner construction; but the relevant phonon mode structure can only be determined
after we have made use of the Brillouin–Wigner construction.

On the other hand, electron–phonon coupling in metals is a very well known problem that has been worked over in
the literature for more than 80 years. Given this, we know from earlier work that there are phonons; there are conduction
electrons; they couple together; phonon exchange occurs; there is screening by conduction electrons; and we could
make use of previous work to write down already a constraint for the phonon modes that would be quite close to what
we will eventually arrive at. Because of this, working with a development that is not linear in what follows will cause
us very little difficulty. We already know pretty much how things work and what to expect. At issue here then are the
interactions that produce phonon fluctuations within the Born–Oppenheimer formalism; and the construction of the
machinery that we need to describe the problem generally, and to carry out detailed calculations in particular.

This motivates us here to focus on the two ares that make up our two starting places. One is the basic physical model,
which basically involves a metal lattice with interacting electrons and nuclei. The other is the basic Brillouin–Wigner
separation of phonon and electron degrees of freedom.

2.1. Basic physical model

Our starting place is the specification of a model for nuclei and electrons in a metal lattice with Coulomb interactions
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Ĥ = ĤN + Ĥe + V̂eN. (1)

The nuclear Hamiltonian is

ĤN =
∑
j

|P̂j |2
2Mj

+
∑
j<k

ZjZke
2

4πε0|Rk − Rj | (2)

and the Hamiltonian for the electrons is

Ĥe =
∑
α

|p̂α|2
2m

+
∑
α<β

e2

4πε0|rβ − rα| . (3)

Coupling between electrons and the nuclei is described by

V̂eN = −
∑
j,α

Zj e
2

4πε0|Rj − rα| . (4)

This Hamiltonian describes the same basic model as has been used in the literature for many decades (see e.g. Eq. (3.1)
in [27]), and as such is well known. Our interest ultimately is in a somewhat more sophisticated model that will involve
phonon–nuclear coupling, so our intention then is to take the results that we obtain for the simpler problem considered
in this paper, and adapt them to the phonon–nuclear problem in a following paper.

2.2. Sector decomposition

There are a variety of mathematical techniques that are available to us to analyze this problem, along with a vast literature
since our starting place is so general. In what follows we will make use of a sector decomposition approach, which
is not so often used in the modern literature. It offers a number of advantages for our purposes here: the approach
is relatively simple; it is easy to develop approximations in which different degrees of freedom are separated; we can
work with resonant and off-resonant situations in a straightforward way; we can develop results for loss mechanisms
simply; and the approach is consistent generally with the formulation that we are using for the phonon–nuclear models.
It has the disadvantage of being relatively unfamiliar in this day and age, and it involves intermediate steps which are
easy to specify formally but which imply projection operator constructions that are inconvenient.

In a sector decomposition generally we split the relevant Hilbert space into different pieces (which are the sectors),
and then carry out our analysis on the individual sectors subsequently (this approach was used in times past in nuclear
physics [31], and is discussed briefly in Appendix A of [9]). We are ultimately interested in working with a lattice in
which a single-phonon mode is highly excited, so that the different sectors will correspond to the number of phonons
in the highly excited mode. However, initially we will be working with more general vibrational states similar to
the vibrational states of a molecule. Nevertheless, even in this case of a complicated molecule with many vibrational
modes, it may be that one of the modes in particular is highly excited, so that the basic notion underlying our sector
decomposition can be well defined. To accomplish this we write

� = �0 +�1 +�2 + · · · , (5)
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where �n is the sector that contains n phonons in the highly excited mode.
As remarked upon above, we are able to specify sectors here in the formalism which at this point in the analysis

are inconvenient to specify since as yet we do not even have a specification of what constitutes a vibrational mode.
Since a great deal of work has preceded our effort, much is known about the problem generally, and we know that there
are vibrational modes in molecules, metals, and semiconductors. After further analysis we will be able to develop a
constraint within the formalism that will determine the vibrational modes.

2.3. Sector eigenvalue equations

We are interested in the coupling of the vibrational degrees of freedom with the electronic degrees of freedom, and once
again based on previous work we know that in a metal the electron–phonon coupling is dominated by single-phonon
exchange interactions. If we start with the time-independent Schrödinger equation for the electrons and nuclei

E� = Ĥ� (6)

then we can develop coupled sector equations generally of the form

E�n = Ĥn,n�n + Ĥn,n−1�n−1 + Ĥn,n+1�n+1, (7)

where the off-diagonal terms describe single-phonon exchange.

2.4. Second-order sector equations

It is possible to eliminate the first-order coupling by solving formally for the intermediate sectors; for example, in the
case of one such intermediate sector we may write

�n =
[
E − Ĥn,n

]−1(
Ĥn,n−1�n−1 + Ĥn,n+1�n+1

)
. (8)

Upon substituting back we obtain coupled second-order sector equations of the form

E�n =Ĥn,n�n + Ĥn,n−1

[
E − Ĥn−1,n−1

]−1

Ĥn−1,n−2�n−2

+ Ĥn,n−1

[
E − Ĥn−1,n−1

]−1

Ĥn−1,n�n + Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n�n

+ Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n+2�n+2. (9)

Even though the implementation of the required projection operators needed for these equations at this point remains
formidable, we have achieved a suitable starting place for our investigations. We see that when first-order interactions
are eliminated, we end up with diagonal and off-diagonal second-order interaction terms as a direct consequence of the
basic assumptions that we have made so far (that phonons will exist in the system, and the first-order interactions are
dominant).
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3. Born–Oppenheimer Approximation and Phonon Exchange

Phonon exchange in metals is usually described within the framework of a Bloch picture, rather than within the
framework of a Born–Oppenheimer picture. It will be useful here to pursue the development within the context of the
more general Born–Oppenheimer picture here for the reasons already mentioned: the Bloch picture is thought to work
well for resonant single-phonon exchange, but there are issues when we consider virtual processes; there is a close
connection between the Born–Oppenheimer formulation and the Bloch formulation that will help to guide us in the
development; and in process we will have developed a more general formulation (than the Bloch picture) that we can
use if we like later on in connection with non-periodic systems.

Within the Born–Oppenheimer both adiabatic and non-adiabatic contributions to the Hamiltonian are recognized.
For most problems the adiabatic Hamiltonian is sufficient, and the non-adiabatic Hamiltonian discarded because the
associated effects are small. However, it is the non-adiabatic terms which mediate phonon exchange, so we will keep
them and make use of them in what follows.

3.1. The Born–Oppenheimer approximation

In the Born–Oppenheimer approximation we separate the wavefunction into electronic and nuclear pieces [27]

�({r}, {R}) = �({R})�({r}; {R}). (10)

The idea is that the electronic motion is much faster than the ion motion, so the electronic wavefunction is defined
assuming fixed nuclei according to

Ee({R})�({r}; {R}) =
[
Ĥe + V̂eN

]
�({r}; {R}). (11)

The nuclear wavefunction in the adiabatic approximation is determined from

E�({R}) =
[
ĤN + Ee({R})

]
�({R}). (12)

3.2. Isolation of the vibrational degrees of freedom

We can isolate the vibrational degrees of freedom by taking advantage of the Brillouin–Wigner formalism. To proceed
we write the sector wavefunction in the form

�n({r}, {R}) = �n({R})�0({r}; {R}). (13)

In writing this we are requiring the electronic wavefunction to be the same in the different vibrational sectors that we
work with, which means that no electronic excitation is allowed in the model in association to transitions between
neighboring sectors. Electronic excitation is possible in the intermediate sectors; and since electronic excitation is
not permitted in the sectors that we keep we see that the part of the Hilbert space is then eliminated from further
consideration (which simplifies the problem, but which we recognize is an approximation that we make). In this case,
all of the outlying sectors that we do keep for our analysis will be off resonance; a situation which is consistent with
the phonon–nuclear coupling problem (which is why we are interested in it), but qualitatively different from normal
molecular or solid state problems (which tend to focus on the on-resonance part of the problem).



76 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 69–104

We project out the electronic degrees of freedom formally to obtain

E�n({R}) =〈�0|Ĥn,n|�0〉�n({R})

+
〈
�0

∣∣∣∣Ĥn,n−1

[
E − Ĥn−1,n−1

]−1

Ĥn−1,n−2

∣∣∣∣�0

〉
�n−2({R})

+
〈
�0

∣∣∣∣Ĥn,n−1

[
E − Ĥn−1,n−1

]−1

Ĥn−1,n

∣∣∣∣�0

〉
�n({R})

+
〈
�0

∣∣∣∣Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n

∣∣∣∣�0

〉
�n({R})

+
〈
�0

∣∣∣∣Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n+2

∣∣∣∣�0

〉
�n+2({R}). (14)

By isolating the vibrational degrees of freedom, we are now much closer to being able to specify the phonon modes,
and to being able to implement the projection operators implied by the formalism.

We might have reason to be concerned with not including the possibility of additional electronic excitation within
this restricted version of the problem that we have kept. We note that the strong first-order phonon–electron coupling
has been removed in the formalism, so that in a sense we are now dealing with phonon states which act as “dressed” (as
if we had succeeded in rotating out the first-order interaction). The residual interactions are much weaker, and these
are often neglected in conventional models for phonon dynamics. There is no obvious effect in the problems of interest
to us that would suggest that it would not be reasonable to neglect electronic excitation in connection with phonon
fluctuations. Should we wish, we could add electronic excitation as a loss later on.

Note however that we are keeping some of the second-order interactions to describe indirect coupling between
phonon states differing by two; these will give rise to phonon fluctuations that are of interest for including electron–
phonon coupling effects in the phonon–nuclear model.

3.3. Diagonal electronic matrix element

Within the Born–Oppenheimer approximation we can write for the expectation value of the Hamiltonian over the
electronic degrees of freedom

〈�0|Ĥ |�0〉 = 〈�0|ĤN + Ĥe + V̂eN|�0〉

=
∑
j

|P̂j |2
2Mj

+
∑
j<k

ZjZke
2

4πε0|Rk − Rj | + Ee({R})

∑
j

1

2Mj

(
〈�0| |P̂j |2|�0〉 − |P̂j |2

)
. (15)

We recognize adiabatic (second line) and non-adiabatic (third line) terms arising from electronic matrix elements of the
Hamiltonian.

We can use this to isolate the lowest-order contribution to the diagonal sector Hamiltonian

〈�0|Ĥn,n|�0〉 =
∣∣∣∣n
〉〈
n

∣∣∣∣〈�0|Ĥ |�0〉
∣∣∣∣n
〉〈
n

∣∣∣∣. (16)
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In this notation we will use the large
∣∣n〉 notation to refer to the complicated Born–Oppenheimer vibrational states with

n phonons in the highly excited mode (the details of the rest of the vibrational wavefunction is not focused on, other
than we presume that it remains unchanged in this model). In doing so, we have made our first significant connection
between the Born–Oppenheimer part of the problem, and our Brillouin–Wigner formalism.

3.4. The first-order non-adiabatic term

The electronic matrix elements of the non-adiabatic part of the Born–Oppenheimer Hamiltonian can be thought of as
being made up of first-order and second-order contributions. If the initial and final electronic states are different, then
the non-adiabatic terms can be evaluated as

〈�X| |P̂j |2|�Y 〉 = 2〈�X|(P̂j�Y )〉 · P̂j + 〈�X|(|P̂j |2�Y )〉. (17)

The first term on the RHS is expected to be dominated by single-phonon exchange, while the second is dominated by
two-phonon exchange interactions.

It is possible to develop an estimate for the first-order non-adiabatic contribution by following an argument similar
to that of Ziman [29]; this will lead to a slight generalization of Ziman’s formula, which is a connection between the
first-order non-adiabatic interaction and the gradient of the nuclear Coulomb potential. We recall that the electronic
wavefunction in the Born–Oppenheimer approximation is determined from

EY ({R})�Y ({r}; {R}) =
[
Ĥe + V̂eN

]
�Y ({r}; {R}). (18)

Multiplying by �X and integrating over electronic coordinates leads to

EY 〈�X|�Y 〉 = 〈�X|Ĥe + V̂eN|�Y 〉. (19)

We can take the gradient ∇j of this expression to obtain

(∇jEY )〈�X|�Y 〉 + EY 〈∇j�X|�Y 〉 + EY 〈�X|∇j�Y 〉
= 〈∇j�X|Ĥe + V̂eN|�Y 〉 + 〈�X|∇j V̂eN|�Y 〉 + 〈�X|Ĥe + V̂eN|∇j�Y 〉
= EY 〈∇j�X|�Y 〉 + 〈�X|(∇j V̂eN)|�Y 〉 + EX〈�X|∇j�Y 〉. (20)

This reduces to

(∇jEY )〈�X|�Y 〉 + (EY − EX)〈�X|∇j�Y 〉 = 〈�X|(∇j V̂eN)|�Y 〉. (21)

When Y �= X we obtain

〈�X|∇j�Y 〉 = −〈�X|(∇j V̂eN)|�Y 〉
EX − EY

. (22)

If Y = X we may write

∇jEX = 〈�X|(∇j V̂eN)|�X〉. (23)
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In addition we have an orthogonality relation

∇j 〈�X|�X〉 = 〈∇j�X|�X〉 + 〈�X|∇j�X〉 = 0. (24)

3.5. Connection between momentum and position matrix elements

According to Ehrenfest’s theorem the evolution equations for the expectation values of position and momentum satisfy
Newton’s laws; in particular, we may write

d

dt
〈Rj 〉 = 〈P̂〉

Mj

. (25)

For this to be true for the isolated system (with no external force) the associated matrix elements must satisfy

−i
(
Ef − Ei

h̄

)
〈f |Rj |i〉 = 〈f |P̂|i〉

Mj

. (26)

The first-order nonadiabatic Hamiltonian can be written as

∑
j

1

Mj

〈�X|P̂j�Y 〉 · P̂j = −ih̄
∑
j

〈�X|∇j�Y 〉 · P̂j
Mj

. (27)

3.6. Generalized Ziman relation

We can use this to write

〈
�f ({R})

∣∣∣∣∣∣−ih̄
∑
j

〈�X|∇j�Y 〉 · P̂j
Mj

∣∣∣∣∣∣�i({R})
〉

=
∑
l

〈
�f ({R})

∣∣∣∣− ih̄
∑
j

〈�X|∇j�Y 〉
∣∣∣∣�l({R})

〉
·
〈
�l({R})

∣∣∣∣∣ P̂j
Mj

∣∣∣∣∣�i({R})
〉

=
∑
l

〈
�f ({R})

∣∣∣∣ih̄∑
j

〈�X|(∇j V̂eN)|�Y 〉
EX − EY

∣∣∣∣�l({R})
〉

×
〈
�l({R})

∣∣∣∣−i
(
El − Ei

h̄

)
Rj

∣∣∣∣�i({R})
〉
. (28)

It seems useful to recast this as
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〈
�f ({R})

∣∣∣∣∣∣−ih̄
∑
j

〈�X|∇j�Y 〉 · P̂j
Mj

∣∣∣∣∣∣�i({R})
〉

=
∑
l

〈
�f ({R})

∣∣∣∣ El − Ei

EX({R})− EY ({R})
∑
j

〈�X|(∇j V̂eN)|�Y 〉
∣∣∣∣�l({R})

〉

× 〈
�l({R}) ∣∣Rj ∣∣�i({R})〉 . (29)

In a general Born–Oppenheimer setting we would expect both operators in the first matrix element to have the potential
to produce a transition, while the Rj operator will predominantly exchange a single phonon (but can also mediate
higher-order phonon exchange).

In the Bloch picture we take the nuclear positions to be the periodic equilibrium positions, so EX − EY will be
constant; also we work with phonon modes instead of more general vibrational states, so we can expect single-phonon
exchange from the Rj operator. When the phonon energy is not matched to the transition energy we would expect
differences between the Born–Oppenheimer transition matrix element and the Bloch picture transition matrix element.

3.7. Screening effects

We would expect that when a nucleus moves, the tightly bound electrons will follow. Consequently, interactions
between a nucleus and distant electrons should be screened by the tightly bound electrons. Discussion of this issue has
appeared previously in the literature; see for example Refs. [32,33]. This effect should be in the formulas; however, as
yet it does not seem very obvious how this screening comes about within the formalism.

To proceed, we focus our attention on a particular example in order to clarify how this works. Because the formalism
focuses on the electronic wavefunction, we have the freedom to work with a classical description of the nuclear motion
that we can visualise, in order to help understand the quantum mechanics of the electronic wavefunction. We consider
two snapshots in time; including t0 and t1; where the difference between the two times is presumed to be small.

We begin by writing the time independent Schrödinger equation associated with the initial state wavefunction at
t = t1 as

E1�1 = Ĥ1�1. (30)

The final state wavefunction at t = t0 satisfies

EX�X = Ĥ0�X. (31)

Overlap matrix elements then satisfy

E1〈�X|�1〉 = 〈�X|Ĥ1|�1〉, (32)

EX〈�1|�X〉 = 〈�1|Ĥ0|�X〉. (33)

We can subtract one with the complex conjugate of the other to obtain
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(E1 − EX)〈�X|�1〉 = 〈�X|Ĥ1|�1〉 − 〈�∗
1|Ĥ0|�∗

X〉. (34)

Next, we would like to relate the initial state wavefunction �1 to basis states defined at t0. Since the difference
between the two times is presumed to be small (so that the nuclei have not moved very far), we assume that it is possible
to expand according to

�1 = �0 +
∑
j

(
R(1)
j − R(0)

j

)
· ∇j�0 + · · · (35)

Since �0 and �X are now defined at the same time (with identical nuclear positions) they are orthogonal

〈�X|�0〉 = 0 (36)

and we end up with

(E1 − EX)
∑
j

(
R(1)
j − R(0)

j

)
· 〈�X|∇j�0〉 + · · · = 〈�X|Ĥ1|�1〉 − 〈�∗

1|Ĥ0|�∗
X〉. (37)

It may be useful to expand the Hamiltonians to obtain

(E1 − EX)
∑
j

(
R(1)
j − R(0)

j

)
· 〈�X|∇j�0〉 + · · ·

=
〈
�X

∣∣∣∣∣∣
∑
α

|p̂α|2
2m

+
∑
α<β

e2

4πε0|rβ − rα| −
∑
j,α

Zj e
2

4πε0|R(1)
j − rα|

∣∣∣∣∣∣�1

〉

−
〈
�∗

1

∣∣∣∣∣∣
∑
α

|p̂α|2
2m

+
∑
α<β

e2

4πε0|rβ − rα| −
∑
j,α

Zj e
2

4πε0|R(0)
j − rα|

∣∣∣∣∣∣�∗
X

〉
. (38)

We see that the transition matrix elements written in this form involves contributions from nuclear Coulomb, electronic
Coulomb, and electronic potential energy terms in the Hamiltonian.

It is the case that a mathematical cancellation occurs for the contributions to the transition matrix element; for
example

(E1 − EX)
∑
j

(
R(1)
j − R(0)

j

)
· 〈�X|∇j�0〉 + · · ·

= 〈�X|Ĥ1 − Ĥ0|�0〉

=
〈
�X

∣∣∣∣∣∣−
∑
j,α

Zj e
2

4πε0|R(1)
j − rα|

∣∣∣∣∣∣�1

〉
−
〈
�X

∣∣∣∣∣∣−
∑
j,α

Zj e
2

4πε0|R(0)
j − rα|

∣∣∣∣∣∣�1

〉
. (39)
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We see that the relation including screening evaluates to one that involves the bare nuclear charge, and that this connects
with the result above in Eq. (22). However, given this situation it seems that the better way to think about the transition
matrix element might be to make use of the Hamiltonians including electronic contributions for each term individually
as in Eq. (38), so that the subtraction will involve matrix elements referenced to effective (screened) nuclear charges
instead of bare nuclear charges.

3.8. Effective charge parameterization

We are interested in the computation of an electronic matrix element of the form

M̂X,0 =
∑
j

h̄

Mj

〈�X|∇j�0〉 · P̂j . (40)

Probably the place to start is by making a connection with the classical version of the problem, where for small t1 − t0
we have

R(1)
j − R(0)

j = P(0)j
Mj

(t1 − t0)+ · · · (41)

Consequently, we might write

(E1 − EX)(t1 − t0)MX,0

h̄

=
∑
j

(R(1)
j − R(0)

j ) · 〈�0|∇j�X〉

→
〈
�X

∣∣∣∣∣∣
∑
α

|p̂α|2
2m

+
∑
α<β

e2

4πε0|rβ − rα| −
∑
j,α

Zj e
2

4πε0|R(1)
j − rα|

∣∣∣∣∣∣�1

〉

−
〈
�∗

1

∣∣∣∣∣∣
∑
α

|p̂α|2
2m

+
∑
α<β

e2

4πε0|rβ − rα| −
∑
j,α

Zj e
2

4πε0|R(0)
j − rα|

∣∣∣∣∣∣�∗
X

〉
. (42)

In essence, this gives a practical way to evaluate the classical part of the matrix element in a modern computation, such
as a density functional calculation.

In the event that the electronic kinetic energy is ineffective in mediating a transition, we parameterize this as

(E0 − EX)(t1 − t0)MX,0

h̄
→

∑
j

(R(1)
j − R(0)

j ) ·
〈
�X

∣∣∣∣∣∣
(

−∇j
∑
α

Z∗
j e

2

4πε0|Rj − rα|

)
R(0)j

∣∣∣∣∣∣�0

〉
(43)

since E1 is very close to E0. The matrix element with this parameterization becomes

M̂X,0 → 1

E0 − EX

∑
j

h̄

Mj

〈
�X

∣∣∣∣∣∣
(

−∇j
∑
α

Z∗
j e

2

4πε0|Rj − rα|

)
R(0)j

∣∣∣∣∣∣�0

〉
· P̂j . (44)



82 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 69–104

3.9. A sector reduction in the Born–Oppenheimer approximation

We can now return to the sector Hamiltonian and interactions with other sectors in the framework of the Born–
Oppenheimer approximation. The diagonal electronic matrix element of the Hamiltonian is

Ĥn,n = 〈�0|Ĥ |�0〉 =
∑
j

〈�0| |P̂j |2|�0〉
2Mj

+
∑
j<k

ZjZke
2

4πε0|Rk − Rj | + E0({R}), (45)

where we have included the non-adiabatic contribution. This sector Hamiltonian with no further modification could be
used to define general vibrational states (as are used in molecular problems). Later on, we will develop a second-order
correction to this that gives the leading order correction due to phonon exchange

Since the non-adiabatic part of the Born–Oppenheimer Hamiltonian mediates phonon exchange in this formalism,
we can write generally for n′ �= n

Ĥn,n′ =
∣∣∣∣n
〉⎧⎨
⎩
∑
Y �=X

|�X〉
〈
n

∣∣∣∣〈�X|Ĥ |�Y 〉
∣∣∣∣n′
〉
〈�Y |

⎫⎬
⎭
〈
n′
∣∣∣∣

=
∣∣∣∣n
〉⎧⎨
⎩
∑
Y �=X

|�X〉
〈
n

∣∣∣∣∑
j

〈�X| |P̂|2|�Y 〉
2Mj

∣∣∣∣n′
〉
〈�Y |

⎫⎬
⎭
〈
n′
∣∣∣∣. (46)

In the event that a phonon mode basis is defined consistent with this diagonal sector Hamiltonian, then the second-order
sector-changing interaction for indirect coupling between

∣∣n〉 and
∣∣n+ 2

〉
can be written as

〈
�0

∣∣∣∣Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n+2

∣∣∣∣�0

〉

→
∣∣∣∣n
〉∑
X �=0

〈
n

∣∣∣∣∑
j

〈�0| |P̂j |2|�X〉
2Mj

∣∣∣∣n+ 1

〉[
E − Ĥn+1,n+1

]−1

〈
n+ 1

∣∣∣∣∑
j

〈�X| |P̂j |2|�0〉
2Mj

∣∣∣∣n+ 2

〉〈
n+ 2

∣∣∣∣. (47)

A similar expression can be developed for the other second-order interaction Hamiltonian.
It will become clear later on that the diagonal sector Hamiltonian here is dynamic. If we would like to make use

of the static part of the Hamiltonian to define a reference, then the dynamic part of what is in the diagonal sector
Hamiltonian above would contribute to the off-diagonal interaction.

