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Editorial

It is my great pleasure to introduce this new volume of the Journal of Condensed Matter Nuclear Science. This is
another living testimony to the excellent work achieved by so many scientists from worldwide who continue in the field
in spite of the difficulties due to the lack of acknowledgment by our peers. In this volume, there is for the first time in
this journal an exchange between two scientists discussing a previous work through comments of an article. I think that
this is very important, because nobody holds the truth, and because experiments as well as theories can be criticized.
All the papers in this journal are anonymously peer reviewed, but it is up to each reader to also be a reviewer.

Jean-Paul Biberian
(Editor-in-Chief )

October 2014
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Letter to the Editor

Comment on the article ‘Simulation of Crater Formation
on LENR Cathodes Surfaces’

M. Tsirlin∗

University of Missouri-SKINR, MO, 65211-7010, USA

Abstract

Formation of small craters on the surface of Pd cathode during electrolysis in electrolytes based on heavy water is sometimes
interpreted as a consequence of low-temperature nuclear reactions. In this note we discuss the validity of these statements.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Craters, Low-Energy Nuclear Reactions, Origin, Pd cathodes

Reference [1] discusses the processes of heat transfer which accompany the local emission of heat on the surface
of Pd craters during the electrolytic hydrogenation (or deuteration). However, these notes are not about the model
presented in the paper, or the corresponding results of the calculations. Reference [1] attracts the reader’s attention
with the bold assertion, accompanied by appropriate references, about nuclear reactions as a cause of formation of these
craters. So, in the first sentence of the Abstract Ruer argues: “Many authors reported the presence of small-size craters
on the surface of cathodes after Low-Energy Nuclear Reaction (LENR)”. The author continues: “It is conjectured the
craters result from violent reactions, perhaps of nuclear origin.” Moreover, in the discussion following this, the author
repeatedly reiterated this statement, without giving any arguments in its favor. It should be said that this statement
about the probably nuclear origin of the craters is widespread in LENR literature. Interestingly, Mizuno, perhaps one
of the first who found the craters on the surface of metals during electrolytic hydrogenation [2], does not say anything
about its nuclear origin, but astutely points out the heterogeneity of the electric field on the cathode’s surface and the
possibility of local hydrogen recombination associated with this heterogeneity. In a comprehensive review [3], which
discusses the morphological and energetic characteristics of the craters, Nagel made reasonable suggestions about the
expediency of studies of the craters to understand LENR.

However, in a number of publications, some of which are cited in Ref. [1], the authors report on experimental
results, which, in their opinion, are evidence of the localization of nuclear reactions in the craters. In some cases,
this assertion is not supported by any experimental justification [4,5]. In others [6–8] the authors adduce the results

∗E-mail: tsirlin.mark@hotmail.com

c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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of SEM-EDS analysis of the craters, which they say prove its nuclear nature. For example, Ref. [6] reported SEM
detection of Ti, Mn, Fe, Cr and Ni on the surface of the cathode. The authors believe that the nuclear origin of these
elements is proved by their absence in the starting metal. The weakness of this argument is that, as shown in numerous
experiments, the cathode surface has always been contaminated by various metal and non-metal impurities during the
process of electrolysis. This is particularly the case with experiments by Energetics Technologies [9]. The distribution
of these elements over the cathode surface is very uneven. It replicates the non-uniformity of the electric field. In
addition, metal elements as Ni, Na, K, Li (the latter found by XRD method in the form of lithium aluminate LiAlO2)
have been detected time and again after electrolysis experiments. Such contamination on the cathodes surface has been
observed in open cells as well as in closed ones. Here is another typical example. Reference [7] reported the detection
with EDS of Al, O, Ca, Mg and Si in the craters (or “blisters,” in the terminology of the authors). The blisters formed
on the surface of the Pd cathode during the co-deposition process. The authors believe that the detected elements are
products of nuclear reactions. Interestingly, all the newly formed nuclei are stable. Anyway, there is no mention of the
presence of any radiation sources of charged particles or photons, except for point sources of IR radiation. There are
Al, Mg, Ca, Si, Zn at concentrations up to 20% revealed in the zone close to the blisters. Naturally, these impurities
exist on the cathode surface not in elemental form, but in the form of binary and multicomponent high-enthalpy phases
(oxides, oxycarbides, spinels, aluminates, etc.).