3.10. Discussion

We see that phonon exchange arises from the non-adiabatic part of the Hamiltonian in the Born–Oppenheimer ap-
proximation, as has been noted in previous work. The development in this section revisits some of the ideas put
forth by Ziman [29], who was interested in the connection between phonon exchange in the Bloch picture and in the
Born–Oppenheimer picture.

In the Born–Oppenheimer picture the phonon exchange operator is a bit more complicated. In the reduction
above we identified terms that could be identified as first-order and second-order in the reduction of the non-adiabatic
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Hamiltonian. The strongest effect is due to single-phonon exchange, as expected and as known in the literature. Two-
phonon exchange is clearly present, and since there are nonlinearities present in the interaction operator as a function of
nuclear coordinates, we would expect higher-order phonon exchange processes as well (but of course these we expect
to constitute smaller effects).

At this point we have sufficient development of the Born–Oppenheimer picture that we are able to make a more
complete connection with the Brillouin–Wigner formalism. If we adopt the diagonal sector Hamiltonian (without any
higher-order corrections) then we have a definition of the vibrational states, which allows us to construct the projection
operator machinery required by the Brillouin–Wigner formalism. The model that results is very powerful, but has
probably not seen much use (since it is a bit complicated).

4. Second-order Interactions

At this point we encounter a subtle technical issue in connection with the second-order interactions (recall here Eq. (14)).
As a practical matter this technical issue involves only a minor difference in the answers we end up with later on (and
as such may be more important as a philosophical issue). It concerns a differentiation between the static and dynamic
parts of the second-order interaction, and is motivated by how we intend to use the model later on.

At issue is the origin of the phonon fluctuations under consideration here, which are to be used in the phonon–nuclear
model. For example, in general we have some freedom in the definition of the phonon mode structure mathematically,
and we know that our answers for the electron–phonon part of the problem will be the same independent of what
phonon mode basis we use as long as we include all terms to all orders in the calculation. The same is true for the more
complicated coupled phonon–nuclear–electron problem that motivates our analysis here. However, because this latter
problem is so complicated, we are not intending to include terms to all orders (fluctuations will be described only at
second order), which means that our model will definitely depend on our definition of the phonon modes.

The issue then is which definition is likely to give us the best results later on (and this is where the argument is
likely to seem more philosophical than mathematical). We know that there is a static screening effect in which the
conduction electrons screen the Coulomb interactions between the metal ions. Now, if this were all there was to the
problem, then probably we would expect no fluctuation effect. The idea is that static screening acts the same as a (static)
modification of the ion–ion interaction. Which means that we could include the effect completely just by adjusting the
phonon modes and frequencies when we analyze the phonon–nuclear problem.

The intuition then is that when we consider electron–phonon interactions, the parts of the interaction that lead
to simple static corrections to the ion-ion potential we know cannot produce the fluctuations we are interested in for
the phonon–nuclear problem. On the other hand, the interactions that could only be accounted for by an additional
dynamical degree of freedom in the problem will produce the fluctuations that we are interested in. Consequently, our
attention is focused on sorting out the static and dynamic parts of the second-order interaction. Most importantly, we
need to make sure that the phonon mode definitions include all of the static part of the second-order interaction (and
none of the dynamic part).

The program in what follows then is to identify the part of the second-order interaction which constitutes the static
part, and then to isolate it from the dynamic part of the interaction. Once this is done, we can use the dynamic part of
the interaction to model the phonon fluctuations of interest.

4.1. Static part of the second-order interaction, resonant sector

To proceed, we need to isolate the static part of the interaction. The issues are simplest in the case of the resonant
sector, so we begin our discussion focusing on this case. We consider one of the second-order interaction terms, and
write (assuming that the n0 sector is the one on resonance)
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〈
�0

∣∣∣∣Ĥn0,n0+1

[
E − Ĥn0+1,n0+1

]−1

Ĥn0+1,n0

∣∣∣∣�0

〉

→
∣∣∣∣n0

〉∑
X �=0

〈
n0

∣∣∣∣∑
j

〈�0| |P̂j |2|�X〉
2Mj

∣∣∣∣n0 + 1

〉
1

−h̄ω0 + F0 − FX〈
n0 + 1

∣∣∣∣∑
k

〈�X| |P̂k|2|�0〉
2Mj

∣∣∣∣n0

〉〈
n0

∣∣∣∣, (48)

where in the denominator h̄ω0 is the phonon energy associated with phonon exchange of the highly excited mode. The
difference between the (vibration-averaged) electronic state energies isFX−F0; for example, in the Born–Oppenheimer
approximation the eigenvalues for the electronic Hamiltonian E0({R}) and EX({R}) depend on the nuclear positions,
and here we need these to be averaged in the n0 + 1 sector.

The static part of this interaction for this term can be extracted by taking

(
1

−h̄ω0 + F0 − FX

)
static

= 1

F0 − FX
. (49)

The elimination of the phonon frequency in the second-order terms generally in the resonant sector allows us to extract
the static part of this second-order interaction.

4.2. Static part of the interaction in other sectors

In the off-resonant sectors, things are a bit more complicated, and we probably need to think about it some. The basic
issue is that the second-order interactions in general come with off-resonant denominators of the form

1

E − Ĥn′,n′
. (50)

As we consider sectors that are further and further off of resonance, the corresponding diagonal sector energy will be
increasingly different from E. The simplest approach is to retain the resonant sector definition for the off-resonant
sectors. The associated physical statement is that the screening in the off-resonant sectors is assumed at lowest order
to be the same as in the resonant sector. Such a scheme would be most consistent with the basic Born–Oppenheimer
picture, and should be effective if the system is not far off of resonance (although it is not obvious at this point, in a
subsequent paper we will find that it is difficult to push a highly excited phonon mode sufficiently off of resonance to
cause a significant reduction in screening).

Nonetheless, there is some freedom in the choice of the diagonal sector Hamiltonian off of resonance, which could
be exploited to simplify the overall calculation. The issue is that if we decide to fix the phonon mode definitions and
operators based on the resonant sector, then as we go further off of resonance there will be an increasing difference
between the on-resonance phonon mode definitions and operators and their off-resonant counterparts. Much later on (in
a following paper) we will find it to be advantageous to use these off-resonant phonon mode definitions. Consequently,
it makes sense to examine briefly here how it works for a diagonal sector Hamiltonian off of resonance. One of the
terms contributing to the second-order phonon exchange interaction in this case is
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〈
�0

∣∣∣∣Ĥn,n+1

[
E − Ĥn+1,n+1

]−1

Ĥn+1,n

∣∣∣∣�0

〉

=
∣∣∣∣n
〉∑
X �=0

〈
n

∣∣∣∣∑
j

〈�0| |P̂j |2|�X〉
2Mj

∣∣∣∣n+ 1

〉
1

−(n− n0 + 1)h̄ω0 + F0 − FX〈
n+ 1

∣∣∣∣∑
j

〈�X| |P̂j |2|�0〉
2Mj

∣∣∣∣n
〉〈
n

∣∣∣∣. (51)

The generalization of the static approximation in this case involves

1

−(n− n0 + 1)h̄ω0 + F0 − FX
→ 1

−(n− n0)h̄ω0 + F0 − FX
. (52)

In this kind of a picture the mode frequency changes off of resonance, so strictly speaking the off resonant energy will
no longer be (n− n0)h̄ω0. To account for this, we will write

(n− n0)h̄ω0 → Êoff. (53)

In the resonant sector, Êoff is zero; if we use the resonant sector static interaction off of resonance, then we would
take Êoff to be zero; if there is negligible frequency shift, then Êoff will be replaced by (n − n0)h̄ω0; and finally,
if the frequency shifts are important off of resonance then we can account for it by using a more accurate estimate
[nh̄ω(Êoff)− n0h̄ω0].

4.3. Specification of the vibrational states

Now we come back to the problem of the definition of the vibrational states. We focus first on the second-order
contribution. When we use the static approximation, or its off-resonant generalization above, we end up with equivalent
weights from the case where a phonon is created, and from the case when a phonon is destroyed. Because of this we
are able to simplify things by making use of the identity

∑
n′

∣∣∣∣n
〉〈
n

∣∣∣∣Â
∣∣∣∣n′
〉〈
n′
∣∣∣∣B̂
∣∣∣∣n
〉〈
n

∣∣∣∣ =
∣∣∣∣n
〉〈
n

∣∣∣∣ÂB̂
∣∣∣∣n
〉〈
n

∣∣∣∣ (54)

and write the diagonal sector Hamiltonian as

Ĥ
diagonal
n =

∑
j

〈�0| |P̂j |2|�0〉
2Mj

+
∑
j<k

ZjZke
2

4πε0|Rk − Rj | + E0({R})

+
∑
X �=0

⎛
⎝∑

j

〈�0| |P̂j |2|�X〉
2Mj

⎞
⎠ 1

−Êoff + F0 − FX

(∑
k

〈�X| |P̂k|2|�0〉
2Mk

)
. (55)

This is an interesting result (good for both on resonance and off-resonance), and also a useful one. If we define the
vibrational states in any sector from the eigenfunctions of this Hamiltonian, then by definition no transitions between
vibrational states occur (which is why no projection operators are needed).
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4.4. Off-diagonal sector Hamiltonians

If we follow the general line of argument from above, then in a model where we use phonon modes defined in the
resonant sector we would write

〈
�0

∣∣∣∣Ĥn,n±1

[
E − Ĥn±1,n±1

]−1

Ĥn±1,n±2

∣∣∣∣�0

〉

→
∣∣∣∣n
〉∑
X �=0

〈
n

∣∣∣∣∑
j

〈�0| |P̂j |2|�X〉
2Mj

∣∣∣∣n± 1

〉
[

1

−Êoff ∓ h̄ω̂0 + F0 − FX
− 1

F0 − FX

]
〈
n± 1

∣∣∣∣∑
k

〈�X| |P̂k|2|�0〉
2Mk

∣∣∣∣n± 2

〉〈
n± 2

∣∣∣∣ (56)

as the contribution arising from two-phonon exchange.
However, we can develop a more general result. Suppose that choose part of the Hamiltonian of Equation (55) in

the resonant sector for the construction of the reference problem against which to define phonon fluctuations (call this
Ĥ0), then in general we can develop relevant expressions for both diagonal and sector-changing interactions through

Ĥ =Ĥ0 +
∑
n

{∣∣∣∣n
〉〈
n

∣∣∣∣Ĥ (E)− Ĥ0

∣∣∣∣n
〉〈
n

∣∣∣∣ +
∣∣∣∣n
〉〈
n

∣∣∣∣Ĥ (E)− Ĥ0

∣∣∣∣n+ 2

〉〈
n+ 2

∣∣∣∣
+
∣∣∣∣n
〉〈
n

∣∣∣∣Ĥ (E)− Ĥ0

∣∣∣∣n− 2

〉〈
n− 2

∣∣∣∣
}
, (57)

where Ĥ (E) stands in the for the Hamiltonian of Eq. (55) taken at the appropriate off-resonant energy. What is
interesting about this approach is that the kinetic energy term

∑
j

〈�0| |P̂j |2|�0〉
2Mj

in the Born–Oppenheimer approximation can be defined to contain a static part and a dynamic part. The more general
definition will pick up sector-changing transitions beyond those due to second-order phonon exchange.

4.5. Discussion

At this point we have achieved a convergence of the Born–Oppenheimer line of development, and the Brillouin–Wigner
line of development. We are now in a position to develop useful specifications of the vibrational modes as we like
systematically in both resonant and off-resonant sectors. One of our goals in this work was to develop expressions that
we could use to compute phonon fluctuations to add to our phonon–nuclear model. We now have Eqs. (56) and (57) for
the associated off-diagonal sector Hamiltonians in the Born–Oppenheimer approximation. This was one of our goals
in this work.
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5. Fixed Basis Model for Phonon Modes

We have succeeded now in making the connection between the Born–Oppenheimer picture and the Brillouin–Wigner
formalism, and in constructing formulas for the specification of the vibrational modes and fluctuations. However,
because the model is so general it is inconvenient to evaluate them (without having a set of wavefunctions from a
density functional calculation). What is needed is a model something like the Bloch picture, but which is referenced to
the Born–Oppenheimer approximation.

The motivates our interest first in a fixed basis model, and then in the following section a fixed basis crystal model.
In the fixed basis model of this section, the idea is to use perturbation theory to develop an approximate version of
the Born–Oppenheimer formulation that assumes slow variations around the fixed-point reference. In this sense the
fixed-point model is an approximation to the Born–Oppenheimer picture; however, it may be better to think of it as a
fixed-point picture in the same sense as the Born–Oppenheimer picture or Bloch picture. We can develop it directly from
the Born–Oppenheimer picture, but because it is referenced to a fixed-point wavefunction, it is strictly no longer the
Born–Oppenheimer picture. An important issue for us is that phonon exchange in this fixed-point model is consistent
with Born–Oppenheimer phonon exchange (which is different from Bloch picture phonon exchange).

5.1. First-order interaction with a fixed basis

The first order of business then is to develop suitable expansions for the Born–Oppenheimer wavefunction in terms of
fixed basis states, which are made up of the Born–Oppenheimer states with nuclei fixed at their equilibrium positions

�({r}; {R}) = �({r}; {R(0)})+
∑
j

(Rj − R(0)
j ) ·

[
∇j�({r}; {R})

]
{R(0)}

+ · · · (58)

The electronic transition matrix element in the Born–Oppenheimer picture can be written in terms of fixed basis
wavefunctions as

〈�X({r}; {R})| |P̂j |2|�Y ({r}; {R})〉
=
〈
�X({r}; {R(0)})+

∑
k

(Rk − R(0)
k ) ·

[
∇k�X({r}; {R})

]
{R(0)}

+ · · ·
∣∣∣∣ |P̂j |2∣∣∣∣�Y ({r}; {R(0)})+

∑
k

(Rk − R(0)
k ) ·

[
∇k�Y ({r}; {R})

]
{R(0)}

+ · · ·
〉
. (59)

Since we are interested in matrix elements where Y �= X, the lowest-order contribution vanishes

〈�X({r}; {R(0)})| |P̂j |2|�Y ({r}; {R(0)})〉
= |P̂j |2〈�X({r}; {R(0)})|�Y ({r}; {R(0)})〉
= 0. (60)

For the first-order contributions we may write
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∑
k

(Rk − R(0)
k )|P̂j |2 · 〈∇k�X|�Y 〉0 +

∑
k

|P̂j |2(Rk − R(0)
k ) · 〈∇k�X|�Y 〉0

=
∑
k

(Rk − R(0)
k )|P̂j |2 ·

(
〈∇k�X|�Y 〉0 + 〈�X|∇k�Y 〉0

)
− 2ih̄〈�X|∇j�Y 〉0 · P̂j , (61)

where the notation 〈· · · | · · · 〉0 here means that the wavefunction and the gradient of the wavefunction involve a fixed
basis (and hence no dependence on {R}). Since the Born–Oppenheimer wavefunctions satisfy

∇j 〈�X|�Y 〉 = 〈∇j�X|�Y 〉 + 〈�X|∇j�Y 〉 = 0, (62)

we end up with

〈�X({r}; {R})| |P̂j |2|�Y ({r}; {R})〉 = −2ih̄〈�X|∇j�Y 〉0 · P̂j + · · · (63)

We can generate higher-order interactions in this way systematically; however, for what follows we will be satisfied
working with the first-order interaction.

5.2. Diagonal second-order interaction

We can make use of this result for single-phonon exchange to evaluate the lowest-order contribution to the diagonal
part of the second-order interaction

∑
X �=0

⎛
⎝∑

j

〈�0| |P̂j |2|�X〉
2Mj

⎞
⎠ 1

−Êoff + F0 − FX

(∑
k

〈�X| |P̂k|2|�0〉
2Mk

)

→ −
∑
j

∑
k

P̂j ·
⎧⎨
⎩
∑
X �=0

h̄2

MjMk

〈�0|∇j�X〉0〈�X|∇k�0〉0

−Êoff + F0 − FX

⎫⎬
⎭ · P̂k. (64)

5.3. Non-adiabatic contribution

The part of the non-adiabatic interaction that does not involve electronic excitation can be written as

∑
j

〈�0| |P̂j |2 |�0〉 − |P̂j |2
2Mj

=
∑
j

(
− ih̄

Mj

)
〈�0|∇j�0〉0 · P̂j

+
∑
j,k

(
− ih̄

2Mj

){
(Rj − R(0)

j ) · 〈∇j�0|∇k�0〉0 · P̂k + P̂j · 〈∇j�0|∇k�0〉0 · (Rk − R(0)
k )

}

+
∑
j

h̄2

2Mj

(
〈∇j�0|∇j�0〉0 − 〈�0|∇2

j �0〉
)
. (65)
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The first term on the right-hand side describes a residual single-phonon interaction, which might be connected with
current-induced phonon generation. The second term on the right-hand side will later on result in a first-order dynamical
correction to the screening. Were we to adopt a strict static Hamiltonian in the resonant sector for the definition of the
phonon modes, this term would likely not be included, but instead by thought of as a kind of two-phonon exchange term
similar to the second-order phonon exchange interaction we have considered explicitly. The interpretation of the last
term on the right-hand side is less clear; however, we might expect second-order coupling if a strong electrical current
is present that may be significant if the current is strong.

5.4. Electronic energy

We found previously that the diagonal sector Hamiltonian including the second-order interaction in the static approx-
imation could be used to define the vibrational states. With a fixed electronic basis we no longer have a convenient
specification of the dependence of the electronic energy on the nuclear positions, which motivates us here to consider
expanding it out to second order around the equilibrium positions. We may write

E0({R}) = 〈�0({r}; {R})|Ĥe + V̂eN|�0({r}; {R})〉
= E0({R(0)})+

∑
j

(Rj − R(0)
j ) · (∇jE0)0 + 1

2

∑
j,k

(Rj − R(0)
j ) · (∇j∇kE0)0 · (Rk − R(0)

k )+ · · · (66)

From the discussion above we know that

∇jE0 = 〈�0|∇j V̂eN|�0〉. (67)

We can use a similar approach for ∇j∇kE0; we begin with

E� = (Ĥe + V̂eN)�

and differentiate twice to obtain

(∇j∇kE)�+ (∇jE)(∇k�)+ (∇kE)(∇j�)+ E∇j∇k�
= (∇j∇kV̂eN)�+ (∇j V̂eN)(∇k�)+ (∇kV̂eN)(∇j�)+ (Ĥe + V̂eN)∇j∇k�. (68)

We use this to compute

∇j∇kE + (∇jE)〈�|∇k�〉 + (∇kE)〈�|∇j�〉 + E〈�|∇j∇k�〉
= 〈�|(∇j∇kV̂eN)|�〉 + 〈�|(∇j V̂eN)|∇k�〉 + 〈�|∇kV̂eN|∇j�〉 + 〈�|Ĥe + V̂eN|∇j∇k�〉. (69)

We can simplify this to obtain

∇j∇kE = 〈�|(∇j∇kV̂eN)|�〉 + 〈�|(∇j V̂eN)|∇k�〉 + 〈�|∇kV̂eN|∇j�〉
− (∇jE)〈�|∇k�〉 − (∇kE)〈�|∇j�〉. (70)

Since ∇j∇kE is real, we can write
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∇j∇kE = 〈�|(∇j∇kV̂eN)|�〉 + 〈∇k�|(∇j V̂eN)|�〉 + 〈∇j�|∇kV̂eN|�〉
− (∇jE)〈∇k�|�〉 − (∇kE)〈∇j�|�〉. (71)

These can be combined to produce

∇j∇kE = 〈�|(∇j∇kV̂eN)|�〉 + 1

2
〈�|(∇j V̂eN)|∇k�〉 + 1

2
〈�|∇kV̂eN|∇j�〉

+ 1

2
〈∇k�|(∇j V̂eN)|�〉 + 1

2
〈∇j�|∇kV̂eN|�〉. (72)

We can make use of

∇j� =
[
E(R)− Ĥe − V̂eN

]−1(
∇j [V̂eN − E(R)]

)
�,

which leads to

∇j∇kE = 〈�|(∇j∇kV̂eN)|�〉 + 1

2

〈
�

∣∣∣∣∣(∇j V̂eN)

[
E(R)− Ĥe − V̂eN

]−1

(∇k[V̂eN − E(R)])
∣∣∣∣∣�
〉

+ 1

2

〈
�

∣∣∣∣∣(∇kV̂eN)

[
E(R)− Ĥe − V̂eN

]−1

(∇j [V̂eN − E(R)])
∣∣∣∣∣�
〉

+ 1

2

〈
�

∣∣∣∣∣(∇k[V̂eN − E(R)])
[
E(R)− Ĥe − V̂eN

]−1

(∇j V̂eN)

∣∣∣∣∣�
〉

+ 1

2

〈
�

∣∣∣∣∣(∇j [V̂eN − E(R)])
[
E(R)− Ĥe − V̂eN

]−1

(∇kV̂eN)

∣∣∣∣∣�
〉
. (73)

Finally, we can expand in terms of electronic basis states to obtain

(∇j∇kE0)0 =〈�|(∇j∇kV̂eN)|�〉0 +
∑
X �=0

〈�0|(∇j V̂eN)|�X〉0〈�X|(∇kV̂eN)|�0〉0

E0 − EX

+
∑
X �=0

〈�0|(∇kV̂eN)|�X〉0〈�X|(∇j V̂eN)|�0〉0

E0 − EX
. (74)

5.5. Coulomb interaction between nuclei and equilibrium

The Coulomb interaction between the nuclei can be expanded as well; we write
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VNN({R}) =
∑
j ′<k′

Zj ′Zk′e2

4πε0|Rk′ − Rj ′ |
= VNN({R(0)})+

∑
j

(Rj − R(0)
j ) · (∇jVNN)0

+ 1

2

∑
j

∑
k

(Rj − R(0)
j ) · (∇j∇kVNN)0 · (Rk − R(0)

k )+ · · · (75)

Since the second-order contribution to the total energy in this model involves both nuclear position and momentum
variables, the equilibrium positions are determined only from forces associated with the electronic energy and nuclear
Coulomb interaction. We may write

(∇jE0)0 + (∇jVNN)0 = 0. (76)

5.6. Harmonic approximation for the diagonal sector Hamiltonian

We can expand the diagonal sector Hamiltonian (in the absence of current) to second-order to obtain

Ĥ
diagonal
n →

∑
j

|P̂j |2
2Mj

+ VNN({R(0)})+ E0({R(0)})+
∑
j

h̄2

2Mj

(
〈∇j�0|∇j�0〉0 − 〈�0|∇2

j �0〉
)

+ 1

2

∑
j

∑
k

(Rj − R(0)
j ) · (∇j∇kVNN)0 · (Rk − R(0)

k )

+ 1

2

∑
j

∑
k

(Rj − R(0)
j ) · (∇j∇kE0)0 · (Rk − R(0)

k )

+
∑
j,k

(
− ih̄

2Mj

){
(Rj − R(0)

j ) · 〈∇j�0|∇k�0〉0 · P̂k + P̂j · 〈∇j�0|∇k�0〉0 · (Rk − R(0)
k )

}

−
∑
j

∑
k

P̂j ·
⎧⎨
⎩
∑
X �=0

h̄2

MjMk

〈�0|∇j�X〉0〈�X|∇k�0〉0

−Êoff + F0 − FX

⎫⎬
⎭ · P̂k. (77)

We can simplify this by defining the classical energy at equilibrium according to

H0 = VNN({R(0)})+ E0({R(0)})+
∑
j

h̄2

2Mj

(
〈∇j�0|∇j�0〉0 − 〈�0|∇2

j �0〉
)
. (78)

We can define force constants through

Kjk = (∇j∇kVNN)0 + (∇j∇kE0)0. (79)

Further simplification can be obtained by defining a matrix associated with the inverse mass according to
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1

2
Ljk = 1

2Mj

Iδjk −
∑
X �=0

h̄2

MjMk

〈�0|∇j�X〉0〈�X|∇k�0〉0

−Êoff + F0 − FX
. (80)

The Hamiltonian in the harmonic approximation becomes

Ĥ
diagonal
n → H0 + 1

2

∑
j,k

P̂j · Ljk · P̂k + 1

2

∑
j,k

(Rj − R(0)
j ) · Kjk · (Rk − R(0)

k )

+ 1

2

∑
j,k

[
(Rj − R(0)

j ) · Jjk · P̂k + P̂j · Jkj · (Rk − R(0)
k )

]
, (81)

where

Jjk =
(

− ih̄

Mj

)
〈∇j�0|∇k�0〉0. (82)

5.7. Off-diagonal interaction

We can write for the phonon exchange contribution to the off-diagonal interaction in a similar picture

〈
�0

∣∣∣∣Ĥn,n±1

[
E − Ĥn±1,n±1

]−1

Ĥn±1,n±2

∣∣∣∣�0

〉

→ −
∑
j

∑
k

∣∣∣∣n
〉〈
n

∣∣∣∣P̂j
∣∣∣∣n± 1

〉
·
∑
X �=0

h̄2

MjMk

〈�0|∇j�X〉0〈�X|∇k�0〉0

×
[

1

−Êoff ∓ h̄ω̂0 + F0 − FX
− 1

F0 − FX

] 〈
n± 1

∣∣∣∣P̂k
∣∣∣∣n± 2

〉〈
n+ 2

∣∣∣∣. (83)

Since phonon modes can be defined for this problem, we can express the vibrational states now as

∣∣∣∣n
〉

→ |n〉�, (84)

where |n〉 is a number state of the highly excited phonon mode, and where � is made up of all the other modes. Since
we are focused only on phonon exchange with the highly excited mode we may write

〈
n

∣∣∣∣P̂j
∣∣∣∣n± 1

〉
→ 〈n|P̂j |n± 1〉. (85)

For the phonon exchange contribution to the off-diagonal sector Hamiltonian we have
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〈
�0

∣∣∣∣Ĥn,n±1

[
E − Ĥn±1,n±1

]−1

Ĥn±1,n±2

∣∣∣∣�0

〉

→ −
∑
j

∑
k

|n〉〈n|P̂j |n± 1〉 ·
∑
X �=0

h̄2

MjMk

〈�0|∇j�X〉0〈�X|∇k�0〉0

×
[

1

−Êoff ∓ h̄ω̂0 + F0 − FX
− 1

−F0 − FX

]
〈n± 1|P̂k|n± 2〉〈n+ 2|. (86)

In addition, if we work with a strict static phonon basis, then one of the terms that we encountered in the reduction
of the non-adiabatic interaction will contribute to the off-diagonal interaction. In this case, the associated interaction
will take the form

|n〉〈n|
∑
j,k

(
− ih̄

2Mj

){
(Rj − R(0)

j ) · 〈∇j�0|∇k�0〉0 · P̂k

+P̂j · 〈∇j�0|∇k�0〉0 · (Rk − R(0)
k )

}
|n± 2〉〈n± 2|. (87)

This sector-changing interaction will then be the lowest-order interaction in this kind of model.

5.8. Discussion

As mentioned above the fixed-point model developed here constitutes a picture in its own right on the same basic
footing as the Born–Oppenheimer picture and Bloch picture. It is much simpler than the Born–Oppenheimer picture,
and nearly as powerful. We have not seen much in the way of application of this model in the literature; in times past it
was occasionally mentioned in discussions about the connection between the Born–Oppenheimer approximation and
Bloch picture. This seems unfortunate as the fixed-point model looks like it could be very useful.

In any case, we have succeeded in making a connection now between the fixed-point model and the Brillouin–Wigner
formalism. This gives us basic formulas for determining the phonon modes (including the static part of the second-
order interaction), and for evaluating the off-diagonal sector Hamiltonian which determine the phonon fluctuations at
second order. In the fixed-point picture based on a strict static resonant sector definition of the phonon modes, the
lowest-order contribution to the phonon fluctuations arises from the non-adiabatic interaction; second-order phonon
exchange contributes at the next order.

6. Longitudinal Dielectric Constant from Phonon Dispersion

In the previous section we developed relations for the fixed-point picture from the Born–Oppenheimer picture. In the
special case that the fixed-point model is evaluated for a periodic lattice, we end up with an interesting picture in which
phonon exchange works the same as in the Born–Oppenheimer approximation. We can make use of this model now to
describe phonon fluctuations in our phonon–nuclear model.

However, the amount of development that has led up to this point is considerable. It would be nice if we were able
to use the formalism to compute some interesting result that has been obtained previously, in order to gain confidence
generally in the results obtained so far. To this end we consider the development of the phonon dispersion relation for
a metal crystal. This problem seems of interest because it has received so much attention previously in the literature in
the context of the Bloch picture.
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The issue that we will focus on here in particular is the establishment of a connection with the longitudinal dielectric
constant. For example, the problem of phonon dispersion in metals involves many different issues. We will oversimplify
things in our treatment here in order to focus on the longitudinal dielectric constant. When done, we will find that our
second-order formalism leads to a dielectric model consistent with the field theory version of the result good to ω2.
It makes clear how phonon exchange in a Born–Oppenheimer based model contributes to the dielectric constant; and
finally it provides an important check on the consistency of the fixed-point model against known results in the literature.

6.1. Secular equation in general

Usually the phonon modes are determined from an eigenvalue equation that comes from Newton’s laws. In this case
we may write

d

dt
(Rj − R(0)

j ) =
∑
k

LjkPk +
∑
k

Jkj · (Rk − R(0)
k ),

d

dt
Pj = −

∑
k

Kjk · (Rk − R(0)
k )−

∑
k

Jjk · Pk. (88)

The phonon frequencies can then be determined in general from

−iω
(

Rj − R(0)
j

Pj

)
=
∑
k

(
Jkj Ljk

−Kjk −Jjk

)(
Rk − R(0)

k

Pk

)
, (89)

which requires solving for all of the atomic displacements simultaneously. This result is appropriate for a general
fixed-point picture model; we have as yet not taken advantage of periodicity in the metal crystal.

6.2. Secular matrix for a monatomic crystal

Much of the relevant literature is concerned with the case of a monatomic metal crystal, where the basic formulas are
simplest. It is possible within the framework of the approach that we have taken to develop results for the secular
equation. We begin by asserting that the classical position and momentum vectors can be obtained from the real part
of the complex versions given by

Rj (t) = R(0)
j + uqe−iωteiq·R(0)j , (90)

Pj (t) = vqe−iωteiq·R(0)j . (91)

The associated mode eigenvalue equation is then

−iω
(

uq
vq

)
=
(

JT(q) L(q)
−K(q) −J(q)

)(
uq
vq

)
, (92)

where
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J(q) =
∑
k

Jjke
iq·(R(0)k −R(0)j )

, (93)

K(q) =
∑
k

Kjke
iq·(R(0)k −R(0)j )

, (94)

L(q) =
∑
k

Ljke
iq·(R(0)k −R(0)j )

. (95)

Note that these secular equations are more complicated than what is usually used in Bloch picture models. Our definition
for the transformed force constant matrix is the same as the Bloch picture version (we have the freedom to take the
reference site R(0)

j as the origin), but we require in addition J(q) and L(q)matrices which do not show up in the normal
Bloch picture model.

6.3. Transformed force matrix

We can split the K(q) matrix into two parts; one due to interactions between the nuclei; and one due to the electronic
energy

K(q) = K(N)(q)+ K(e)(q). (96)

The force constant associated with ion–ion interactions is

K(N)
jk = (1 − δj,k)

(
∇j∇k (Ze)2

4πε0|Rk − Rj |
)

R(0)j ,R(0)k

, (97)

so we may write

K(N)(q) =
∑
k

(1 − δj,k)

(
∇j∇k (Ze)2

4πε0|Rk − Rj |
)

R(0)j ,R(0)k

eiq·(R(0)k −R(0)j )
. (98)

The force constant associated with the electronic energy is

K(e)
j,k =

∑
X �=0

〈�0|(∇j V̂eN)|�X〉0〈�X|(∇kV̂eN)|�0〉0

E0 − EX
+ 〈�0|(∇kV̂eN)|�X〉0〈�X|(∇j V̂eN)|�0〉0

E0 − EX
, (99)

which leads to

K(e)(q) =
∑
k

∑
X �=0

( 〈�0|(∇j V̂eN)|�X〉0〈�X|(∇kV̂eN)|�0〉0

E0 − EX

+ 〈�0|(∇kV̂eN)|�X〉0〈�X|(∇j V̂eN)|�0〉0

E0 − EX

)
eiq·(R(0)k −R(0)j )

. (100)
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6.4. Transformed inverse mass matrix

We can similarly decompose the inverse mass matrix L(q) into two pieces; one associated with the physical inverse
mass; and one associated with the non-adiabatic second-order interaction

L(q) = L(M)(q)+ L(eN)(q). (101)

For the physical inverse mass contribution, we may write

L(M)(q) = I
M
. (102)

For the second-order contribution due to electron–phonon interactions, in the resonant sector we have

L(eN)(q) = −
∑
k

∑
X �=0

2h̄2

M2

〈�0|∇j�X〉0〈�X|∇k�0〉0

E0 − EX
eiq·(R(0)k −R(0)j )

. (103)

We recall that

〈�X|∇j�Y 〉 = −〈�X|(∇j V̂eN)|�Y 〉
EX − EY

,

so that we may write the second-order contribution to the transformed inverse mass matrix as

L(eN)(q) =
∑
k

∑
X �=0

2h̄2

M2

〈�0|(∇j V̂eN)|�X〉0〈�X|(∇kV̂eN)|�0〉0

(E0 − EX)3
eiq·(R(0)k −R(0)j )

. (104)

6.5. Transformation of the J matrix

We may write

J(q) =
∑
k

(
− ih̄
M

)
〈∇j�0|∇k�0〉0 eiq·(R(0)k −R(0)j )

=
∑
k

∑
X �=0

(
− ih̄
M

) 〈�0|(∇j V̂eN)|�X〉0〈�X|(∇kV̂eN)|�0〉0

(E0 − EX)2
eiq·(R(0)k −R(0)j )

. (105)

Now we have a complete set of definitions for the transformed matrices of the fixed-point model which can be
used for detailed calculations ( we will ultimately require further results for the electronic matrix elements in order to
evaluate numerically).
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6.6. Simplified ion model

Almost all of the literature on electron–phonon coupling makes the assumption that the core electrons follow the nucleus,
and focuses on the resulting interactions between ions and conduction electrons. We can implement this model within
the formalism above through the replacements

V̂eN → V̂ei =
∑
j,k

U(|rj − Rk|), (106)

ZjZke
2

4πε0|Rk − Rj | → Vj,k(|Rk − Rj |), (107)

where

lim|Rk−Rj |→∞Vj,k(|Rk − Rj |) = Z∗
j Z

∗
k e

2

4πε0|Rk − Rj | . (108)

However, in what follows we will pursue an even simpler version of the model in which

V̂ei → −
∑
j,k

Z∗
k e

2

4πε0|Rk − rj | (109)

and

Vj,k(|Rk − Rj |) → Z∗
j Z

∗
k e

2

4πε0|Rk − Rj | . (110)

This will reduce the complexity of the calculations to follow. It is of course well known that the electron–ion potential
is softer than a Coulomb potential, and there is no difficulty with replacing this Coulomb model with a better pseudo-
potential model anywhere in the calculations that follow.

6.7. Reduction of the transformed force constant matrix

In order to identify the longitudinal dielectric constant, it will be easiest to simply evaluate the different transformed
matrices. To this end, we can make use of the discrete Fourier transform of the normalized Coulomb potential to write

1

|R − r| = 1

V

∑
K

4π

|K|2 eiK·(R−r). (111)

The electron–ion interaction can then be written as

V̂ei = −
∑
j,k

Z∗
k e

2

ε0V

∑
K

1

|K|2 eiK·(Rk−rj ) (112)

and the gradient becomes
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∇kV̂ei = −i
∑
j

Z∗
k e

2

ε0V

∑
K

K
|K|2 e

iK·(Rk−rj ). (113)

We can use this to reduce the transformed force constant matrix

K(e)(q) → −
∑
k

∑
X �=0

∑
K

∑
K′

(
Z∗e2

ε0V

)2 KK′

|K|2|K′|2
1

E0 − EX
eiK·Rj eiK

′·Rk

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

e−iK′·rl′
∣∣∣∣∣�0

〉
eiq·(R(0)k −R(0)j )

−
∑
k

∑
X �=0

∑
K

∑
K′

(
Z∗e2

ε0V

)2 KK′

|K|2|K′|2
1

E0 − EX
eiK·RkeiK′·Rj

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

e−iK′·rl′
∣∣∣∣∣�0

〉
eiq·(R(0)k −R(0)j )

. (114)

We can take advantage of the random phase approximation; to proceed we split this into coherent and incoherent
pieces

K(e)(q) = K(e)
coh(q)+ K(e)

inc(q), (115)

where the coherent part is

K(e)
coh(q) =

∑
k

∑
X �=0

∑
K

(
Z∗e2

ε0V

)2 KK
|K|4

1

E0 − EX[
ei(q−K)·(R(0)k −R(0)j ) + ei(q+K)·(R(0)k −R(0)j )

]
〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (116)

Note that

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉

=
〈
�0

∣∣∣∣∣
∑
l

eiK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

e−iK·rl′
∣∣∣∣∣�0

〉
, (117)

so we may write
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K(e)
coh(q) =

∑
k

∑
X �=0

∑
K

2

(
Z∗e2

ε0V

)2 KK
|K|4

1

E0 − EX
ei(q−K)·(R(0)k −R(0)j )

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (118)

6.8. Reduction of the transformed inverse mass matrix

A similar computation can be done for the electron–ion part of the transformed inverse mass matrix; we may write

L(ei)(q) =
∑
k

∑
X �=0

2h̄2

M2

〈�0|(∇j V̂ei)|�X〉0〈�X|(∇kV̂ei)|�0〉0

(E0 − EX)3
eiq·(R(0)k −R(0)j )

→ −
∑
k

∑
X �=0

∑
K

∑
K′

2h̄2

M2

(
Z∗e2

ε0V

)2 KK′

|K|2|K′|2
1

(E0 − EX)3
eiK·R(0)j eiK

′·R(0)k

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

e−iK′·rl′
∣∣∣∣∣�0

〉
eiq·(R(0)k −R(0)j )

. (119)

We can divide this into coherent and incoherent parts

L(ei)(q) = L(ei)
coh(q)+ L(ei)

inc (q). (120)

The coherent part involves terms where K + K′ = 0

L(ei)
coh(q) =

∑
k

∑
X �=0

∑
K

2h̄2

M2

(
Z∗e2

ε0V

)2 KK
|K|4

1

(E0 − EX)3
ei(q−K)·(R(0)k −R(0)j )

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (121)

We assume the coherent part dominates, and that the residual incoherent part can be neglected, consistent with the
random phase approximation.

6.9. Reduction of the transformed J matrix

Due to the similarity between these different transformed matrices, we can write directly

J(q) = Jcoh(q)+ Jinc(q), (122)

where



100 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 69–104

Jcoh(q) = −
∑
k

∑
X �=0

∑
K

ih̄

M

(
Z∗e2

ε0V

)2 KK
|K|4

1

(E0 − EX)2
ei(q−K)·(R(0)k −R(0)j )

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (123)

6.10. Transformed ion-ion part of the force matrix

The transformed ion–ion part of the force matrix in this model is

K(i)(q) =
∑
k

(1 − δj,k)

(
∇j∇k (Z∗e)2

4πε0|Rk − Rj |
)

R(0)j ,R(0)k

eiq·(R(0)k −R(0)j )

=
∑
k

∑
K

(1 − δj,k)
(Z∗e)2

ε0V

KK
|K|2 ei(q−K)·(R(0)k −R(0)j )

. (124)

6.11. Connection with literature longitudinal dielectric constant

It seems useful to make a connection with the literature, which focuses on the longitudinal dielectric constant. Perhaps
the most straightforward way to do this is to make use of

Pj → − iωMj (Rj − R(0)
j ) (125)

and write the model in terms of a frequency-dependent force model

1

2

∑
j,k

P̂j · Ljk · P̂k + 1

2

∑
j,k

(Rj − R(0)
j ) · Kjk · (Rk − R(0)

k )

+ 1

2

∑
j,k

[
(Rj − R(0)

j ) · Jjk · P̂k + P̂j · Jkj · (Rk − R(0)
k )

]

→ 1

2

∑
j

|P̂j |2
2M

+ 1

2

∑
j,k

(Rj − R(0)
j ) ·

[
Kjk − iMω[Jjk + JT

jk] −M2ω2L(ei)
jk

]
· (Rk − R(0)

k ). (126)

The idea here is to view the various J and L matrices as providing dynamical corrections to the force constant matrix.
From such a perspective it would make sense to define a dynamical version of the transformed force matrix from the
coherent parts of the J(q), K(q) and L(q) transformed matrices according to

K(eff)(q, ω) →
∑
k

∑
K

{
1 − δj,k

ε0
+
[

1

ε(K, ω)
− 1

ε0

]}
(Z∗e)2

ε0V

KK
|K|2 ei(q−K)·(R(0)k −R(0)j )

, (127)

where
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1

ε(K, ω)
= 1

ε0
+
∑
X �=0

2e2

ε2
0V |K|2

[
1

E0 − EX
− h̄ω

(E0 − EX)2
− (h̄ω)2

(E0 − EX)3

]
〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (128)

This suggests that the model which we are working with involves dynamical terms which match up to second order a
more sophisticated model based on

1

ε(K, ω)
= 1

ε0
+
∑
X �=0

2e2

ε2
0V |K|2

1

h̄ω + E0 − EX

〈
�0

∣∣∣∣∣
∑
l

e−iK·rl
∣∣∣∣∣�X

〉 〈
�X

∣∣∣∣∣
∑
l′

eiK·rl′
∣∣∣∣∣�0

〉
. (129)

The static limit of this dielectric constant is consistent with Nozieres and Pines [34]. The explicit frequency dependence
of this model is similar to that appearing in the model of Ehrenreich and Cohen [35]. We might expect that if we were to
include higher-order dynamical terms that more terms in the associated geometric series would be generated, resulting
ultimately in this full dynamical longitudinal dielectric model.

6.12. Discussion

We have succeeded in this section of implementing a fixed-point picture model for the phonon dispersion relation of a
monatomic metal crystal, and we have evaluated it in the special case of a simple Coulomb interaction for the electron-
ion interaction in order to extract the associated longitudinal dielectric model. We find that the resulting dielectric model
matches the literature result from field theory up to and including second-order (ω2), which helps to verify the model,
and also to clarify how things work. For example, we can see that it is the second-order phonon-exchange interaction
in the fixed-point model that produces the ω2 term. The discussions in [36,37] may be relevant here. We note that there
was other earlier work in which the dispersion relation and the longitudinal dielectric constant have been studied within
the Born–Oppenheimer approximation [38].

7. Summary and Conclusions

In earlier work we have developed a model that describes coherent energy exchange under conditions of fractionation
between nuclei and a highly excited phonon mode. To compare with experiment, we begin with the basic theory described
in [18], we make use of the interpretation (based on coherent energy exchange between acoustic vibrations and excitation
of the lowest nuclear level in 201Hg) described in [17], and a specific model consistent with this interpretation. What
we found was a substantial disagreement between the resulting model and experimental observations.

The resulting disagreement could be due to a problem with the underlying theory, issues with our proposed interpre-
tation, or errors in the model and/or model parameters. We were motivated in this work by a concern that the problem
might be in the basic theory; in particular we had neglected phonon fluctuations due to coupling with conduction
electrons. Our interest in modeling the effect ultimately resulted in this study. The problem that we encountered is that
electron–phonon interactions in metals is usually formulated in the Bloch picture, but there are differences between
how phonon exchange works in the Bloch picture and in the Born–Oppenheimer picture. We are interested in mod-
els that involve off-resonant interactions, and the equivalence of the two pictures has been argued for on-resonance;
consequently, we are interested in phonon exchange in a Born–Oppenheimer picture to describe phonon fluctuations.
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It seemed ultimately to be simplest just to start from scratch, and follow the development of the Born–Oppenheimer
approximation in a Brillouin–Wigner formulation that is well matched to other models we have been constructing. The
Brillouin–Wigner formalism is suited to taking into account the strong first-order interaction, and otherwise separating
the phonon and electron degrees of freedom. In the end we have a model that describes the second-order coupling
of equivalent “dressed” phonons (in the Brillouin–Wigner sense) which gives rise to the fluctuations of interest in the
phonon–nuclear model.