It is alleged that these impurities have a nuclear origin, because otherwise, according to the authors, they should
be uniformly distributed over the cathode surface. This argument is incorrect because intensive surface diffusion of
elements in the process of electrolysis occurs, due to strong heterogeneity of the electric field at the cathode surfacea.
Therefore, we cannot exclude the high probability of concentrated contaminants near the craters. Regarding the results
of the EDS analysis of Pd cathodes reported in Ref. [8], the detection of the high concentration of Ag in the craters
testifies only to rapid Ag migration, perhaps involving electro-capillary effect, from the lead wire to the cathode
surface. This is likely because the authors have presented analytical data for the part of the cathode surface close to the
contact zone. It should be borne in mind that reliable identification of Ag in Pd matrix with EDS method is possible
only at very high concentrations of Ag due to the overlap Lβ1Pd and Lα1Ag spectral lines. The authors did not assess
the amount of heat that would be generated by such a highly developed reaction of the nucleus of Pd with a proton
(deuteron) and the formation of an Ag nucleus. A rough estimate shows that in this case the Pd sample must instantly
evaporate, not to mention other, more dramatic consequences. A large number of analyses of the craters carried out by
Energetics Technologies (Israel) with SEM and XRD methods. They can be summarized as follows:

(1) The craters arise on the Pd cathode during electrolysis with electrolytes made from light or heavy water.
(2) The craters appear when there is excess heat production, but they also appear when there is no excess heat.
(3) The crater areas usually do not contain impurities other than carbon and platinum.
(4) The concentration of Pt in the melted zone is increased, as compared with the rest of the cathode surface; that

is easy to explain due to the phase transition of the first kind and by the higher melting point of Pt, as compared
to that of Pd.

(5) The experimentally observed concentration of the craters is so low that the total amount of heat required for
their formation is incomparably smaller than the experimentally measured excess heat, when heat is detected.
Thus if we assume that all excess heat, e.g., 1 J is realized through formation of the craters, the craters have to
cover the entire surface of the cathode with a mean density of 106 − 107 cm−2. The experimentally measured
concentration of craters is just about 5–6 orders of magnitude less than this; hence, the corresponding amount
of heat cannot be detected by any known calorimeter.

aThis effect is caused, for example, by growth of the secondary and negative Pd crystals during the electrolytic process. Certainly, simultaneously
with Pd, all other elements move onto the cathode surface. This is a very important circumstance that should not be overlooked.
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The absence of radiation from LENR is usually explained by the dissipation of the energy in the lattice (e.g., by
a change in its phonon or plasmon spectra). However, if we assume the craters are of nuclear origin, we must also
assume that the zone of their thermal influence is very small, and has no effect on the energy spectrum of the metal as
a whole.

Of course, the possibility that nuclear reactions form the craters cannot be excluded from consideration. However,
this hypothesis should be substantiated only with detection products of such reactions located close to the crater area.
On the other hand, searching for the nuclear products should be preceded by the search of the less exotic sources of
heat as the cause of the phenomenon.

An example of such mundane sources may be, e.g., reaction of recombination of atomic deuterium (hydrogen):

2D → D2 + 221.7(kJ/g − at.D) (1)

2H → H2 + 217(kJ/g − at.H) (2)

Release of the heat of recombination due to a local fast desorption of D (H) at loading ≈ 1, is quite sufficient, as
is evident from (1) and (2), to melt the corresponding mass of Pd(∆HmPd = 16.7 kJ/g –at.). This is true, as is easily
seen, and for smaller ratios D/Pd, especially in view of the high probability of the oxidation reaction of deuterium
(hydrogen):

D2g(H2g) +
1

2
O2g → D2(H2)O1 + 294.6(285.8)kJ/mol (3)

The high probability of reaction (3) is conditioned by the presence of dissolved oxygen in the electrolyte and free
oxygen which is released at the anode, with vigorous stirring of the electrolyte in the inter-electrode space, especially
at high current densities. The causes of the local sudden emission of an absorbed gas, the further scenario of the
behavior of metal near the places of gas emission, rate of mass and heat transfer of the associated processes should be
the subject of further research. By the way, the subject of the article, which was the reason for writing these notes, was
research into one of the aspects of the phenomenon under discussion.