However, in the process we have covered a lot of developmental ground, so there is reason to be concerned as to
whether the fixed-point model we are working with is free of errors. In order to test this, we decided to develop relations
that describe the phonon dispersion relation for a monatomic metal crystal, which is probably the best known relevant
problem from Bloch picture models in the literature. The longitudinal dielectric constant consistent with this model
results in the same static model as is obtained from the Bloch picture, and gives results up to second order that are in
agreement with literature results from field theory. This provides confidence in the preceding development.

We have made use of simple Coulomb potentials for the electron-ion interaction, which is appropriate for long
wavelength vibrations. For computations involving shorter wavelength phonons we would need to make use of better
electron-ion potentials. This is discussed extensively in the literature, and the modification of the formulas for this case
is straightforward. The reduction of the many-electron matrix elements into simpler models is also straightforward,
and will have to be addressed in using these results for detailed calculations.

A reviewer noted that this paper seems to lack a major punchline. In response it seems useful to spell out the
major punchlines for this paper, and for what we found subsequently when we made use of it. The first is that there
does not exist in the literature a systematic treatment of Born–Oppenheimer and related approximations adapted for
the case of a metal, which in our view is suitable for the development of a fluctuation model; the biggest contribution
of this paper then is to provide a useful foundation in a relevant language. Another significant result is the clarification
of how the longitudinal dielectric constant of a metal comes about in the lowest orders of perturbation theory in a
Born–Oppenheimer approximation. Although it is mentioned in a few works that such a result was known previously,
we have not found a clear discussion of it. Another important result which we found when we used the model described
here to develop a fluctuation model is that the results from the Born–Oppenheimer picture are very different from what
we get with a Bloch picture model. In the literature the two pictures are largely viewed as equivalent in connection with
describing phonon exchange in metals; while perhaps true for screening and for lowest-order phonon exchange, this is
certainly not the case for phonon fluctuations. And finally, we will discuss in a following publication that a fluctuation
model based on the Born–Oppenheimer picture is inappropriate above a certain size scale, so that a fluctuation model
based on the Bloch picture must be used. On the other hand, fluctuations for a nano-scale metal sample should be
treated using a Born–Oppenheimer model.
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Abstract

Excess heat in the Fleischmann–Pons experiment is thought to have a nuclear origin, yet there are no energetic particles observed
in amounts commensurate with the energy produced. This in our view is the most fundamental issue in connection with theory. In
earlier work we developed a mathematical model (the lossy spin–boson model) which shows coherent energy exchange between
two-level systems and an oscillator under conditions of fractionation. Recently, we have found an interesting physical model that
is closely connected, and which is capable of coherent energy exchange with fractionation; this model is based on a relativistic
description of composite nuclei in a lattice. In this work we present a much stronger development of the model directly from field
theory than given previously. In the lossy spin–boson model, the ability of the model to fractionate a large quantum depends on the
presence of suitable loss mechanisms; the same is true in the case of the new physical model. The new model predicts anomalies
such as excess heat without energetic nuclear radiation, 4He production, low-level gamma emission, and collimated X-ray emission
in the Karabut experiment; however, as yet we have not demonstrated agreement between theory and experiment. Last summer we
concluded (erroneously) that coupling with strong static transitions might impact the fractionation power of the model on dynamic
transitions, and the resulting model appeared to be in agreement with our interpretation of the experiment. Here we review this kind
of model more carefully, and find that no such enhancement is present. Our conclusion in the end is that the theory, model, and
interpretation are “close” to the experimental results in the case of the Karabut experiment, but some problem remains.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

Excess heat in the Fleischmann–Pons experiment [1,2] is an effect that should probably not occur, at least according
to how nuclear physics and condensed matter physics are currently understood in text books and in the literature.

∗E-mail: plh@mit.edu

© 2013 ISCMNS. All rights reserved. ISSN 2227-3123



106 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 105–142

Nevertheless, there are a sufficient number of experiments showing positive results [3,4] that we consider the effect to
be very real, and very much worth understanding theoretically. How many positive confirmation experiments will be
required in order to convince the scientific community generally to take an interest is one of the imponderable questions
in the field. The situation at this time is almost beyond comprehension, as experiments in the case of the Piantelli
group and the Swartz effort have reached the point where the possible commercialization of the associated technology
could be contemplated [and other groups (Rossi, and Defkalion) are currently claiming to have already made substantial
progress toward the commercialization of relevant technology].

The amount of excess energy produced in the Fleischmann–Pons experiment is prodigious, yet there is no commen-
surate level of chemical products observed. This observation led Fleischmann to conjecture that the origin of the energy
might be nuclear. In the case of PdD experiments, 4He has been observed in amount commensurate with the energy
produced, and correlated with energy production (the effect was first studied by Bush, Miles, and coworkers [5–8]).
Unfortunately, no similar results are available for the NiH experiments (where 3He measurements are badly needed).
Measurements of the amount of 4He produced to energy generated are consistent with the 24 MeV mass difference
between two deuterium atoms and 4He [3], but further measurements are needed to be sure.

In normal nuclear reactions, the energy produced is expressed through energetic nuclear particles. If this were
the case in the Fleischmann–Pons experiment, we would be able to study the reaction mechanism using conventional
nuclear techniques. For example, fusion between two deuterons leads to p+t and n+3He as energetic products in roughly
equal amounts; but as is well known neither channel occurs in amounts commensurate with the energy produced in
Fleischmann–Pons experiment. Since 4He is considered to be a product in the case of PdD experiments, we might
expect it to carry away some fraction of the reaction energy in a Rutherford scenario. If we consider the PdD itself to
constitute a nuclear detector, then from a theoretical calibration we conclude that it is an exquisitely sensitive detector
of fast alphas [9,10]. From data reported for simultaneous neutron and excess power production, we conclude that the
alphas are born confidently with an energy less than 20 keV [10,11], under conditions where the reaction energy is
thought to be 24 MeV. This is inconsistent with any sensible Rutherford picture reaction mechanism.

Huizenga considered the absence of 24 MeV gammas in connection with 4He as a product to be one of his three
“miracles” [12]. From our perspective Huizenga did not come close to capturing what is really significant in connection
with this “hidden product miracle;” instead of focusing on the absence of gamma emission, the real headache in
these experiments is the complete absence of any energetic nuclear emission at a level commensurate with the energy
produced. For example, if energetic electrons or gammas were present at the watt level, then it would be obvious (as a
health hazard if for no other reason); and if energetic neutrons, protons, alphas, or other low-mass nuclei were present
there would be a corresponding large penetrating neutron signal (which is not seen). We note that there have been a very
large number of theoretical mechanisms put forth over the years to account for excess energy in the Fleischmann–Pons
experiment. Since the vast majority of these are based ultimately on Rutherford picture reaction mechanisms (that is,
that the reaction energy comes out as energetic nuclear radiation in amounts commensurate with the energy produced),
we can conclude that nearly all of these theoretical proposals can be discounted as being inconsistent with experiment
(because nuclear radiation at levels commensurate with the energy produced is not seen in the PdD experiments). This
point has generally not been appreciated within the condensed matter nuclear science community, as new proposals
and models continue to be put forth which would ultimately lead to orders of magnitude more nuclear radiation than is
observed in experiment.

If the energy produced does not go into the generation of energetic nuclear radiation, then we might reasonably
ask: where does it go? For example, one can see in Schwinger’s ICCF4 paper his focus on this problem, which he
recognized as perhaps the most significant theoretical issue [13]. Preparata was of the opinion that the nuclear energy
coupled to plasmons [14] or various low energy channels [15]. The focus of our efforts for a great many years now has
centered on the possibility that the nuclear energy is coupled into vibrations.

Although this has clearly been the key theoretical issue in our view since the beginning, there is very little in the
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way of experimental measurements that shed light on how it works. The singular exception is in the case of the Letts
two-laser experiment [16,17]. In this experiment, excess heat is triggered when two weak laser beams at different
wavelengths overlap in p-polarization on the surface of a Fleischmann–Pons cathode held just below threshold for
excess heat production. The excess power produced is seen to be largest at three resonances; the lower two of which
correspond to the �-point and L-point of the optical phonon mode dispersion relation (which are points where the group
velocity for the compressional optical phonon modes go to zero). By itself, this implicates the participation of these
optical phonon modes in excess heat production. In single-laser experiments [18–23] excess heat is also triggered by
a weak laser beam; however, in this case it goes away when the laser is turned off. In the two-laser experiment, the
excess heat is observed to persists after the lasers are switched off. It has been argued [17] that this provides indirect
evidence that the nuclear energy is going into these vibrational modes to sustain them (an argument that has not been
universally accepted). In a more recent report [24], the excess heat in at least one case was seen to die off slowly after
the lasers are switched off.

Of course, once one goes down this particular road, the immediate issue that arises has to do with how a very large
MeV quantum gets split up into the large number of low-energy quanta associated with a condensed matter degree
of freedom. Up-conversion from the optical regime to the X-ray regime is known in high-harmonic generation [25],
where several thousand low-energy quanta are combined to make a more energetic X-ray quantum. However, for the
Fleischmann–Pons experiment, the conversion of a 24 MeV quantum into optical phonons near 8 THz would require a
fractionation of the large nuclear quantum into roughly 7 × 108 phonons. No mechanism is recognized in physics that
is capable of this level of fractionation. It was this problem that we expect motivated Schwinger’s early exploratory
phonon models; and the somewhat smaller number of plasmons (in the vicinity of a few million) for Preparata’s model
for multi-photon exchange [14].

In the first several years of our efforts in the field we pursued all manner of schemes, in an effort on the one hand
seeking an understanding of the lay of the theoretical landscape, and on the other hand looking for a mechanism that
could fractionate a large quantum. After a very large number of failures (most not published), we decided to focus on
the fractionation mechanism as a mathematical problem divorced from any physical scheme. To be honest, things were
sufficiently discouraging at this point in the research effort that the problem had boiled down to determining whether
fractionation was possible with any kind of model, with the expectation that it could be shown to be impossible. In this
kind of analysis, the nuclei were reduced to equivalent two-level systems, and the modes of the condensed matter system
were turned into linear and nonlinear oscillators. The models at the outset showed some weak ability to fractionate a
large quantum, but resisted efforts generally to try to make the effect stronger. Ultimately, the question came down to
what prevented the models from fractionating more effectively (since at the nuts and bolts level it seemed that it should
have been possible to do better).

We found that the issue was destructive interference. This could be seen most readily in perturbation theory, where
the problem of coherent energy exchange under conditions of fractionation was found to be equivalent to that of indirect
coupling between distant states that were degenerate. In general there are a large number of paths connecting the two
states, and to within near precision the contributions from all the different paths cancelled out. Hence, the only way to
increase the fractionation power of the models was to find a mechanism that distinguished broadly between the paths
that contributed with a positive sign from those that contributed with a negative sign. In the end, it became clear that loss
mechanisms were the most likely candidate. Sure enough, when models were constructed which were augmented with
loss (which was discussed at ICCF9 in 2002 [26]), the resulting rate of coherent energy exchange under conditions of
fractionation showed orders of magnitude increase. These results were discussed in conference proceedings; however
it took many years before a systematic exposition of the new model was published [27–33]. Although the mathematical
models focused on coherent energy exchange between sets of two-level systems and an oscillator, the basic mechanism
is sufficiently general that it would also apply in the case of two-level systems (or more level systems) coupling to an
oscillator, or to other two-level systems (or more level systems).
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However, being able to demonstrate coherent energy exchange under conditions of fractionation in a mathematical
model is not the same as having a physical model. For example, it is a straightforward calculation to determine the
parameters in the mathematical model that would allow fractionation, but it is another thing altogether to specify a
physical system in which those parameters can be obtained. We know this well, since over the course of a decade we
made several major attempts to identify the physical system in terms of energy levels and coupling mechanism. In all
cases, we met with nothing but failure when we carried out calculations with the candidate physical systems. Ultimately
we put together a computer code to carry out a systematic evaluation of the important parameters relevant to the system
including several hundred candidate transitions, pretty much including all which might conceivably be relevant; and in
less than a second the program reported back that none of them calculated out to be suitable candidates. In essence, we
could eliminate every atomic, molecular and nuclear transition that we tried as being a suitable receiver transition the
donor–receiver model of Ref. [32].

The basic problem in all cases was that the coupling was too weak to do the job. For the requirements of the
donor–receiver model to be satisfied, the strength of the coupling for a particular transition to a vibrational mode of
the lattice had to be very strong. Meanwhile, all the different coupling mechanisms that we identified, and developed
estimates for the coupling strength, resulted in coupling orders of magnitude too weak give sufficient fractionation
power. This was very discouraging.

Keep in mind that just because we were not able to make a connection with the existing experimental results with
these models, they described effects qualitatively very similar to experiment. For example, we could model excess
heat production from deuterons reacting to make 4He, with the energy going into optical phonon modes; however,
the conditions required within the model to make it work involved orders of magnitude more deuterons, and orders of
magnitude more phonon excitation, than could possible be present in the experiments. In a sense, the models worked
and predicted anomalies similar to what was seen in experiment, except that the numbers were all wrong.

We decided to calculate out a model for excitation transfer between vibrations and the lowest energy nuclear transition
from the ground state of a stable nucleus (1565 eV transition in 201Hg). The idea here was that according to the models
this should be one of the easiest anomalies to implement experimentally. For example, we could design an experiment
to demonstrate coherent energy exchange of this kind based on couplings that are understood; the presumption is that
if some additional coupling existed that we didn’t understand, it should only make the experiment work better. At the
end of this exercise, the design required very strong optical phonon excitation over square meters of surface area, but
suggested that we should be able to excite the 201Hg nuclei. Ultimately we understood that if it worked we would
expect collimated X-ray emission normal from the surface if optical phonon excitation at the �-point were used.

At this point we recognized that the effect under consideration would be consistent with collimated emission near
1.5 keV in Karabut’s high-current density glow discharge experiment [34–39] . We could use our model to analyze
Karabut’s data, and we should be able to extract information about the coupling strength directly from the experiment.
When we did so, the coupling strength that resulted was enormous. And it was immediately clear that only direct
phonon-nuclear coupling could produce such a large coupling strength.

Note that we had considered direct phonon-nuclear coupling over the years (it seems like a dozen times), and each
time we concluded that such an effect was impossible. The basic issue is that there is a clean separation of the center of
mass motion of a composite (which would be involved in the vibrations), and the internal relative degrees of freedom of
a composite (which would be involved in the internal nuclear transition) in nonrelativistic mechanics. The relativistic
problem is more complicated, but our understanding was that the separation was equally clean in the relativistic problem
(otherwise there should be sections in the text books explaining the consequences of such a coupling).

A lot of thought went into this problem (over a decade altogether, since this problem had been on the radar
screen for years prior to the connection with the Karabut experiment). There is a very strong coupling initially in the
relativistic model between the center of mass motion and internal transitions. This coupling disappears when we take
the nonrelativistic limit, but we know that it was there initially in the relativistic version of the problem. For an isolated
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composite, we know that a generalized Foldy–Wouthuysen transformation eliminates this strong first-order coupling,
which then allows us to take the nonrelativistic limit. Our interpretation of the Karabut experiment then directly points
to issues involved with the generalized Foldy–Wouthuysen transformation.

It seems useful here to summarize the resulting situation. We have mathematical models that describe coherent
energy exchange under conditions of fractionation, and these models point to the Karabut collimated X-ray experiment
as perhaps the most fundamental experiment in the field. From a comparison of the model and experiment, we are
forced to conclude that transitions are mediated by very strong direct phonon-nuclear coupling. Coupling that is
of sufficient strength is present initially in the relativistic version of the problem. But we know that a generalized
Foldy–Wouthuysen transformation eliminates this coupling (and hence the game is over). But collimated X-rays are
seen in Karabut’s experiment! You might predict the outcome if you suggest to your colleagues that the generalized
Foldy–Wouthuysen transformation breaks (this is not a good way to impress one’s physics colleagues!).

After some reflection, we realized that we have encountered a very similar situation previously. If we go back to
our mathematical model for two-level systems coupled to an oscillator, we find an analogy. In the lossless version of
the spin–boson model, we can apply a generalized Foldy–Wouthuysen transformation, which eliminates the first-order
coupling. A weak higher-order coupling remains in the rotated version of the problem, and we found that matrix elements
of this residual coupling describes coherent energy exchange in the multi-phonon version of the problem accurately
[40]. However, when the model is augmented with loss the resulting behavior of the model changes qualitatively;
the rate for coherent energy exchange is increased by many orders of magnitude. In this case the strong first-order
coupling which is normally rotated out by the Foldy–Wouthuysen transformation seems to stick around to mediate
coherent energy exchange under conditions of fractionation. Conclusions in this case that we might make based on the
Foldy–Wouthuysen rotated version of the lossless version of the problem just do not match with the results of direct
calculations in the presence of loss. It is as if the Foldy–Wouthuysen transformation “breaks.” Note that it is impossible
for a unitary transformation to “break” in that it is just a change of basis. However, it is very much possible for a change
of basis to be unhelpful in the analysis of a problem. And this seems to be the situation here.

In what follows, we consider a fundamental relativistic model for condensed matter nuclear science (see [41] for
our earlier effort), and examine the model under conditions where the generalized Foldy–Wouthuysen transformation
is unhelpful. Not long ago we were convinced that the resulting model could account for the anomalies, and that we
finally had a model relevant to experiment. For example, last year we discussed results from a version of this model,
where we found that the model seemed to be consistent quantitatively with the experimental parameters in the Karabut
experiment [42,43]. We also found a degree of consistency with gamma emission, and with rates for energy generation
and 4He production in the Letts experiment.

Unfortunately, while documenting the model of last summer, we found an error (which we explain and correct in
this work). At issue was the question of whether the presence of a large number of very strong static transitions impacts
the dynamics on a weak low-energy transition which undergoes coherent dynamics. In the model of last summer, we
concluded that there was a very strong impact. With the error corrected, the conclusion now is that there is essentially no
impact. This is important, since it means that when we analyze coherent dynamics on a single transition, we know that
all of the other transitions act as if the generalized Foldy–Wouthuysen transformation had been successful (in essence,
they are decoupled). Rather than having to re-analyze the entire system with all possible transitions each time, we can
focus only on those transitions likely to exhibit coherent dynamics.

2. Dirac Model for Interacting Protons

The issues that we must deal with in the development of our model are subtle, so it makes sense to begin with an
introductory example that focuses on a particularly simple version of the problem. As it turns out, our intuition about
the nonrelativistic limit of a relativistic problem depends critically on the Foldy–Wouthuysen transformation [44] in
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the case of Dirac particles. Even though the Foldy–Wouthuysen transformation is usually thought of as providing for
the nonrelativistic limit of the Dirac model, what it actually does is to rotate out the strong first-order coupling with the
proton momentum. This produces a transformed model in which this first-order interaction has been removed, which
then allows an easy development of the nonrelativistic approximation subsequently.

Since this example is so simple, we are able to construct the rotation explicitly; we can see clearly how things
work in every step of the computation; and we see that this coupled lattice and Dirac proton model has a mathematical
structure very closely related to the spin–boson model. Unfortunately, the analogy in this case is not quite as close as
we might like, as the negative energy states are mathematical states and not physical states in this example; however, in
the more general case to be considered later on, coupling to physical states does occur. By laying out the development
explicitly for this simple version of the model, we can see how things work, and we can understand how fundamental
the Foldy–Wouthuysen transformation is in this development.

2.1. Idealized model for a lattice made of Dirac protons

We begin with an idealized lattice model with relativistic protons described using a Dirac Hamiltonian

Ĥ =
∑
j

(
αj · cP̂j + βjMc

2
)

+
∑
j<k

V (|Rj − Rk|), (1)

where a Born–Oppenheimer approximation has been adopted for the electrons resulting in an effective proton-proton
potential. Such a model can of course be criticized since at low pressure hydrogen crystallizes into an HCP lattice of H2
molecules, and at high pressure it is expected to form more complicated lattice structures [45]; which would require a
more complicated effective proton–proton potential than are included here. We are interested here in an idealized model
in which the Dirac protons make up a simple crystal lattice, rather than a molecular solid. Nevertheless, although its
applicability to a physical system is limited, this simple model is useful to us since we can use it to study the reduction
of the relativistic model to a nonrelativistic one.

It will be convenient to rewrite the Hamiltonian in the form

Ĥ =
∑
j

{(
1 0
0 −1

)
j

Mc2 +
(

0 1
1 0

)
j

(σ · cP̂)j
}

+
∑
j<k

V (|Rj − Rk|). (2)

Doing so brings out the coupling between the large and small components, and provides us with a notation that we can
take advantage of in connection with the unitary operator for the transformation which follows.

2.2. Foldy–Wouthuysen rotation and nonrelativistic limit

As discussed above, the Foldy–Wouthuysen transformation was introduced to address the reduction of the relativistic
Dirac electron problem to obtain the nonrelativistic limit; however, from our perspective the critical issue is that it
removes a strong first-order coupling term. We make use of the Foldy–Wouthuysen transform to write

Ĥ ′ = Û†Ĥ Û =
∑
j

(
1 0
0 −1

)
j

√
(Mc2)2 + c2|P̂j |2 +

∑
j<k

V (|R̂′
j − R̂′

k|), (3)

where the unitary transformation is given explicitly by
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Û = exp
i

2

⎧⎨
⎩
∑
j

Arctan

(
(σ · cP̂)j
Mc2

)(
0 −i
i 0

)
j

⎫⎬
⎭ . (4)

The rotated position operator is

R̂′
j = Û†R̂j Û = Rj +

(
0 −i
i 0

)
j

(Mc2)2

(Mc2)2 + c2|P̂j |2
ŝj
Mc

. (5)

In the rotated version of the problem the strong first-order α · cP interaction has been eliminated.

2.3. Nonrelativistic limit and discussion

It is possible to recover the nonrelativistic limit by retaining lowest order terms in the momentum, while at the same
time eliminating the negative energy sector; this leads to

Ĥ ′ →
∑
j

(
Mc2 + |P̂j |2

2M

)
+
∑
j<k

V (|Rj − Rk|). (6)

This simple example is important because it makes explicit the arguments and steps that take us from an idealized
relativistic model to a rotated version of the model, and then to the nonrelativistic limit. It makes clear just how central
the Foldy–Wouthuysen transformation itself is in connection with the discussion. In this idealized model there is a
strong relativistic coupling between the proton momentum and internal degrees of freedom (in this case, a positive to
negative energy state transition); which is eliminated by the rotation. We see that the Foldy–Wouthuysen transformation
(and later on its generalization) provides the foundation generally upon which our intuition of how the world works
rests.

3. Lattice Model with Dirac Protons

The next step in this introductory discussion is to revisit the Foldy–Wouthuysen rotation under conditions where the
protons interact harmonically, so that the associated position and momentum variables become operators of the lattice
problem. We encounter this situation in the more general version of the problem to follow, so it is worth studying here
in the context of the simpler idealized proton model where we can construct the rotation explicitly.