Of course,the simple conjecture offered here suffers from one significant “disadvantage” – it does not need in the
excess heat effect (FP-effect) for the interpretation of the phenomenon.

From the above, it seems obvious that the assertion of the nuclear origin of the craters on the basis of the available
experimental data is premature. Thus, the question of the nature of the craters, which appear during the electrolytic
deuteration or hydrogenation of Pd remains open, and is a challenge for both theorists and experimentalists involved
in the unraveling of the mysterious LENR phenomenon.
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Research Article

Response to Comment on the Article ‘Simulation of Crater
Formation on LENR Cathodes Surfaces’

Jacques Ruer∗

Abstract

In Ref. [1] the kinetics of heat transfer during the heat bursts at the origin of the formation of the micro-craters on Pd cathodes
during electrolysis are discussed. It is assumed that LENR is the source of energy. In Ref. [2], M. Tsirlin made several comments.
The present paper answers these comments. Tsirlin thinks it is premature to accept the fact that craters result from LENR events.
Other less exotic phenomena should be considered first to explain the crater formation, before nuclear reactions. Tsirlin proposes
three potential heat sources:

(A) Recombination (molarization) of atomic hydrogen.
(B) Oxidation of the hydrogen at the cathode surface by oxygen evolved at the anode.
(C) Sudden emissions of the absorbed gas.

The three phenomena are examined and discussed here.

– The energy balance involved during hydrogen recombination does not match the energy required to create a crater.
– The oxidation process of the cathode is too slow to produce eruptions.
– Craters may result from the breakout of some of the many micro-cavities filled with hydrogen at high pressure. Mechanism C

might explain some features observed on Pd cathodes, such as craters gathered along surface defects. However, this mechanism
alone cannot explain the presence of frozen debris.

It seems that depending on the experimental setup, different types of craters may be obtained. Craters with a smooth internal wall
could be developed by fast and very energetic heat bursts, while craters with a rough internal wall would be formed by the breakout
of micro-cavities. More investigations are needed.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Cooling, Craters, Expansion, Hydride dissociation, LENR, Melting

1. Introduction

In Ref. [1], the kinetics of heat transfer during heat bursts that form micro-craters on Pd cathodes during electrolysis
are discussed. In Ref. [2], Tsirlin made several comments about this. The present paper answers these comments.

∗E-mail: jsr.ruer@orange.fr

c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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Many authors reported the presence of small size craters on the surface of palladium cathodes after LENR elec-
trolysis experiments. Their structure, observed by scanning electron microscopy, seems to indicate they result from
micro-eruptions. In some cases, a fraction of the metal is frozen, as if the metal were melted during the eruption. It is
conjectured the craters result from violent reactions [3–7].

In Ref. [1], the kinetics of heat transfer are investigated. The main teachings are summarized in a subsequent
section. In the article, it is assumed, as a starting hypothesis, that the violent reactions are of nuclear origin.

This assumption prompted comments from Tsirlin [2], summarized below. For Tsirlin, accepting that craters result
from LENR events is clearly premature. He proposes some non-nuclear phenomena which should be considered first
in order to find out their potential contribution to crater formation.

These comments and suggestions are quite interesting. As an answer to Tsirlin’s comments, the phenomena pro-
posed are briefly examined.

2. Simulation of heat Flow During Crater Formation – A Summary of Ref. [1]

The crater diameters generally range between 2 and 50 µm. A few are larger. In most cases, the craters are circular.
Some of them exhibit evident signs of fusion of a fraction of the solids. Kim [3] and Nagel [4] proposed a correlation
between the crater diameters and the energy involved in their formation. Starting from the corresponding assumption,
it can be derived that the enthalpy released raises the temperature of the crater content to about 2000 K.