3.1. Harmonic lattice with Dirac protons

For a displacement around the equilibrium position of a proton R(0)
j we write

Rj = R(0)
j + rj . (7)

With this notation the potential can be expanded in the vicinity of equilibrium

Vjk = V
(0)
jk + (rj − rk) · Kjk · (rj − rk)+ · · · (8)
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where Kjk is the associated force constant matrix. Keeping only the second order terms, we may write

Ĥ =
∑
j

(
αj · cP̂j + βjMc

2
)

+ V0 +
∑
j<k

(rj − rk) · Kjk · (rj − rk). (9)

We would expect that this model would behave very nearly like a conventional harmonic lattice model since we
recognize that the protons should act nonrelativistically in a lattice setting. However, instead of carrying out a Foldy–
Wouthuysen transformation here, we would like instead to first develop a description of the problem in terms of phonon
modes prior to the rotation.

3.2. Hamiltonian written in terms of phonon modes

To carry out the approach mentioned above, we make use of a mathematical device that allows us to develop a harmonic
lattice while keeping the Dirac proton description intact; we add and subtract nonrelativistic kinetic energy terms to
obtain

Ĥ =
∑
j

|P̂j |2
2M

+ V0 +
∑
j<k

(rj − rk) · Kjk · (rj − rk)

+
∑
j

(
αj · cP̂j + βjMc

2
)

−
∑
j

|P̂j |2
2M

. (10)

Written in this form, we see a harmonic lattice model, and the relativistic part of the Hamiltonian appears separately,
augmented with a counter term. We recast the harmonic lattice part of the problem into phonon mode operators

∑
j

|P̂j |2
2M

+
∑
j<k

(rj − rk) · Kjk · (rj − rk) =
∑
i

h̄ωi

(
â

†
i âi + 1

2

)
. (11)

In what follows we will need to make use of proton position and momentum operators written in terms of phonon mode
creation and annihilation operators; the relations will be written as

R̂j = R(0)
j +

∑
µ

dRj
daµ

(âµ + â†
µ), (12)

P̂j =
∑
µ

dPj
daµ

(
âµ − â†

µ

i

)
, (13)

where the derivatives dRj /daµ and dPj /daµ here are intended as a kind of shorthand to keep track of different terms
which make up the mode operators. With these relations we can write the model as
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Ĥ =
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+Mc2

∑
j

(
1 0
0 −1

)
j

+ V0

+
∑
j

∑
µ

(
0 1
1 0

)
j

σ j · cd P̂j
daµ

(
âµ − â†

µ

i

)
−
∑
j

|P̂j |2
2M

. (14)

We have succeeded in implementing a harmonic lattice model for the interacting protons, while retaining the strong
first-order relativistic coupling between the proton momentum (now written in terms of phonon operators) and internal
transitions between the large and small Dirac components. As a result of the mathematical device mentioned above, we
retain a counter term for the Dirac mass and kinetic energy terms. The problem is now set up so that we can examine
cleanly the implementation of a Foldy–Wouthuysen transformation.

3.3. Foldy–Wouthuysen rotation for the spin–boson problem

It probably comes as no surprise that we are able to carry out a Foldy–Wouthuysen transformation in this case as well,
since this new model can be thought of as a special case of the more general version of the model discussed above.
In fact, the unitary transformation that eliminates the linear coupling term is formally the same is in the case above,
although we write it now in terms of the phonon mode operators

Û = exp

⎧⎨
⎩ i2

∑
j

Arctan

(∑
i

1

Mc
σ j · dPj

dai
(âi + â

†
i )

)(
0 −i
i 0

)
j

⎫⎬
⎭ . (15)

The rotated Hamiltonian can be written as

Ĥ ′ = Û†Ĥ Û

=
∑
j

(
1 0
0 −1

)
j

√
(Mc2)2 + c2|P̂j |2 −

∑
j

|P̂j |2
2M

+
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)

+ V0 +
∑
j<k

(r̂′
j − r̂′

k) · Kjk · (r̂′
j − r̂′

k)−
∑
j<k

(rj − rk) · Kjk · (rj − rk), (16)

where the transformed position operators are

r̂′
j = Û†r̂j Û

= rj +
(

0 −i
i 0

)
j

(Mc2)2

(Mc2)2 + c2

∣∣∣∣∣
∑
µ

dPj
daµ

(
âµ − âµ

i

)∣∣∣∣∣
2

ŝj
Mc

. (17)

Similar to the case considered earlier, the Foldy–Wouthuysen transformation in this case has eliminated the first-order
coupling between the phonon and internal Dirac degrees of freedom. We see that the Foldy–Wouthuysen transformation
that we have used in the two different examples is essentially the same; working in the context of a lattice with phonon
modes has not impeded our ability to implement the rotation.
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3.4. Nonrelativistic limit

Taking the nonrelativistic limit now becomes straightforward; we may write

Ĥ ′ →
∑
j

(
1 0
0 −1

)
j

(Mc2)2 +
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0

+
∑
j<k

(r̂′
j − r̂′

k) · Kjk · (r̂′
j − r̂′

k)−
∑
j<k

(rj − rk) · Kjk · (rj − rk), (18)

where we recognize the residual nuclear spin interactions denoted by the second line of the rotated Hamiltonian to be
small. The kinetic energy counter term in this case has eliminated the second-order kinetic energy contribution from
the expansion of the relativistic energy; and we have dropped higher-order terms.

3.5. Discussion

There are a variety of issues to consider in this discussion, and we have made some progress in providing some
illumination with these idealized example models. We have seen that in both cases that there appears a first-order
coupling between proton momentum and internal Dirac degrees of freedom; and we recognize that the problems would
be much more difficult to solve and understand if we had to work with this first-order coupling in place. From these
examples, we view the Foldy–Wouthuysen transformation as most importantly removing this first-order coupling; the
problem that we end up with in both cases has a nearly clean separation between proton momentum and internal Dirac
degrees of freedom. We see additionally that the Foldy–Wouthuysen transformation is effective in both examples on
equal footing; when the momentum to be made up of phonon mode operators there is no fundamental difference in the
associated unitary operator, or in the rotated version of the problem.

When the interacting protons in this model are worked into a harmonic lattice description, the resulting problem is
closely related mathematically (but not so closely related physically) to the spin–boson model. As mentioned above, we
are able to make use of the Foldy–Wouthuysen transformation in the spin–boson model in the same way as done here,
which allows us to eliminate the first-order coupling (and the residual high-order coupling gives rise to known results
for coherent energy exchange when many quanta are exchanged) [40]. Also as discussed above, the spin–boson model
behaves very differently in regard to coherent energy exchange when substantial loss is present (since loss removes the
destructive interference that inhibits energy exchange) [27–31].

This motivates us to consider what the idealized Dirac proton lattice model might look like if augmented with loss.
Note that protons cannot have real occupation of the negative energy state, so there are some differences with the lossy
spin-boson problem. The idea here is to examine briefly here the situation that would result in this idealized problem
if the Foldy-Wouthusyen transformation were to become unhelpful due to the inclusion of a strong loss model.

The Hamiltonian for the lossy spin–boson model can be written as

Ĥ = h̄ω0â
†â + �E

2

∑
j

(
1 0
0 −1

)
j

+ V
∑
j

(
0 1
1 0

)
j

(â + â†)− i
h̄�̂(E)

2
. (19)

There is no problem in using a Foldy–Wouthuysen type of transformation as a mathematical operation for such a
model; and by doing so one eliminates the first-order coupling between the oscillator and two-level system, similar to
the situation above. However, the loss operator in this case is transformed as well, and the rotated version of the loss



P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 105–142 115

operator is nearly impossible to work with. We have found that for this kind of problem we are much better off simply
working with the unrotated version of the model.

As commented upon previously, the lossy spin–boson model is closely related to the lattice and Dirac proton model
discussed above, and we expect an analogous situation if the model is similarly augmented with loss. In this case we
might write

Ĥ →
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+Mc2

∑
j

(
1 0
0 −1

)
j

+ V0

+
∑
j

∑
µ

(
0 1
1 0

)
j

σ j · cdP̂j
daµ

(
âµ − â†

µ

i

)
−
∑
j

|P̂j |2
2M

− i
h̄�̂(E)

2
, (20)

then we would encounter the same difficulty. In this case, under the Foldy–Wouthuysen transformation we would be
able to write down a nonrelativistic limit for the basic model

Ĥ ′ →
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0 +

∑
j

(
1 0
0 −1

)
j

(Mc2)2

+
∑
j<k

(r̂′
j − r̂′

k) · Kjk · (r̂′
j − r̂′

k)−
∑
j<k

(rj − rk) · Kjk · (rj − rk)− i
h̄�̂′(E)

2
, (21)

However, the loss is also transformed under the Foldy–Wouthuysen transformation

�̂′(E) = Û†�̂(E)Û . (22)

Under conditions where the loss is extremely fast in accessible regimes, then the rotated version of the loss operator
becomes extremely difficult to work with; in such cases we are much better off analyzing the problem in the original
frame. Strong loss in accessible regimes can produce a modification of the phonon distribution which ruins the
entanglement between the phonon and nuclear degrees of freedom that the Foldy–Wouthuysen rotation seeks to simplify.

4. Coupling between Momentum and Internal Nuclear Degrees of Freedom

By now we have made several attempts at specifying a fundamental Hamiltonian that we might be able to use as a
starting point for modeling the new effects [46,41,42], and in each case the resulting Hamiltonian could be criticized for
one reason or another. In [46] we worked with nonrelativistic models (where the first-order coupling under discussion
is eliminated); in [41] we proposed using a many-particle Dirac Hamiltonian for nucleons, which is not covariant; and
in [42] we discussed a Dirac Hamiltonian for quarks, where such a model does not provide even a useful starting place
for nucleons, much less nuclei made up of several nucleons. This motivates us to return once again to this problem,
and to try to develop an improved foundation for the model.

4.1. The problem of the basic description

We might consider adopting as a starting point QED to describe electrons and the electromagnetic field, and QCD to
describe quarks and gluons; in this case our fundamental Hamiltonian takes the form
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Ĥ = ĤQED + ĤQCD. (23)

Surely such a starting place must be free of all such criticisms. Such a model would be appropriately relativistically
covariant; we would now have a useful starting point capable at least in principle of describing nucleons appropriately
and leading ultimately to compound nuclei.

Even so, we still recognize deficiencies. We need to make sure that our QCD Hamiltonian has photon exchange so
that interactions between nuclei and other nuclei or electrons is included. Eventually we will want to describe weak
interactions, so perhaps only a standard model Hamiltonian will do the job. On the practical side, now that we have
decided on a sufficiently general Hamiltonian, we have little hope of carrying out specific calculations, in part because
we have now enlarged our model to include pretty much everything. We inherit the headache that bound state QCD has
not yet reached the stage that it can be used routinely for nuclei with many nucleons.

In light of this, it may be time to adopt a different strategy altogether for the problem. Since the effects that we are
interested in depend only on the changes in the relativistic nuclear wavefunction when it moves (slowly), it might be
better to start over and to focus on the modification of the internal nuclear that occurs in connection with motion, and
recast the problem in terms of the associated coupling matrix elements. In this way we might better focus attention on
the part of the problem most relevant to the model, and by doing so cast the relevant coupling matrix elements into a
form that might allow for suitable approximations later on. In what follows this is the approach that we will take.

4.2. Rest frame basis states

We begin then by presuming the existence of a complete set of rest frame basis states for a compound nucleus that are
eigenfunctions of a relevant relativistic Hamiltonian

Mjc
2�j = ĤQCD�j . (24)

Sadly, we already run into a technical issue in such a proposition. These eigenfunctions include those we need that
correspond to physical states, along with a great many solutions that involve particles in negative energy states. At this
stage, formally we are going to need all of them as mathematical solutions; later we are going to have to be careful
to make sure that we end up with solutions that we can identify as being in the positive energy sector, which will
correspond to physical states.

4.3. Boosted wavefunctions in terms of a rest frame basis

Next, we consider boosted versions of the state constructed according to

�′
j (P) = exp

{
i
P
h̄

· R
}

Û(P)�j (0). (25)

The idea here is that the dependence on the center of mass coordinate R here is a pure plane wave exp {iP · R/h̄}, which
constitutes the only R-dependence in the problem. The internal nuclear wavefunction undergoes a rearrangement
relative to the rest frame in order to be consistent with relativity. Note that we are interested in stationary states in this
discussion, and in what follows; hence the exp(−iEt/h̄) terms that might appear in a space-time description is not
present.

Since QCD is Lorentz invariant, we the energy of the boosted basis state satisfies
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√
(Mjc2)2 + c2|P|2 �′

j (P) = ĤQCD�
′
j (P). (26)

Since we are working with a complete set of (mathematical) states, we can expand the boosted state in terms of the rest
frame basis

�′
j (P) = exp

{
i
P
h̄

· R
}∑

k

〈�k(0)|�′
j (P)〉�k(0). (27)

Since there is no center of mass dependence outside of the explicit plane wave dependence, it is possible to expand the
rearranged internal nuclear wavefunction in terms of rest frame basis states.

4.4. Linearization around the rest frame

For nuclei in the lattice, the coherent energy transfer effects of interest to us will occur under conditions where the
nuclei individually are moving slowly. Consequently, we would like to develop an approximate relativistic model that
will be useful in the vicinity of the rest frame. To proceed, we probably need to extract the rest frame part of ĤQCD. To
do so, we can make use (at least formally) of the rest frame basis states in order to construct a rest frame version of the
Hamiltonian

Ĥ0 =
∑
j

|�j(0)〉Mjc
2〈�j(0)|. (28)

Next, we assume that we can obtain a reasonable boosted wavefunction keeping terms only up to first order in the
rotation

�′
j (P) = exp

{
i
P
h̄

· R
}[
�j(0)+

(
∇PÛ

)
P=0

· P�j(0)+ · · ·
]
. (29)

We would expect this approximate boost to produce an approximate solution to the Schrödinger equation (26); this we
might expand as

[
Mjc

2 + |P|2
2Mj

+ · · ·
]

exp

{
i
P
h̄

· R
}[
�j(0)+

(
∇PÛ

)
P=0

· P�j(0)+ · · ·
]

=
[
Ĥ0 +

(
∇PĤQCD

)
P=0

· P̂ + · · ·
]

exp

{
i
P
h̄

· R
}[
�j(0)+ (∇PÛ)P=0 · P�j(0)+ · · ·

]
. (30)

There are some subtleties associated with such an equation. Since we needed to make use of the rest frame basis
functions to construct the rest frame Hamiltonian, probably we need to do something similar in order to construct the
gradient of the Hamiltonian. If we begin with ∇PĤQCD, then it would follow that we can develop a rest frame version
of it also by taking advantage of the rest frame basis

(
∇PĤQCD

)
P=0

=
∑
j

∑
k

|〈�j(0)〉〈�j(0)|∇PĤQCD|�k(0)〉〈�k(0)|. (31)
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We can isolate the rest frame part of the boost operator similarly. In the end, we match terms linear in P to obtain a
relation between the gradient of the unitary operator and the gradient of the Hamiltonian

(
∇PÛ

)
P=0

=
(
Mjc

2 − Ĥ0

)−1(
∇PĤQCD

)
P=0

. (32)

Note that this discussion has been focused on what happens to a single basis state, so that in this equation the operator
on the LHS is specific to �j . We could obtain a more general version of the operator by replacing the rest frame mass
Mj with the rest frame mass matrix.

4.5. Reduction to matrix form

Our discussion so far has been pretty general, but now we need to attend to the problem of developing a model that
we can use in the context of a lattice Hamiltonian. In essence, the point of the development above was to achieve a
separation between the center of mass dynamics and the internal dynamics in a way that will be useful in what follows.
The linearized Hamiltonian is now expressed completely in terms of rest frame basis states and the center of mass
momentum operator. It will be convenient to write this as

Ĥ0 +
(

∇PĤQCD

)
P=0

· P̂ + · · ·

=
∑
j

|�j(0)〉Mjc
2〈�j(0)| +

∑
j,k

|�j(0)〉〈�j(0)|∇PĤQCD · P̂|�k(0)〉〈�k(0)| + · · · (33)

It will be convenient to define the vector ajk according to

ajk = 1

c
〈�j(0)|∇PĤQCD|�k(0)〉. (34)

This allows us to recast the Hamiltonian as

Ĥ0 +
(

∇PĤQCD

)
P=0

· P̂ + · · · =
∑
j

|�j(0)〉Mjc
2〈�j(0)| +

∑
j,k

|�j(0)〉ajk · cP̂〈�k(0)| + · · · (35)

Since we have made use of the rest frame basis in the construction of the rest frame Hamiltonian, as well as for
isolating the linear part, we can make use of a basis expansion in terms of rest frame states to construct a solution

� = exp

{
i
P
h̄

· R
}∑

j

cj�j (0). (36)

The expansion coefficients satisfy a matrix version of the Schrödinger equation

ih̄
∂

∂t
c(t) = H · c(t) (37)

with
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H = Mc2 + a · cP̂ + · · · (38)

Note that there are an infinite number of rest frame basis states, so these matrices are correspondingly infinitely large.
It may be that a reasonable approximation can be developed in principle with a finite number of basis states; adopting
a matrix form is convenient for such a finite basis approximation.

4.6. Quadratic relation

We can square the matrix version of the Hamiltonian operator to write

Ĥ2 = (Mc2)2 + (Mc2)(a · cP̂)+ (a · cP̂)(Mc2)+ (a · cP̂)2 + · · · (39)

Since the square of the total energy has no linear dependence on momentum, it follows that

(Mc2)(a · cP̂)+ (a · cP̂)(Mc2) = 0. (40)

Since the square of the energy depends on the square of the momentum with no higher order terms appearing, if follows
that

Ĥ = Mc2 + a · cP̂ (41)

with no higher-order terms (the · · · above must be zero). In addition, the a-matrix must satisfy

(a · cP̂)2 = c2|P̂|2. (42)

4.7. Dirac-like formalism for composite nuclei

In essence, the argument here is that if we work with the rest frame basis states, the the form of the associated matrix
Hamiltonian must be analogous to the free-space Dirac Hamiltonian

Mc2 + a · (cP̂) ↔ βMc2 + α · (cP̂). (43)

The Dirac matrices are very simple, and the mass matrix for the composite nucleus using the rest frame basis is diagonal.
The a-matrix for the composite nucleus will be enormously complicated; fortunately we will need only a small number
of matrix elements in working with the model that results.

4.8. Discussion

When we began these studies our focus was on many-nucleon Dirac models primarily because such models were the
simplest one that were likely to contain the effects we sought [and these models resulted in a free composite Hamiltonian
of the form Mc2 + a · (cP̂)]. Now that we have some experience working with these earlier models, the path forward
to generalize the approach to more sophisticated models seems clearer.

In all cases the basic issue is that a rest frame state is modified according to relativity when boosted, although
how this works is different in a Dirac model versus a Lorentz covariant model such as QCD. Now we have a better
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formulation that can be used systematically for either approach, and we are able to have a consistent formulation that
can be used with a covariant field theory.

There remain issues that are worth some additional thought. In view of the discussion of the previous section, we
understand that the complete set of basis states includes positive energy states, as well as states in other sectors where
some components involve negative energy states. This is a necessary feature of the formulation (as it was in the previous
section) since in general the construction of a positive energy boosted wavefunction will require pieces that are from
sectors with negative energy components in the rest frame.

5. Lattice Model with Internal Nuclear Degrees of Freedom

We now have a starting place for a general description of nuclei embedded in a lattice that takes into account changes in
the internal nuclear wavefunction due to relativity when it moves. In the event that we make use of a Born–Oppenheimer
approximation, we end up with a model that describes the interaction between interacting nuclei, including the coupling
between the nuclear momentum and internal degrees of freedom. The resulting problem constitutes the generalization
of the Dirac proton lattice model of Section 3, and the issues that arise are analogous. In this section we consider the
model itself, the use of a generalized Foldy–Wouthuysen transformation for the elimination of the first-order coupling,
the nonrelativistic limit of the model, and the possibility that regimes exist where the Foldy–Wouthuysen transformation
is not useful.

5.1. A model for nuclei in the lattice

We make use of the matrix Hamiltonian of the previous section to construct a many-nucleon Hamiltonian that interact
through effective potentials that arise from a Born–Oppenheimer treatment of the electrons

Ĥ =
∑
j

(
Mc2 + a · cP̂

)
j

+
∑
j<k

V (|Rj − Rk|). (44)

This model constitutes a direct generalization of the idealized model of Section 2. Once again we have adopted a simple
effective potential for interactions between nuclei which is easily generalized to more complicated models which better
describe physical systems.

Although this model is of the same form as earlier coupled lattice and nuclear models that we have put forth
previously [41,42], this one is different. The basis states that provide the foundation for the construction of the matrices
are now eigenstates of the rest frame QCD problem. We recognize now that the dominant coupling of the a · cP
interaction is with states that have explicit negative energy components, generalizing the situation encounter with the
Dirac phenomenology of Section 2. Although our discussion of the previous section focused on a QCD description for
the nuclei, we might have used any other covariant model with similar results.

5.2. Generalized Foldy–Wouthuysen transformation

As was the case with the Dirac proton model, we see in this model a first-order coupling between the center of mass
momentum of the nuclei and their internal degrees of freedom. And as before we are able to carry out a rotation that
eliminates this first-order coupling which leads to

Ĥ ′ = Û†Ĥ Û =
∑
j

⎛
⎝Mc2

√
1 + c2|P̂|2

(Mc2)2

⎞
⎠
j

+
∑
j<k

V̂ ′
jk, (45)
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where

V̂ ′
jk = Û†V (|Rj − Rk|)Û . (46)

We recognize the rotation that accomplished this as a generalized Foldy–Wouthuysen transformation; one which
diagonalizes in this case very large matrices, rather than simple two by two matrices of Section 2. The specific
unitary operator Û that does this is very complicated, and can be obtained formally from rest frame matrix elements of
the boost operator of the previous section. We note that generalizations of the Foldy–Wouthuysen rotation beyond the
single Dirac particle have been discussed in the literature (e.g., see [47], [48,49]).

5.3. Discussion and nonrelativistic limit

In the original Hamiltonian of equation (44) we see a strong first-order a · cP coupling between the two degrees of
freedom that produces mixing between the different degrees of freedom. Note that the generalized Foldy–Wouthuysen
transformation has removed the first-order coupling between the momentum and internal nuclear transitions in the rotated
version of the problem. In the transformed Hamiltonian, the two degrees of freedom are very nearly independent. We
might think of the original Hamiltonian as describing the “physical” system, and the rotated Hamiltonian as describing
a “dressed” version of the system. The “dressed” system is free of the strong coupling between the composite motion
and internal degrees of freedom; it is this situation upon which our intuition about how the world works in solid state
physics (that the nuclei effective don’t notice lattice vibrations).

From this perspective, the situation that occurs when the generalized Foldy–Wouthuysen transform becomes inap-
propriate perhaps makes more sense. In both regimes there occurs strong mixing between the nuclear and vibrational
system; we have grown so used to the conventional regime where the generalized Foldy–Wouthuysen transform works
that the “dressed” version of the system looks like reality to us; consequently we are amazed when we see a regime
where the generalized Foldy–Wouthuysen transform doesn’t work and the mixing between the two degrees of freedom
lead to anomalies.

As was the case previously, when the generalized Foldy–Wouthuysen transformation can be used we are able to
develop the nonrelativistic approximation

Ĥ ′ →
∑
j

(
Mc2 + |P̂|2

2M

)
j

+
∑
j<k

V̂ ′
jk. (47)

6. Composite Nuclei in a Harmonic Lattice

At this point we have assembled a foundation sufficient to allow us to take the next step, which is to consider composite
nuclei interacting in a harmonic lattice. This problem is closely related to the idealized model for Dirac protons in a
harmonic lattice considered above; hence, from the discussion above we anticipate that a generalized Foldy–Wouthuysen
transformation will be able to eliminate the first-order coupling between the composite center of mass momentum and
internal degrees of freedom. On the other hand, we also know that the problem is also closely related to the lossy spin–
boson model mentioned above and described in earlier works; consequently, we expect that under some conditions a
Foldy–Wouthuysen transformation will be unhelpful.

6.1. Composite nuclei in a harmonic lattice

Composite nuclei in a harmonic lattice (again within a Born–Oppenheimer approximation) are described then by a
Hamiltonian of the form
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Ĥ =
∑
j

(
Mc2 + a · cP̂

)
j

+ V0 +
∑
j<k

(rj − rk) · Kjk · (rj − rk). (48)

We would like to work with lattice position and momentum operators as for the Dirac proton version of the problem.
For this, we make use of the same mathematical device of adding and subtracting nonrelativistic kinetic energy terms
to obtain

Ĥ =
∑
j

|P̂j |2
2Mj

+ V0 +
∑
j<k

(rj − rk) · Kjk · (rj − rk)

+
∑
j

(
Mc2 + a · cP̂

)
j

−
∑
j

|P̂j |2
2Mj

, (49)

where we adopt ground state nuclear masses for the nonrelativistic kinetic energy terms. As before, the associated
harmonic lattice problem is recast in terms of phonon mode operators

∑
j

|P̂j |2
2Mj

+
∑
j<k

(rj − rk) · Kjk · (rj − rk) →
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
. (50)

We may write for the coupled harmonic lattice and nuclei problem the Hamiltonian

Ĥ =
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0 +

∑
j

(
Mc2 + a · cP̂

)
j

−
∑
j

|P̂j |2
2Mj

. (51)

6.2. Generalized Foldy–Wouthuysen transformation

In a conventional regime (where strong loss terms are absent) we can carry out a generalized Foldy–Wouthuysen
transformation for this Hamiltonian leading to

Ĥ ′ =
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0 +

∑
j

⎛
⎝Mc2

√
1 + c2|P̂|2

(Mc2)2

⎞
⎠
j

−
∑
j

|P̂j |2
2Mj

+
∑
j<k

�V̂ ′
jk, (52)

where

�V̂ ′
jk =

[
(r′
j − r′

k) · Kjk · (r′
j − r′

k)

]
−
[
(rj − rk) · Kjk · (rj − rk)

]
. (53)

In this case we worked with quantized vibrations and an appropriate relativistic nuclear model, and once again we have
removed the strong first-order coupling between the vibrational and internal nuclear degrees of freedom. We recognize
that we must add to this the constraint that we want to take the positive energy sector states to correspond to physical
nuclei; and we would like further to match the nuclear state mass to the mass used in the kinetic energy terms used for
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the construction of the phonon mode. In the resulting “dressed” version of the problem, we recognize that the system
is very nearly decoupled, and we would not expect to see anomalies.

We are able to develop a nonrelativistic model from this rotated Hamiltonian; we may write

Ĥ ′ →
∑
j

Mjc
2 +

∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0, (54)

where we have eliminated higher-order terms, and further assumed (positive energy) ground state occupation of the
dressed composite nuclear states.

6.3. Loss mechanisms

As discussed above, we know that in the presence of strong loss the lossy spin–boson model predicts efficient coherent
energy exchange under conditions of fractionation, which is qualitatively different from what we see in the normal spin–
boson model. Because of the close connection between the lossy spin–boson model, and the models under discussion
here, we anticipate a similar difference for composite nuclei in a harmonic lattice when loss is present.

The issue relevant here then is what loss mechanisms should be considered in this context. Usually when loss is
considered in the context of a simple harmonic oscillator, the discussion is focused on dissipation effects that provide
“friction;” which is the most important loss in many applications. Here, the issue is more subtle. For example, such
friction losses are hardly going to impact the utility of a generalized Foldy–Wouthuysen transformation. What would
make a real difference is a massive loss of state occupation for states critical to the separation of degrees of freedom
accomplished by the Foldy–Wouthuysen transformation.

In general we would not expect a significant impact on this state occupation for a thermal lattice, or even for localized
excitations. The situation is different in the event that a single mode is very highly excited. For the spin–boson case
the Hamiltonian provides coupling which results in massive coupling between the different unrotated states. All of this
coupling is of course sorted out under the Foldy–Wouthuysen transformation. However, if fast loss channels are present
then the situation changes drastically. Many of the states coupled to in the unrotated spin–boson model are basis states
driven very far off of resonance, which have much less energy than the system has (as measured by the eigenvalue of the
overall state under consideration). Such states might be considered to have an energy surplus, and the decay rate can
become greatly enhanced on account of this energy surplus. Basis states at higher energy suffer an energy deficit, so the
associated decay rate is reduced. This describes the mechanism responsible for removing destructive interference in the
lossy spin–boson model, which leads to a large increase in coherent energy exchange under conditions of fractionation.

In a metal, phonon loss to electron promotion would be expected to be the dominant energy loss mechanism for
the coupled phonon–nuclear system. A highly-excited vibrational mode will similarly lose energy rapidly if a strong
vibrational nonlinearity is present. These are the most important loss mechanisms under consideration in this discussion.

6.4. Lossy coupled lattice–nuclear model

In light of this discussion, we might augment the model with these loss channels and write

Ĥ =
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0 +

∑
j

(
Mc2 + a · cP̂

)
j

−
∑
j

|P̂|2
2M

− i
h̄�̂(E)

2
. (55)

We have used such a notation in previous work to denote the augmentation of similar models with loss. We recognized
the operator �̂(E) as a loss operator in an infinite-order Brillouin–Wigner formalism [27,50]. In such a formalism



124 P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 12 (2013) 105–142

one works with a Hermitian model, and then divides the state space into sectors. If we focus on a single sector, then
interactions which couple from one sector to another appear not to be Hermitian with respect to that sector. If the
associated loss produces an exponential decay of the sector probability, then such a description is very useful since one
can carry out an approximate evaluation of the decay rate within the formalism to obtain the Golden Rule estimate.
Consequently, we recognize this Hamiltonian as describing a relevant sector of interest, with the loss operator keeping
track of the associated decay mechanisms (such as those described above).

Note that it is straightforward to write down relevant Hermitian models. For example, in the case of anharmonic
coupling and atomic ejection, we could add atomic continuum states explicitly and describe the associated nonlinear
coupling. Some nuclear excitation (and disintegration) in principle is already described since we have the a ·cP coupling
present. Coupling to electrons could be modeled using an appropriate electron Hamiltonian and adding electron-phonon
interaction terms.

6.5. Discussion

As discussed above, when accessible fast loss channels are available that are sufficiently strong to impact the state
occupation, then the generalized Foldy–Wouthuysen transformation becomes inappropriate. We are still able to carry
out the rotation mathematically, but the implementation of the loss operator becomes problematic, and the resulting
picture is not useful. In this case we need to work with unrotated problem with its strong first-order coupling and strong
loss directly. In this regime the strong first-order coupling between vibrational and internal nuclear degrees of freedom
(which is normally hidden from us because we are used to the rotated frame where it is eliminated) has the potential to
produce anomalies observed in experiments.

Previously we would have considered the model of Eq. (55) to constitute the basic model that describes anomalies
in condensed matter nuclear science. By now we know that this model is at the same time successful and unsuccessful.
The model is known to be successful in that it describes new effects such as collimated X-rays in the Karabut experiment;
excess heat generation and nonenergetic 4He production in the Fleischmann–Pons experiment; it resolves Huizenga’s
three miracles; it sheds light on the origin of low-level gamma emission in the Gozzi experiment [51] and in Piantelli’s
experiment [52]; and it provides a basis to understand some transmutation effects. Sadly, the model is unsuccessful
in that the conditions where these effects are predicted in the analysis done so far do not match with those of the
experiments.

In a sense, we are close. But something is still missing from the model (and our effort to remedy this will be dealt
with in following publications).

7. Lattice-induced Nuclear Excitation

As we have seen from many years of developing and analyzing models, models for excess heat production within
the approach we have pursued are complicated (in that there are donor transitions and receiver transitions); there
are uncertainties (we do not know from experiment in general which transitions operate as receiver transitions in the
model); and in the end it is hard to be certain that the model is correct (due to the absence of relevant observables in
the experiments). Much better would be a simpler effect with only one set of transitions, and even better if there was a
clean diagnostic to tell from experiment what is going on in more detail.

In light of these difficulties, in recent years our focus has shifted to Karabut’s collimated X-rays. These we have
interpreted as due to direct excitation of the 1565 eV transition in a small number of 201Hg impurities on the cathode
surface. If this interpretation is correct, then the situation is very different. Instead of two transitions (donor and
receiver), only one would be involved here (very much reducing the model). For completeness, we note that there is
also the possibility of a donor and receiver scheme leading to excitation of the 201Hg, a possibility that will be considered
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in a subsequent paper. Although the identity of the transition has not been confirmed experimentally, it seems likely
since it is the only nuclear transition from the ground state of a stable nucleus anywhere close to the energy observed in
experiment. And finally if the 1565 eV 201Hg transition is excited, we would expect electron emission, X-ray emission,
and most importantly collimated X-ray emission if phase coherence is established.

7.1. Previous work

The problem of coherent energy exchange between a highly-excited oscillator and two-level systems in the lossy spin–
boson model was considered as a mathematical problem in [27,29–31]. As a result, we might consider this to be a
known problem that has been analyzed and solved within the framework of the lossy spin–boson model. However, as
mentioned above there is a difference between the (toy) mathematical model (of the lossy spin–boson model), and a
physical model (such as that of composite nuclei in a harmonic lattice as discussed above). While the mathematical
model clarifies how the physical mechanism works, we expect a physical model to predict the physical conditions under
which the effect should be observed.

The situation at present is then that we have relevant mathematical models based on the lossy spin–boson model
that we can solve, and which give results which seem to be connected to experiment. By now we also have experience
with a number of physical models, all of which we can analyze with sufficient accuracy to ascertain whether they agree
with experiment or not. For models based on electron–nuclear coupling as a basis for phonon–nuclear interaction, there
are orders of magnitude between the predictions and experiment. In the case of a donor and receiver model based on
electron–electron coupling for fractionation, there are again orders of magnitude difference (but fewer) between the
model and experiment.

Now that we have a much improved model for phonon–nuclear coupling as described by Eq. (55), which is based
on a much stronger coupling between vibrations and the internal nuclear degrees of freedom, of interest is whether this
model agrees with experiment. Sadly, our initial efforts at predicting the Karabut experiment with this model showed
some deficiency remained, either in the fundamental theory, or else in the particular model examined for the Karabut
experiment. Although collimated X-ray emission is predicted, the fractionation power in this model seems to be short
of what the experiment seems to be doing by at least two orders of magnitude. While far superior to earlier models (in
that the numbers are now very much closer), some problem remains.

During the summer of last year, we had a brainstorm as to how this problem might be resolved. The idea was that
perhaps the transitions that are coupled to most strongly would produce additional phonon fluctuations which might
make up the difference. Under the gun before the ICCF17 we analyzed a model of this kind, and found (errantly) that
these additional fluctuations could provide an enhancement to the fractionation power, resulting in general agreement
between our proposed model for the Karabut experiment and our interpretation of the experimental conditions. For a
while things were very exciting, since we were able for the first time to work with a physical model that seemed to give
good results for the Karabut experiment [42], and at the same time could make sense of excess heat experiments, and
also gamma emission [43]. After the conference while writing up the model, we found the error. We now know that
this approach that we had tried doesn’t work.

In what follows in this section, we consider the basic arguments of last summer’s model more carefully. At issue
here is the question of what happens in the case of a relatively weak low-energy transitions when a great many much
stronger (and lossy) high-energy transitions are present. The issue is relevant generally if we are to make use of this
kind of model, and since the models are new we have little intuition a priori. The result of the analysis is that we
would expect essentially no contribution from all of these much stronger lossy transitions. This resolves the issues
raised last summer; sadly, this also takes away the good agreement between the new theory and Karabut model, and
experiment, that had for a few months been elating. Even so, there is good news in the result, and that is that even when
we can’t use Foldy–Woutuysen transformation, the result that we obtain for all transitions not involved in the coherent
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dynamics is the same as if we had been able to use the transformation. This means that we are free to focus on those
transitions involved in phonon-nuclear coherent dynamics, which simplifies what we need to do when analyzing the
model considerably.

However, in spite of all that is good about it, the new theory and our particular Karabut model is still not in
agreement with our interpretation of the experiment. This will motivate us to re-examine the theory, the model, and the
interpretation of the experiment, in following works.

7.2. The model

We are interested then in a model for lattice-induced nuclear excitation relevant to collimated X-ray emission in the
Karabut experiment. Our starting place for this analysis will be the fundamental phonon–nuclear Hamiltonian developed
in the last section

Ĥ =
∑
µ

h̄ωµ

(
â†
µâµ + 1

2

)
+ V0 +

∑
j

(
Mc2 + a · cP̂

)
j

−
∑
j

|P̂|2
2M

− i
h̄�̂(E)

2
.

Here, all the phonon modes and all transitions in all nuclei are accounted for. Our job in what follows will be to bring
out the dynamics associated with the highly excited phonon mode and preferred nuclear transition.

7.3. The coupled lattice-nuclear problem

We assume that the sufficiently fast decay channels restrict us from using a generalized Foldy–Wouthuysen transfor-
mation, in which case we need to pursue solutions for the coupled lattice and nuclear problem. The strongest coupling
occurs with basis states that have negative energy components, and also with internal nucleon degrees of freedom
(isobars). Consequently, we would like to deal with the coupling with these degrees of freedom first.

In previous work we proposed to make up separate Mc2 and a · cP terms for the preferred transitions, and for all
other transitions. Such an approach has the advantage that it is conceptually easy to explain and to work with; but it
has the disadvantage that it doesn’t provide such a good match to the physical system. Here we will use a different
approach where we work with the Hamiltonian as given rather than splitting it up. Instead here we split up the transition
matrix into separate parts

(
a · cP̂

)
j

=
(

a · cP̂
)
j

+
(

apreferred · cP̂
)
j

, (56)

where the preferred transition is separated from all others. The idea is that we are interested in describing coherent
dynamics on the preferred transition, while conditions on the other transitions are more nearly static. If we wish to be
precise, we should also extract the contribution of this transition from the counter term, and write

∑
j

|P̂j |2
2Mj

=
∑
j

|P̂j |2
2Mj

+
⎛
⎝∑

j

|P̂j |2
2Mj

⎞
⎠

preferred

. (57)

In practice the contribution of the preferred transition to the counter term is trivially small (e.g., in the case of nonlinear
Rabi oscillations), so that we might reasonably make use of the full kinetic energy counter term for the rest of the
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problem. Also, from previous work we know that the counter term plays very little role under conditions where
coherent dynamics occurs, so that it could be neglected away from threshold.

In light of these comments we seek eigenfunctions and eigenvalues of the coupled lattice and nuclear problem (in
the absence of the preferred transition) given by

Eϒ =
⎧⎨
⎩
∑
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h̄ωµ
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â†
µâµ + 1

2

)
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∑
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j

−
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|P̂|2
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h̄�̂(E)

2

⎫⎬
⎭ϒ. (58)

The eigenfunctions that result from this calculation are very close to the states of the transformed system (but expressed
in the unrotated frame) were we able to make use of the Foldy–Wouthuysen transformation. If there were no preferred
transition and we used the full transition matrix a (instead of the reduced a), and if loss could be neglected, then the
eigenfunctions are the same (to within a unitary transformation) as the states of the separated problem following the
Foldy–Wouthuysen transformation. In the unconventional regime where the Foldy–Wouthuysen transformation is not
helpful, this calculation takes its place in the description of most of the coupled system.

We have recently studied a similar model in which a highly excited mode is coupled to N -level transitions initially
in the ground state, with highly unstable excited states [50]. Our present model is different in that there are many
states at lower energy that involve negative energy components. However, since these cannot have real occupation,
the extension of the model to such states involves no modifications that will end up producing a different answer in
interactions with the highly excited mode. We found that approximate product solutions gave results very similar to
exact numerical solutions for a highly excited oscillator as long as the coupling is strong.

Interactions with unexcited modes or thermal modes produces mixing which matches the contribution to the counter
term to second order exactly on a mode by mode basis. The detailed analysis of this problem would require a minor
modification of the approach used in [50] to adapt it to low n, but essentially the same product state approximation
would be effective.

7.4. Finite basis expansion for the low-energy dynamic transition

Next we focus on the coupling between the preferred low-energy nuclear transition and the highly excited mode. In
previous work we found that we could develop good estimates for the rate of coherent energy exchange by working
with a finite basis expansion for product states of the oscillator number states and two-level system Dicke states.
Unfortunately in this problem the oscillator is now strongly-coupled to the internal nuclear transitions, and this needs
to be taken into account in our analysis.

In view of these comments, we adopt a global solution of the form

� =
∑
j

cjϒj , (59)

where the coupled nuclear and lattice states ϒj includes excitations of the lattice, the preferred transition, as well as
all other states. In general these states are too complicated to work with, so we need to simplify things to proceed.
Since our focus is on the dynamics of the the preferred transition, and on energy exchange with the highly excited
phonon mode, it seems sensible to bring out the associated indices of these systems and suppress those not immediately
involved. To accomplish this we adopt the notation

ϒj → ϒm,n, (60)
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wheren is essentially the number of oscillator quanta in the highly excited mode, and wherem is a Dicke index associated
with the Dicke states |S,m〉 of the two-level system. It may not be obvious that such a notation is appropriate, given
that we are dealing with a system that involves substantial coupling between the vibrational and nuclear degrees of
freedom. These states are complicated, so we might expect that more is needed to describe them.

However, we recall that the coupled vibrational and nuclear system we are dealing with would be described by
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if we could make use of the Foldy–Wouthuysen transformation. In the unconventional regime we cannot make use of
the transformation, but nonetheless the coupled lattice and nuclear states are, for the most part, not very different from
what we would compute in the conventional regime. Since there is no difficulty with the assignment of n or m for the
conventional regime, it should probably not be surprised that the same indices are appropriate in the unconventional
regime.

It will be useful to take another step along these lines. In the conventional regime we would have no difficulty in
using a product wavefunction for the highly excited mode and Dicke system

ϒm,n → ϒ |n〉|S,m〉. (62)

For the unconventional regime we can reasonably separate out the Dicke system, but for now we will keep the background
coupled vibrational and nuclear states together keeping in mind the mixing; in this case we write

ϒm,n → ϒn|S,m〉 (conventional). (63)

In the end our finite basis expansion is of the form

� =
∑
m

∑
n

cm,nϒn|S,m〉. (64)

7.5. Resonant versus off-resonant states

Before continuing there remains on last issue to address; this involves whether the basis states are resonant (real) or
off-resonant (virtual) states. It is this issue which led to problems in our earlier analysis of lattice-induced nuclear
excitation in Refs. [42,43], so we are motivated to focus some attention on the issue here.

The case of real states probably corresponds best to our intuition, so this would be the place to start. The issue here
is that the energy we would use to evaluate the loss operator would be the same as the energy eigenvalue; we might
denote this situation as
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Alternatively, we might be interested in the computation of the coupled lattice and nuclear states in the off-resonant
case. For example, in a finite basis calculation we might have basis states of the coupled lattice and nuclear problem
for which the part of the system energy available is very different than the basis state energy. In this case, we might
indicate this as
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These two problems are very different, especially since the unconventional regime is one where the loss is presumed
to be extremely fast for some of the accessible states. As we are using state exclusion as a way to take into account the
very fast loss, a different set of states would be excluded in the two calculations. We need to make sure that the correct
ones are used in for the computations that follow.

7.6. Eigenvalue equation for the expansion coefficients

We can take our finite basis expansion and insert into the model to obtain an eigenvalue equation for the expansion
coefficients; this produces

Ecm,n =Em,ncm,n
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〈ϒm,n|â|ϒm+1,n+�n1〉cm+1,n+�n1

+ i

(
a0 · cdP̂

da

)√
(S −m)(S +m+ 1)

∑
�n1
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As in our previous work, we implement loss through the removal of highly unstable states. The idea is that when the
associated decay rate of a state is fast in a sector Hamiltonian, faster than can be replenished by transitions to that state,
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then the occupation of the state is reduced. We have found in previous work that only minor differences in the coherent
energy exchange rate occur between models with accurate loss models and those where the unstable states are removed.

7.7. Approximate eigenvalue equation

It will be convenient to take the limit where S is large, but where |m| is not close to S; in this case we approximate

√
(S −m)(S +m+ 1) →

√
S2 −m2,

√
(S +m)(S −m+ 1) →

√
S2 −m2. (68)

Under conventional conditions where the Foldy–Wouthuysen transformation can be used, we can write for the phonon
exchange matrix elements

〈ϒm,n|â|ϒm±1,n+�n1〉 → √
n0 δ�n1,1 (conventional),

〈ϒm,n|â†|ϒm±1,n+�n1〉 → √
n0 δ�n1,−1 (conventional), (69)

where we have assumed that the oscillator is highly excited, so thatn0 is very large, andn is nearn0. In the unconventional
regime this remains the case for the majority of the n states; because of this, it is convenient to write the eigenvalue
equation as

Ecm,n =Em,ncm,n − i
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We now have an eigenvalue equation that is similar to eigenvalue equations that we have encountered previously, and
which we can analyze using the same methods as before. What is different here is that the energies of the basis states
are not equi-spaced in n, and the coupling between the different states is now more complicated.

7.8. Periodic approximation

We found in previous work that we could reduce the two-dimensional problem down to a one-dimensional problem by
taking advantage of the fact that when the resonance condition is satisfied

�E = �nh̄ω0, (71)

the system is nearly periodic for large S away from the boundaries (where |m| is close to S). In this case
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We can construct approximate eigenfunctions of the locally periodic model using

cm,n = eimφvn−m�n(φ). (73)

The v expansion coefficients then satisfy

E(φ)vn = Envn − ih̄ω0gv
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〈ϒm,n|â − â†|ϒm−1,n+�n1〉√
n0

vn+�n1+�n

⎫⎬
⎭ , (74)

where we implement loss through the elimination of states for negative n

vn = 0 for n < 0. (75)

The index n is incremental in this case. The matrix elements for the ϒ states of the underlying coupled lattice nuclear
problem is analyzed as in Ref. [50], and we take gu for the associated dimensionless coupling constant.

From previous work we know that for large �n we can estimate the indirect coupling matrix element from the
difference between the energy eigenvalue for two phases

Veff → E(0)− E(π)

4
. (76)

7.9. Results

We have obtained numerical solutions for this model for representative cases, with the result that the model is only
weakly dependent on the coupling strength associated with the mixed lattice and nuclear system. Results from a
calculation with �n = 41 are shown in Fig. 1. In essence the indirect matrix element depends only on gv unless gu
gets to be sufficiently large that the underlying coupled lattice and nuclear system has the strength to fractionate the
quantum by itself. This behavior is consistent between many computations we have done with various different values
of �n.

This means that it is a reasonable approximation to replace the complicated eigenvalue equation for the locally
periodic approximation with a much simpler model

E(φ)

h̄ω0
vn = nvn − igv

{
eiφ

[
vn+�n−1 − vn+�n+1

]
+ e−iφ

[
vn−�n−1 − vn−�n+1

]}
. (77)

The indirect coupling matrix element that results is
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Figure 1. Indirect coupling strength Veff/�E as a function of the two dimensionless coupling strengths gu and gv , for �n = 41.

Veff

�E
= 4gv�(gv), (78)

where �(g) has been calculated, discussed, and fitted in Ref. [31].

7.10. Discussion

There are a number of conclusions that we can draw from this result. Perhaps the most important is that we seem to be
getting pretty much the same result for the indirect coupling matrix element as we would have if the lattice and nuclear
problem for all the other transitions were rotated using a Foldy–Wouthuysen transformation. This is important since
it provides a major simplification for the analysis of indirect coupling matrix elements and the associated dynamics
within the theory.

Another result from this is that our earlier analysis of this problem [42,43] which gave an enhancement in the indirect
coupling matrix element is in error. In the earlier analysis we made use of intermediate states calculated as real states,
instead of calculating them as virtual states. When done correctly (as in this section) the problems noted in the earlier
calculation are resolved.
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8. Summary and Conclusions

Accounting for excess heat in the Fleischmann–Pons experiment has proven to be a tough theoretical problem over the
years. By now a very large number of theoretical proposals have been put forward, but even more than 24 years after
the effect was first announced there is no consensus within the community as to how it might work.

From our perspective the biggest theoretical issue has to do with where the energy goes, since energetic nuclear
particles are not present in amounts commensurate with the energy produced. For example, if coherent energy exchange
could proceed efficiently under conditions where the large (MeV) nuclear quantum is fractionated into small (eV) quanta
of the condensed matter system, then there would be no difficulty in accounting for the anomalies. In earlier work we
showed that the lossy spin–boson model as a toy mathematical model describes exactly such an effect. The difficulty
has been in the identification of a relevant physical model which makes use of this mechanism.

From a comparison of different models with experiment in the case of Karabut’s collimated X-ray emission, we
have evolved to focus now on a model for phonon–nuclear coupling mediated by relativistic coupling (under conditions
where the Foldy–Wouthuysen transformation is unhelpful). From the discussion of Sections 2–4 in this work, we have
argued that the new model is on a solid theoretical foundation. We know that it implements coherent energy exchange
under conditions of fractionation based on the same mechanism demonstrated previously in the lossy spin–boson model;
and in addition it has the strongest phonon–nuclear coupling possible (stronger by orders of magnitude than indirect
coupling mechanisms).

The new model is in addition elegant, in that it describes a straightforward relativistic generalization of the con-
densed matter system to include coupling with internal nuclear degrees of freedom in a very fundamental and obvious
formulation. In a Born–Oppenheimer picture, we can describe physical systems now using a Hamiltonian of the form

Ĥ =
∑
j

(
Mc2 + a · cP̂

)
j

+
∑
j<k

V (|Rj − Rk|)− i
h̄

2
�̂(E). (79)

There is no difficulty in working with a more fundamental version of the problem where the electrons are included
explicitly, as in

Ĥ =
∑
j

(
Mc2 + a · cP̂

)
j

+
∑
k

|p̂k|2
2m

+
∑
j<j ′

ZjZj ′e2

4πε0|Rj ′ − Rj |

+
∑
k<k′

e2

4πε0|rk′ − rk| −
∑

j, k
Zj e

2

4πε0|rk − Rj | . (80)

In this case, electron loss would emerge in a systematic treatment, so that we no longer would have to include a loss
Hamiltonian explicitly. In the case of a highly excited phonon mode, we would expect this model to describe coherent
energy exchange under conditions of fractionation.

This is interesting for many reasons. These new models under discussion constitute a clear improvement over
text book models, since they greatly extend the realm of physics under discussion, while retaining (including) a basic
description of known results in both condensed matter physics and in nuclear physics. In addition we are able to work
with the new models, and carry out calculations without undo heroics. These models describe coupling of vibrational
energy to the nuclear system, qualitatively consistent with collimated X-ray emission in the Karabut experiment;
excess heat in PdD with 4He production; and low-level gamma emission effects. In all cases the effects predicted are
qualitatively very much like experiment.
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Unfortunately, in our use of the models we have as yet not obtained quantitative agreement between theory and
experiment. For example, if we make use of a result from the lossy spin–boson model [31], we obtain an approxi-
mate constraint for coherent energy exchange which should give us a threshold for nuclear excitation in the Karabut
experiment; this constraint can be written as

g

�n2 → 1

�n2

(
acP

√
S2 −m2

�E

)
> 5 × 10−4, (81)

where g is the dimensionless coupling constant, �n is the number of phonons exchanged, a is the coupling matrix
element for the �E = 1565 eV transition, P is the Hg atom momentum matrix element, and where

√
S2 −m2 is the

Dicke number. We have so far been unable to find model parameters for the Karabut experiment consistent with our
interpretation of the experiment which allow this constraint to be satisfied.

Our conclusion then is that we are in a sense “close,” in that we have new models which have a good physical basis,
which describe the phenomena observed in experiment, and which can fractionate a large quantum. But because we
do not obtain consistency so far with the experimental parameters of our interpretation of the Karabut experiment, we
know that something important is missing. There is a problem either in the theory, in the particular model, or in the
interpretation.

We have understood within the past year that in metals that electron-phonon coupling can lead to phonon fluctuations,
and that these phonon fluctuations have the potential for increasing the fractionation power in the phonon–nuclear
problem. This effect would be included in the model of Eq. (80) ([ut not in models of the form of Eq. (79)). Our
efforts over the past several months have been focused on the analysis of this problem; we will describe our efforts in
a forthcoming paper.

Appendix A.

A thoughtful reviewer has taken the time to read some of our papers, and offer a criticism which in our view gets at
some key issues that are important. This is the case in our model, and also in other models that seek to account for
excess heat in the Fleischmann–Pons experiment based on deuteron-deuteron fusion reactions. Because of this, we felt
that it would be of interest to others to include some of the reviewer’s comments in this Appendix, and to provide a
response in what follows.

Appendix A.1. Reviewer’s argument

The main assumption of this and other papers in this rather extensive line of research by the authors is that there is direct
coupling at the Hamiltonion level between the nuclear states and various oscillatory modes (phonons, plasmons, etc.)
of a condensed matter system. Let us refer to these oscillatory modes as simply phonons. This assumption then allows
the authors to examine different forms of coupling and loss mechanisms, and to seek ways to explain “fractionation” of
a nuclear reaction like a fusion event’s Q energy into a large number (∼ 7×108) of small quanta of these phonons. They
are also interested in explaining X-ray production in the Karabut experiment. The key assumption is that a Hamiltonian
of this form, which directly couples phonons to the nuclear states, is a valid theory. There are two ways to look at
this. First, the authors have in mind that the standard model of particle physics lies at the basis of the nuclear structure
and reactions, and that their Hamiltonian is an effective Hamiltonian which will ultimately be found to be compatible
with the standard model, and hopefully can be derived from it. The second possibility is that the authors may wish to
imply that the standard model is simply wrong, and does not apply to the nuclear structure or reactions that have been
observed in LENR expreriments.
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Figure 2. Feynman diagrams for phonon excitation in a standard model description of d + d + phonons + photons. The phonons are produced when
the photon lines interact with charged particles (not shown) in the lattice.

If the authors wish to present a theory which does not contradict the standard model of particle physics, then I believe
the basic assumption that a Hamiltonian which directly couples phonons to nuclear states is not plausible, at least for
deuterium cold fusion. The reason is that the standard model requires that a nuclear fusion event that couples fusion
with the lattice when 4He is being produced should be mediated by the electromagnetic force, ie. by photons. The
principle coupling in the standard model (or in just plain QED for that matter) between a fusion reaction and phonons
in a solid is via photon exchange. The photons are exchanged between the fusion event and various charged particles
in the solid. The following Feynman diagrams illustrate this situation for the production of 4He.

Each photon emitted from the vertex brings a factor of the fine structure constant to the probability of the diagrams
in Figure 1. So, the probability of emitting a large number of photons is vanishingly small, unless the vertex functions
V n were to have anomalous behavior for large number of photons n, which has not been observed in other fusion
experiments. We must therefore limit the number of photons being emitted. So each photon emitted would be expected
to be a gamma ray, and the largest contribution should come from single photon emission. But then we know from
many experiments how a gamma ray will react with a solid. Yes, they will produce some phonons, but they will also
have a range of motion, and many should be observed in the LENR experiments that have been performed. So these
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Feynman diagrams would seem to rule out the possibility that a direct Hamiltonian coupling between the nuclear state
and phonons is a good approximation to the standard model in the case of deuterium fusion. You need to have photons
to transfer energy from the nuclear event to the lattice, and this system does not seem to be well approximated by any
direct phonon to nuclear state coupling.

The time reverse situation is also in effect. In order for a phonon to excite a nucleus, it must do so by causing a
virtual photon be be created in the lattice which can then be absorbed by the nucleus. There is expected to be a factor
of α (fine structure constant) for each such photon. Although this situation might be better approximated by a direct
nuclear–phonon interaction in the standard model or in QED, it’s not clear from the current paper how to justify this or
to justify the magnitude of the coupling constant needed for appreciable fractionation.

The standard model also predicts the reactions

d + d → t + p

and

d + d → n + 3He.

Although the energetic charged particles produced could produce some phonons, it is very hard to see how these
channels might be suppressed to the rates observed in LENR experiments which would be required in order for a direct
phonon-nucleus interaction to be a good approximation.

So, if we then assume that the standard model is inconsistent with direct phonon coupling, and we still insist that
we will consider a direct coupling of phonons to nuclear states, then that begs the question how exactly does the energy
from the nuclear event get communicated to the charged particles of the lattice which is the only mechanism to excite
a phonon. There needs to be some local but long range field that mediates this force. The only fundamental long range
forces in nature are electromagnetism and gravitation. It we eliminate gravity due to its extremely weak coupling, then
electromagnetism is the only known way for a force to be communicated from the nuclear event to the charge particles
of the solid (including electrons). But we must avoid photons in order to avoid gamma rays (in some reactions at least).
One possibility that might be considered is action at a distance theory, like that of Fokker–Tetrode–Wheeler–Feynman
for the electromagnetic force [53]. But these theories can violate causality and are a “hard sell” to most physicists.
Moreover, they are difficult to solve as the Cauchy problem is non trivial for them. Still, it might be the only way for a
direct nuclear-phonon interaction Hamiltonian to fit into “conventional” theoretical physics.

Appendix A.2. Response

We are generally of the opinion that if a model (for excess heat in the Fleischmann–Pons experiment, or for other
anomalies) is inconsistent with the standard model in the area that the standard model applies, then it will likely have
issues being consistent with the large body of conventional experimental results. Having the standard model in this
sense is a good thing, since it gives a starting place that we and others can have some confidence in. We are of the
opinion that our model lies within the standard model generally.

From the reviewer’s comments it might seem that if we would like 4He as a reaction product from a deuteron-
deuteron fusion reaction (which is the subject of other papers, but not so much this one), then we are stuck with an
electromagnetic interaction, and will have to face the consequences of producing an energetic gamma. According to
the reviewer, “The reason is that the standard model requires that a nuclear fusion event that couples fusion with the
lattice when 4He is being produced should be mediated by the electromagnetic force, ie. by photons.” Seemingly it
could not be any simpler; if a model is to be consistent with the standard model, then it must be an electromagnetic
interaction that mediates the deuteron-deuteron to 4He reaction. If the interaction is not mediated by electromagnetic
interaction, then it lies outside of the standard model (by this criterion). What follows from this argument is a highly
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unlikely picture in which phonon emission comes about from subsequent interactions involving the gamma; a picture
that we are in complete agreement with the reviewer has sufficient associated headaches that there is little chance things
actually could work this way.

On the other hand, a deuteron–deuteron reaction leading to 4He mediated by phonon exchange as we have proposed
is not something that you see every day in nuclear physics texts. If we make use of the requirement put forth by the
reviewer, that the reaction must be mediated by photon exchange in order to be consistent with the standard model, then
it is hard to see how a phonon-mediated version of the reaction could be consistent. This then is what we need to think
about, and to address here, in response to the reviewer’s comments.

In a sense, the resolution is pretty simple; in our view it has to do with the difference between the viewpoint taken
in particle physics or nuclear physics, and the viewpoint taken in condensed matter physics. For example, suppose we
think about a QHD type of model (plausibly derivable from the standard model) in which nucleons interact with each
other through pion exchange and photon exchange; then we envision a Hamiltonian of the general form

Ĥ = Ĥnucleon + Ĥπ + ĤEM + V̂π−n + V̂phot-n (A.1)

except that a particle physicist would work with a Lagrangian instead of a Hamiltonian. In such a model we have Dirac
nucleons, Hamiltonians for pions and photons, with single pion exchange and single photon exchange terms. If we start
with two deuterons in free space, and hope to end up with a 4He in free space, then the lowest-order interaction that
is going to make it work is single photon exchange. If there happen to be other atoms around, then they are far away,
and we expect little impact from them. Any residual interactions in such a view can be dealt with through perturbation
theory.

Next, a particle physicist would begin writing out Feynman diagrams, since the mathematical machinery for com-
putations with this kind of model have all been automated. However, here we will adopt a much more pedestrian
approach and focus on how photon exchange comes into the problem in the case of a single nucleon that we focus on;
the relevant Hamiltonian for this part of the problem might be written as

Ĥ = α · c[p̂ − qÂ(r)] + βMc2 +
∑
j

V̂π (r − rj )+
∑
j

qqj

4πε0|r − rj | . (A.2)

Pion exchange here is accounted for through an equivalent nuclear potential as was done in years past (since our focus
is on the electromagnetic interaction and not on pion exchange). In this kind of model, the only relevant propagating
degree of freedom capable of dealing with the relevant large energy quantum is electromagnetic. We can expand out
the vector potential operator

Â(r) =
∑
k,σ

îσ

√
h̄

2ωkε0L3

[
âk,σ eik·r − â

†
k,σ e−ik·r

i

]
(A.3)

and see creation and annihilation operators for the photons appearing explicitly. The construction of the theory itself
helps us keep track of photon creation as an independent quantum degree of freedom.

Phonon exchange was not important in nuclear reactions generally historically, so we have no phonon modes in this
kind of formulation. Since phonons in a metal come about due in part to Coulomb interactions between the nucleons,
and in part due to the electronic degrees of freedom, one knows that they are described within a sufficiently general
Hamiltonian (the standard model includes electrons and photon exchange, so phonons are consistent with the standard
model). Phonon exchange comes into this kind of picture after the fact; either as a result of interactions with the gamma
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as proposed by the reviewer, or perhaps as a consequence of soft photon exchange with the lattice as an external system,
in which case one could argue that in this picture the associated perturbation is small.

Now let us consider the problem from a condensed matter viewpoint. In this case, the deuterons are presumed to
be inside the solid, and the lattice vibrations which we are interested in (for thinking about phonon exchange) include
the deuterons of the initial state, and the 4He of the final state. As such, the center of mass position and momentum of
the nuclei are now lattice operators. In general the lattice is disordered, so that the vibrational modes are a mess; we
might write in this case

R̂j = R(0)
j +

∑
µ

dRj
daµ

[
âj + â

†
j

]
, (A.4)

P̂j
mj

=
∑
µ

dPj
daµ

[
âj − â

†
j

i

]
, (A.5)

where the capital position and momentum operators refer to the nuclear center of mass degrees of freedom. In place of
the QHD-type of Hamiltonian, we will have a new one which looks like

Ĥ = Ĥvib + Ĥ ′
nucleon + Ĥπ + ĤEM + V̂π−n + V̂phot-n, (A.6)

where we now have a vibrational Hamiltonian to keep track of the relevant lattice degrees of freedom. Since the nuclear
center of mass coordinates are now part of the vibrational Hamiltonian, we have to remove them from the nucleon
Hamiltonian, which is indicated by Ĥnucleon → Ĥ ′

nucleon. On the face of it, there seems to be little change in the nucleon
interactions, since we have not added any distinct phonon interaction terms. However, there are now all kinds of places
where phonon exchange comes in, primarily since the nucleon positions and momenta have acquired phonon operator
components. To see this, we revisit the simple one-nucleon Hamiltonian

Ĥ = α · c[p̂ − qÂ(r̂)] + βMc2 +
∑
j

V̂π (r̂ − r̂j )+
∑
j

qqj

4πε0|r̂ − r̂j | (A.7)

and view it with new eyes. Since the nucleon position operators now include phonon operators, we find that phonon
exchange can occur in connection with Coulomb interactions, transverse photon exchange, and with the strong-force
interaction (however, phonon exchange in the latter case requires the nucleons to be associated with different nuclei,
so we can get phonon exchange when one nucleus tunnels close to another).

Having spent time analyzing phonon exchange in all of these cases, we can conclude that phonon exchange generally
is a very small effect for these terms, which can be treated as minor perturbations consistent with the view described
above. However, there remains the α · cp̂ term which is now in part a phonon operator, and which can mediate phonon
exchange now. Normally this operator is rotated out in a Foldy–Wouthuysen transformation, where it loses whatever
teeth it had. However, under conditions where a Foldy–Wouthuysen transformation is unhelpful, then the associated
interaction strength is quite large. In this simple example, we can think of transverse photon exchange for a single
nucleon as mediated by the interaction

ĥ
(photon)
int = −α · cqÂ(r̂), (A.8)
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We can relate the nucleon momentum operator to the center of mass operator according to

p̂ = P̂
N

+ π̂ , (A.9)

where N is the number of nucleons in the nucleus, and where π̂ is relative momentum operator. Because of this, the
α · p̂ operator contains a part that is a roughly equivalent phonon operator

ĥ
(phonon)
int = α · c P̂

N
. (A.10)

Perhaps in this context it is useful to examine phonon exchange and photon exchange in the context of the idealized
relativistic composite model discussed in the text. In this case we may write

Ĥ =
∑
j

(
Mc2 + aM · cP̂ − qaq · cÂ

)
j

+
∑
j<k

V (Rj − Rk). (A.11)

This corrects an error in [54] where we followed the suggestion of a reviewer that we make use of the formulation to
add the coupling to the electromagnetic field by analogy with the electron case (we note in addition that the model in
[54] suffers additionally from the problem that nucleons are not Dirac particles, and that the matrix element is too low
by more than an order of magnitude as a direct result of this approximation). However, in general the mass weighted
a-matrix (aM ) is different than the charge weighted a-matrix (aq ); so in writing this we have distinguished between the
two. So, if we wished to describe deuteron–deuteron fusion mediate by photon exchange within this formalism, the
interaction would be

ĥ
(photon)
int = −qaq · cÂ, (A.12)

which is similar in form to the equivalent phonon interaction

ĥ
(phonon)
int = aM · cP̂. (A.13)

Some modification of the photon exchange interaction in this form would be required for interactions beyond the dipole
interaction, since the relativistic composite operators deal with transitions appropriate for long wavelength radiation;
new operators will be needed to deal with higher multipoles where the wavelength is on the order of the nuclear size.

Consistent with the discussion here, there is no reason to exclude phonon exchange from interactions within the
standard model; for interactions between nuclei embedded in a lattice, working with position and momentum operators
that are phonon operators is the more natural and more useful description. Unfortunately, in general the problem
becomes more complicated when this is done, so one gives up some of the advantage that the simpler free-space
formalism provides for computations.

The assertion of the reviewer that phonon exchange cannot mediate an electromagnetic transition and remain within
the standard model is simply incorrect (although a very understandable misconception). It is true that one cannot satisfy
energy and momentum conservation for the deuteron–deuteron to 4He transition, since there is no way a single phonon
can take away 24 MeV. This is why we have explored alternative schemes in which the 24 MeV excitation is transferred
elsewhere to a different system capable of fractionating the large quantum. In this kind of scheme, we require a single
phonon exchange interaction to mediate the D2/4He virtual transition, and then deal with the fractionation as a separate
part of the problem.
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Abstract

A selected group of experimental evidence indicates that the Pd/D–D2O system can be put in its nuclear active state. This is done by
negatively polarizing the system which (i) starts the process of self-organization, i.e. development of coherent processes involving
protons/deuterons and lattice defects to produce the pre-nuclear active state and (ii) creates conditions for the electron capture by
proton/deuteron reaction to occur. The low energy neutrons transform the pre-nuclear active state into an active state, i.e. display
of features such as hot spots, transmutation and particle emission which, in turn, yields information on participating reactions and
processes.
© 2013 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

Shortly after the ICCF–2 meeting Fleischmann was asked by the Royal Society to give an account of the status of
research in cold fusion. In his address he stated that In the development of any area of research (and especially in one
likely to arouse controversy) it is desirable to achieve first of all a qualitative demonstration of the phenomena invoked
in the explanation of the observations. It is the qualitative demonstrations which are unambiguous: the quantitative
analyses of the experimental results can be the subject of debate but if these quantitative analyses stand in opposition
to the qualitative demonstration then these methods of analysis must be judged to be incorrect [1]. Two of such
phenomena are observed in operating cells Pd/D2O,Li+,OD−/Pt employing massive Pd cathodes namely (i) excess
enthalpy generation and (ii) time separating complete saturation and the onset of thermal activities, the incubation time.
The first was examined in great detail [2,3]. It is the second that can be explained only through the participation of
processes that put the system in its pre-nuclear active state.

Fleischmann et al. [4], noted that, in this time period, nuclear reactions in a host lattice are affected by coherent
processes, and that . . . there are appropriate thermodynamic conditions for the formation of large large clusters of
hydrogen nuclei or of regions of the lattice containing ordered arrays of hydrogen nuclei at high H/Pd ratios, resulting

∗Present address: 3498 Conrad Ave, San Diego, CA 92117, USA.
†Retired.
‡E-mail: dr.frank.gordon@gmail.com

© 2013 ISCMNS. All rights reserved. ISSN 2227-3123



144 S. Szpak and F. Gordon / Journal of Condensed Matter Nuclear Science 12 (2013) 143–157

in the . . . formation of clusters of deuterons dispersed in palladium lattice that would lead to the formation of ordered
domains having high D/Pd ratios. The formation of clusters of deuterons suggests that excess enthalpy generation is
localized and can be displayed by infrared photography [5].

The thermodynamic arguments may be extended by the teachings of the non-equilibrium thermodynamics. To
start, an equilibrium is defined as a state generated by the balance between operating forces. Mathematically it is
expressed by a minimum of the free energy (thermodynamic interpretation) or by the equality of forward and reverse
velocities (kinetic interpretation), As the departure from equilibrium is increased, the system becomes unstable and
evolves to form new structures exhibiting coherent behavior [4]. The system undergoes “self-organization”, the process
of formation of new structures, which is complex [6]. It is quite accurately described by an interplay of kinetic and
thermodynamic quantities. The interaction between them takes the form of a struggle – some are eliminated others are
formed, i.e. there exists a state of dynamic equilibrium.

1.1. Scope and order of presentation

A single observation, that of the incubation time, has led to conclusions which, in turn, opened a way to explore the
meaning and content of other characteristic features such as hot spots, transmutation and particle emission. Here, we
limit our remarks to behavior of cells employing cathodes prepared by an interesting new variant of the electrochemical
method [1], which eliminates the incubation time. In our interpretation we employ terminology that is common in
chemical research. However, to remove ambiguity we define what is meant by certain terms ( cf. Sections 2.1–2.5).

In what follows, we argue that a lot can be learned about the nuclear events when three key observations (i) hot
spots, (ii) transmutations and (iii) particle emission are interpreted using the concept of self-organization and accepting
that the electron capture by a proton/deuteron starts a set of nuclear reactions.

2. Background Information

A general observation: The system is not in equilibrium, consequently, methods of non-equilibrium thermodynamics are
an indispensable tool to examine the nature of the F-P effect. Furthermore, the mini-explosions recorded as a function
of time, yield information from which one can speculate on the kinetics of formation of domains and their stability. To
avoid miss-interpretation we define (i) molecule, (ii) chemical reaction, (iii) interphase, (iv) self-organization and (v)
co-deposition. To prevent misunderstanding, terminology common in chemical research is employed.

2.1. Molecule, aggregate, cluster and domain

A molecule is defined as an assembly of two or more atoms bound together to form a structure with sufficient stability
to consider it as an identifiable specie [6]. As used here, an aggregate is an assembly of molecules, a cluster is an
assembly of aggregates held together by forces operating in chemical systems. A domain denotes a volume containing
one or more clusters interacting with lattice defects.

2.2. Chemical reaction

A chemical reaction is usually described by either (i) aA + bB → cC + dD + Q or (ii) A + a → B + b + Q where the heat
of reaction Q > 0 denotes an exothermic and Q < 0 an endothermic reaction. As written, only limited information
is provided, viz conservation of matter and charge, i.e. the system consists of unbounded particles in the sense that
there is a continuous range of possible energies. In reality, the initial state in both cases is controlled by experimental
protocol and the final state by energy considerations.



S. Szpak and F. Gordon / Journal of Condensed Matter Nuclear Science 12 (2013) 143–157 145

Figure 1. Structure of the interphase. c - contact surface, 1, 2, . . . , n - atomic layers, λ - thickness of the interphase, λ2(τ ) - thickness of the time
dependent metal side layer, λ1 thickness of the solution side layer, τ - relaxation time of the dominant process(es). open circle - H+ ion. shaded –
H in atomic state, solid - proton, square - lattice defect, shaded areas location of clusters.

2.3. Interphase

Chemical reactions rarely occur in an ideal environment, i.e. at constant temperature in time and space and at constant
concentration in space. In the present case additional difficulties arise from the structural aspects of the solid phase.

These considerations lead to recognition that to uncover the true mechanism one must consider (i) conditions of
an experiment, (ii) problems arising from transport of energy (heat) and matter and (iii) structural factors of the solid
phase. Within the metal side of the interphase, hydrogen isotopes are distributed as follows: the sub-surface hydrogen,
in the top-most layer of Pd atoms provides link between the adsorbed and dissolved atomic hydrogen, with the latter
interacting with the lattice, yielding protons. With adsorption there is associated surface reconstruction but, because
the surface processes are faster than bulk processes, only the hydrogen in the top-most Pd layer is responsible for
its maintenance [7]. That is to say, within the interphase exists a state of dynamic equilibrium which governs the
distribution of hydrogen interacting with the palladium lattice.

2.4. Self-organization

The self-organization denotes a set of processes putting the system in its nuclear active state. These processes are due to
the change in the energy stored in the electric double layer, i.e. the change in its value is the driving force that generates
the domains containing Pd lattice defects and deuterons. That is to say: Self-organization promotes the formation of a
volume element within the system having dimensions much larger than the molecular dimensions but smaller than the
volume of the system. It can occur only if the system is able to exchange part of its energy with the outside world [8].

2.5. Co-deposition

Co-deposition refers to production of electrodes by simultaneous reduction of palladium and hydrogen ions.

3. Key Features: Experimental Protocol

Characteristic features selected to identify chemical aspects of the Fleischmann–Pons effect are: (i) thermal effects, (ii)
mechanical effects, (iii) transmutation and (iv) particle emission. A detailed protocol is provided only for experiments
that have not been described previously.
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Figure 2. Experimental set-up for display of thermal activities.

3.1. Thermal effects

3.1.1. Experimental

One method to examine thermal behavior of the polarized Pd/D–D2O system is to view the electrode surface using an
infra-red camera. Experimentally the IR camera A, Fig. 2(a), views the surface of an active negative electrode B placed
next to the thin Mylar sheet C, affixed to the wall of a rectangular cell made of clear plastic. Two conditions must be
met for a successful monitoring of the thermal behavior, viz. (i) the amount of the D2O between the electrode surface
and the IR camera must be minimal (in order to avoid the attenuation of the signal), and (ii) the electrode surface facing
the IR camera must be open (in a sense that the electrode processes are accessible to viewing by the IR camera). These
conditions are met by co-depositing the Pd/D film on an open substrate, e.g. on a Ni screen placed in close proximity
to the thin wall (made of Mylar). The IR camera can be operated in two modes: (i) to monitor temperature distribution
on the electrode surface and (ii) to measure the cell temperature across the cell ( i.e. along the X–X line), Fig. 2(b).

Results of IR viewing the surface of an active cathode are summarized in Fig. 3.
The negatively polarized Pd/D–D2O system shows the development of short lived “hot spots”. These thermal

activities, illustrated in Fig. 3(a) are observed early during the Pd+D co-deposition and during electrolysis. Temperature

Figure 3. Thermal activities recorded by an IR camera. (a) hot spots and (b) temperature profile.
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Figure 4. Recording thermal effects by an IR camera 14 Electrochemical cell designed for recording mechanical effects due to hot spots. Fig. 2b
0-0 A – electrochemical cell, B – Faraday case, C –shock absorbing pad, D – cathode assembly, D1 – insulator, D2 – piezoelectric disc, D3 – Pd/D
film, F – power source, E – recorder|.

profile recorded across the electrode surface when the IR camera was operated in the second mode is shown in Fig. 3(b).
The cell temperature profile was taken periodically during electrolysis. The difference between surface temperature
and that of solution increases with time, being initially at ca 2◦C and reaching a value as high as 17◦C, two hours later.

3.2. Mechanical effects

A fast exothermic reaction causes deformation of the electrode structure and the rise in temperature, thus sending
pressure and temperature waves away from the source. Such waves were detected when co-deposited films were placed
in contact with a piezoelectric substrate. An experimental arrangement to record their occurrence is shown in Fig. 4.

3.2.1. Experimental

Electrochemical cell, A, is placed in a Faraday cage, B (to prevent external noise) and the whole assembly is placed
on a shock absorbing pad, C. The key part for the successful display of mini-explosions is the construction of the
cathode, D. Here, a thin circular slice, in the form of a disk (r = 1.143 × 10−2m, l = 2.0 × 10−3 m of the piezoelectric
material (lead–zirconium–titanate) with a conductor, e.g. (Ag) deposited on parallel surfaces was connected to an
oscilloscope, E, and a power source, F, in a manner indicated. The Pd/D film was deposited onto one side a piezoelectric
substrate. The characteristic feature of a piezoelectric material is the one-to-one correspondence of direct and reverse
effect, e.g. compression develops a potential shift and a shift in the potential produces compression.
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Figure 5. (a) hot spots, (b) System’s response to mini-explosions. a – single event, b– burst of events. (c) *Effect of solution temperature.

As a rule, a single event, Fig. 5(a), occurs rarely. A burst of events, Fig. 5(b), is the common occurrence. Here,
we see clearly a single spike which, in the negative direction corresponds to the pressure pulse. Using a simple

Figure 6. Cell design (a) and sampling procedure (b). 1 — cell with graduated wall a, 2 – recombiner. (b) – sampling sequence.
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model, e.g. that of a spherical reaction space, one could, from the magnitude of the voltage spike and the �t , reach
some conclusion concerning the position and strength of the heat source which is temperature dependent. This strong
temperature dependence is illustrated in Fig. 5, where spike of 30◦C are measured in mV while at solution temperature
80◦C, the spikes are measured in volts.

3.3. Transmutation

In support of conclusions reached by Fleischmann and Pons that the excess enthalpy is of nuclear origin, a search for
other manifestation of nuclear activity was initiated. In the SPAWAR laboratory we selected the production of tritium.
This was based on the belief that the governing reaction is d+ + d+ → He∗ in which the highly excited He∗ atom
decays into tritium and proton. Somewhat later it was demonstrated that transmutation to other elements is common
[9].

3.3.1. The d+ → t+ transmutation

The cell with graduated walls to provide check on the volume of electrolyte, was connected to another cell containing
a catalyst with sufficiently large surface area to assure complete recombination of evolving gases, Fig. 6(a). Detailed
description of sampling procedure, Fig.6(b), and analysis can be found in [10,11].

Two examples of tritium production are illustrated in Fig. 7, viz. the sporadic production, Fig. 7(a) and a massive
short time production, Fig. 7(b).

3.3.2. Transmutation – production of new elements

The production of new elements in cells using co-deposited cathodes is insignificant. However, if these cells are placed
in an external electrostatic or magneto-static field, then the rate of new elements production is markedly enhanced
[12]. An external electrostatic field changes conditions at the contact surface and, only via the relaxation mechanisms,
extends them into the interphase. An external magneto-static field affects not only the conditions at the interphase (via
Lorentz forces) but penetrates the interphase where the gradient forces and, to a lesser degree the Lorentz forces, are

Figure 7. Experimental and calculated rates of tritium production.
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Figure 8. The almost spherical globules, (a) were re-arranged to produce a layered structure, (b) chaotic placement of small thin fragments, (c) a
bent large thin plate (foil?) with, what appears to be, branches of wires attached to its surface, (d) and a violent event resembling explosion.

active. Hence, it is not surprising that magnetic field would affect both the Pd/D structure and the reaction products in
different way.
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Figure 9. Selected examples of transmutation and associated morphology in external electric field.

3.3.3. Electrostatic field

The set of SEM photographs, assembled in Fig. 8, shows shapes which are difficult to explain, except that their
formation would require substantial energy expenditure. Even a cursory examination leads to a conclusion that the
energy required to produce such changes is far in excess of that which, under the conditions of experiment, could be
extracted from the external field at the required rate and intensity.

The selected examples show that the number of transmutations to new elements varies from a single element,
Fig. 9(a), to multiple elements, Fig. 9(b),(c). The number of new elements does not depend on the strength of applied
field. Also, there are no recognizable distinct morphological features that would indicate the number or the identity of
new element(s). Note that oxygen, chlorine and Pd are not new elements since they are cell components.

Figure 10. Selected examples of transmutation and associated morphology in external magnetic field.
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3.3.4. Magnetic field

The shape change of the co-deposited film when placed in an external magnetic field is somewhat different from that
associated with the electric field. The distinct morphological features, e.g. boulders and craters, are replaced by
“pancake-like” structures, Fig. 10(a). To emphasize the difference, we selected examples that show production of new
elements (transmutation) not seen in electric field. The EDX analysis of selected sites shows production of Fe, Cr in
addition to Al, Figs. 10(a), (b). Elements such as Mg, Si were found in other samples. As a rule, the number of new
elements found is larger than that observed in an electric field.

3.4. Particle emission

The detection and identification of particles emitted from polarized Pd/D films, when such films were placed in an
external field, yields significant information about the chemistry and physics of the nuclear processes occurring within
these films.

3.4.1. Detection of emitted particles

If CR-39 chips are used to display the particle emission, then an appropriate procedure must be developed that would
exclude misinterpretation. One such procedure involves Pd+D co-deposition on an open metallic substrate, e.g. a
screen or a single wire, placed in contact with the CR-39 chip. The detection and identification of particles emitted
from polarized Pd/D films, when such films were placed in an external field, yields significant information about the
chemistry and physics of the nuclear processes occurring within these films. If the emission of particles from the Pd/D
film occurs, then they could be detected only along the electrode edge, as illustrated in Fig. 11(a). The bright line
along the peripheries of a single eyelet is, in fact, an overlap of hundreds of impingement tracks, as displayed in Fig.
11(b) which represents an expanded area indicated by an arrow. Clearly, the bright line represents a set of impingement
tracks next to each other while an arrow points to an area of numerous tracks. The images in Fig. 11(c) show double
and triple tracks implying that there are reactions emitting two or three particles having approximately the same mass
and energy.

4. Conclusions

Conclusions that are derived from the examination of an observation are either (i) certain, (ii) probable or (iii) speculative
and presented in the following order: (I) the starting point, (II) hot spots, (III) transmutation and (IV) particle emission.

4.1. The starting point

The hydrogen isotope, when in palladium lattice, exists in form of protons, deuterons or tritons interacting with the lattice
defects and free electrons, i.e. electrons whose chemical potential, when electric field, is µ(e−) = µ(e−)φ=0 + e−φ
[14]. When polarized and, in particular, with hydrogen evolution taking place, there is re-arrangement of absorbed
deuterium and lattice defects and, if the conditions are right [15], the reaction e− + d+ → 2n occurs. Upon completion
of the self-organization the system is in the pre-nuclear active state and transits into the nuclear active state via reactions
involving neutrons. In co-deposited electrodes the self-organization is an integral part of the co-deposition process.
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Figure 11. Impingement tracks generated by particle emission.

4.2. Hot spots

4.2.1. Certain

(a) Hot spots represent a situation where a microscopically large, but macroscopically small domains absorb large
quantities of deuterium in lattice defects. In order to observe hot spots, it is necessary to confine a large number
of reacting particles within a small volume. Thus, there are certain locations where (i) the concentration
of reactant(s) is very large, (ii) reactions are fast and (iii) they occur during early stages of co-deposition,

Figure 12. Sequence of events preceding initiation of nuclear activity.
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cf. Fig. 5(a), (b).
(b) One characteristic feature is an increase in the piezoelectric sensor response to change in the solution temperature.

As the solution temperature of 30◦C approaches its boiling point, e.g. at 80◦C, there is a significant change in
the sensor response, cf. Fig. 5(a), (c). The several orders of magnitude in the sensor response indicates that
an increase in solution temperature produces a significant increase in the hot spot’s intensity, cf. Fig. 5(c) and
Section 3.1.2.

4.2.2. Probable

(a) Origin. Nuclear reactions are not affected by solution temperatures. Consequently, an increase in the reaction
intensity is because (i) domains contain a significantly larger number of active species, or (ii) the rate constants
of the participating processes depend strongly on temperature. The reaction mechanism(s) is (are) not known but
could be either chain reactions or “collapse” of aggregates as visualized by, e.g. Adamenko [17] who postulated
... evolution of self-organized and self-supported collapse of electronic-nuclear plasma of initial solid-state
density under the action of coherent electronic driver up to a state of large non-stationary electronic-molecular
clusters with density close to that of nuclear substance.

(b) Location. The temperature difference measured at the front side, cf. Fig. 3(b) and that at the back-side, cf.
[16], indicates that the reaction yielding excess power is located close to the electrode/solution contact surface.

4.3. Speculative

(a) Size. After viewing the recorded hot spots data Chubb [18] concluded that 104 − 109 is the number of single
events within a sphere having r = 100Å).

(b) Safety of operation. Catastrophic thermal run-a-ways occur very seldom in cells employing either solid or co-
deposited cathodes which indicates that the heat source(s) is (are) located near the surface because, if the heat
sources were throughout the bulk, then the positive feed-back would cause the temperature to rise exponentially,
This model is supported by the increased frequency of thermal-run-a-ways when the cell placed in an external
magnetic field, cf. [15].

4.4. Transmutation

4.4.1. Certain

(a) Tritium production. Tritium production via reaction n + d+ → t+.
(b) Tritium production. Intermittent production, cf. Fig. 7(a) with occasional “massive” production, cf. Fig. 7(b).
(c) Location. Tritium production occurs within the interphase. This conclusion is based on the following: Tritium

is absent in the bulk except when Al3+ is added to electrolyte which changes the interphase dynamics and
effectively slows the desorption process, cf. [10].

(d) Clusters composition. Clusters of different composition of aggregates, yielding single or multiple new elements.

4.4.2. Probable

(a) “Massive” production of tritium. On several occasions tritium was produced at much higher rates, cf Fig.7(b).
One possible mechanism is shown in Fig. 13 where electron capture by a deuteron produces two neutrons of
which one reacts with deuteron yielding tritium. Assuming that electron capture by triton can occur, i.e. that
µ(n)− 1

3µ(t
+)+ ε > 0, three additional neutrons are produced which, by reacting with deuterons yield tritons.
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(b) Transmutation path. The multiple new elements suggests that the stable new elements are the result of a series
of reactions of the type n +A (X) →A+1 (X)− [p+, α2+, n, γ ] →A1

Z| X).

4.5. Particle emission

4.5.1. Certain

(a) Location of nuclear reactions. Nuclear reactions take place within the interphase region, cf. Fig. 11(a).
(b) Type of emitted particles. Emission of two or three particles having approximately the same mass and energy,

cf. Fig. 11(c).

5. Reformulation

The reported reactions, processes, and conclusions are re-arranged to make them useful to experimenters. Evidently,
(i) the bulk of activities, if not all, occur within the inhomogeneous region, the interphase, (ii) they are assembled in
groups that identify their principal functions and (iii) they provide rationale for the choice of approach to discussion of
the system’s behavior.

5.1. Reactions/processes in Group I

Reactions within the first group are: (i) ionization of absorbed deuterium – D → D+ + e−, (ii) production of molecule-
ions D + D+ → D+

2 [10,13], (iii) production of hybrid molecule-ion n + D+
2 → D+T+, (iv) self-organization leading

to the formation of clusters of aggregates Pd∗ + nD+ → Pd∗ . . .D+
n , (v) production of neutrons e− + D+ → 2n.

Reactions (i)–(iv) are typical chemical reactions while (v) is treated as a chemical reaction within the context of nuclear
chemistry.

Function: The system is in the state of dynamic equilibrium established through the order–disorder activity at the
contact surface. Its principal activity is to provide, via self-organization, reactants that produce excess power and new
elements (transmutation). These are essentially chemical processes and could be either exo- or endothermic.

Useful information: Chemical processes are affected by the structure (morphology and formation of mobile lattice
defects) of an interphase which, in turn, is affected by the cell current profile and external fields; Methods of non-
equilibrium thermodynamics and non-linear chemical kinetics would have to be applied to fully describe the formation
of domains associated with production of localized hot spots.

Figure 13. Coupled reactions leading to tritium production.



156 S. Szpak and F. Gordon / Journal of Condensed Matter Nuclear Science 12 (2013) 143–157

5.2. Reaction/processes in Group II

Reactants entering Group II are the products of self-organization. These reactants can interact with electrons (electron
capture) or with neutrons. In either case, the dynamic equilibrium of stable aggregates generated by self-organization,
is disturbed and the affected aggregates can either collapse or explode, depending on the type of interaction with
environment. There is (i) self-organization, (ii) dense plasma corresponding to clusters interacting with the Pd lattice
defects, e.g. mobile dislocations, (iii) “of solid-state density” corresponding to the action of the F�� and asymmetric
stress field and (iv) “coherent electronic driver. . . ,” is equivalent to the formation of new structures on the “super-
molecular” level.

Function: The reaction/processes in Group II provide the principal production of excess power via an unspecified
set of nuclear processes, except for the electron capture by deuteron.

Useful information: There are many possible theories dealing with the nature of nuclear processes responsible
for both production of excess enthalpy, transmutation, radiation and particle emission. So far as we were able to
understand, none of the proposed theories meet all of the conditions stated by Chubb [18], namely: for the model driven
research, four conditions must be evaluated: (i) Is it applicable? (ii) Does it violate the second law of thermodynamics?
(iii) Is it physically and mathematically complete? (iv) is it reducible to mathematical expressions that are useful to
experimenters..

5.3. Reactions/processes in Group III

While the processes in Groups I and II can be treated in terms of chemical concepts, those in Group III involve system
stabilization via the transition from unstable nuclei to stable ones by various decay processes. A very general picture
is as follows: The first step, in stage I, is the production of neutrons via the electron capture process: e− + D+ → 2n.
Stage II is the seat for nuclear reaction of the type n + 	AZXi → 	A+1

Z Xj . Here the reaction product, entering stage
III, is a set of new unstable nuclei A+1

Z X∗
j which undergo process of “stabilization” by fusion, fission, particle emission

and electromagnetic radiation: 	A+1
Z X∗

j − [p+, α2+, n, γ,X] → 	
A1
Z+1Xj .

Function: Production of new elements via the various decay paths leading to the formation of stable elements such
as Ca, Al, Si, etc.

Useful information: Although the transition from unstable to stable nuclei is highly exothermic, its contribution to the
cell power output is minimal (basis - miss-match, amount of nuclear products and excess enthalpy He + transmutation).

6. Concluding Remarks

Nearly a quarter century ago, a new phenomenon – the room temperature nuclear reaction in a test tube – was disclosed by
Fleischmann and Pons. Since this effect was discovered by two professors of chemistry – one would expect that methods
and reasoning of chemistry would be helpful in the interpretation and further development of the understanding of this
phenomenon. But such has not been the case. The chemical aspects were replaced by topics of interest to physicists.
Theories based on specific assumptions elegantly executed, were followed by a search for the predicted behavior. Here,
we propose another approach, that advocated by Born [19], who wrote “My advice to those who wish to learn the art
of scientific prophesy is not to rely on abstract reason, but to decipher the secret language of Nature from Nature’s
documents,the facts of experience.”

In following this advise we relied on two observations, viz. hot spots and production of new elements, and drew
conclusions based on chemical reasoning. The conclusions reflect our current understanding of the F–P effect. We
conclude this communication with a statement that a lot can be gained by examining the chemical aspects of the
polarized Pd/d–D2O system.
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