The purpose of Ref. [1] was to examine the heat transfer between a small quantity of metal at 2000 K and the
surroundings by cooling via conduction and radiation. The aim was to determine within an order of magnitude the
maximum duration of the event before complete cooling. The simulation considers an initial sphere of metal at 2000 K
embedded in the bulk of metal. The model calculates the temperature evolution by conduction.

Because of the small dimensions of the objects considered, the cooling rate is extremely fast. For example, a 50
µm diameter crater is cooled in less than 1 µs.

If the metal piece at 2000 K is located at the surface of the cathode, some heat is lost by radiation. It is shown that
radiative cooling has little influence.

The model does not need a physical explanation of why the temperature of a metal piece is suddenly brought at
2000 K. The same model can be used to simulate heat bursts other than LENR. On the other hand, the model does not
give any hint about the origin of the energy. It teaches only that if heat bursts occur, the lifetime of the hot spots is very
short.

Several difficulties are raised by the simulation, which are listed in paragraph §5 of [1]. A paradox appears, because
if LENR phenomena develop on particular structures of the solids (Nuclear Active Environment), these structures
should be destroyed as the solid melts down, so that the reaction should stop immediately.

3. Summary of the Comments Made by Tsirlin [2]

Tsirlin took the opportunity to comment my paper to stress that the origin of craters is a subject which deserves caution.
In LENR literature, it is widely believed that the origin of cratering is of some form of nuclear energy. In Tsirlin’s
view, many arguments in favor of this assertion are questionable.

Tsirlin discusses the detection of transmutation products. My own competences do not allow me to make any
comment in this field, so I leave it to others to address this point.

Regarding the craters, Tsirlin is in the best position to comment on the pictures in Ref. [1], as he was involved in
the project which published the pictures reproduced in Figs. 3 and 4. The studies performed at Energetics Technologies
allow Tsirlin to make important statements which are taken into consideration here:

– The craters arise on palladium cathodes in electrolytes made with light or heavy water.
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Table 1. Basic hypotheses.

Hypothesis 1 The solids involved in the crater formation are PdHx hydrides,
with x ≈ 1

Hypothesis 2 The crater is formed by a sudden heat burst originating from the
solids contained within the crater volume before the eruption

Hypothesis 3 The matter is ejected at high temperature (2000 K)

– Craters are observed with or without generation of excess heat.
– The surface density of craters is relatively low. Summing up all the energy related to the craters formed on the

cathode gives an insignificant power. Whatever the origin of the crater energy, excess heat, when present, is much
larger and must be produced by other processes.

Tsirlin considers the assertion about the nuclear origin of the craters premature, and invites us to consider first less
exotic sources of heat as cause of the phenomenon.

Three potential sources are proposed:

(A) Recombination of atomic hydrogen (deuterium).
(B) Reaction of oxygen coming into contact with the hydrogen loaded cathode because of vigorous stirring of the

electrolyte.
(C) Sudden emission of the absorbed gas.

4. Basic Assumptions

The three possible phenomena are examined below. In this discussion, we consider the hypotheses listed in Table 1.
They are similar to the assumptions in Ref. [1]. We shall see later that this set of hypotheses may have to be revised.

The three hypotheses are sufficient to retain the main teaching of the model presented in Ref. [1], i.e. the crater
formation is very fast. For instance, the heat release and the ejection are completed in less than 1 µs for a 50 µm
diameter crater.

5. MECHANISM A : Atomic Hydrogen Recombination

The recombination of atomic hydrogen into molecules yields a large quantity of heat:

2H → H2, ∆H = −217 kJ g−1.

In fact, the hydrogen contained in the palladium cathode is not in a free atomic form, but it is instead dissolved
in the metallic matrix or combined as hydride. When hydrogen gas is put in contact with palladium, the sequence of
reactions summarized in Fig. 1 takes place:

According to the literature [8], the complete sequence corresponds to the formula:

Pd +X/2 H2 → PdHx, ∆H = −X 18.6 kJ mol−1(X < 0.7).

The above diagram shows the schematic sequence of palladium hydride formation.
The reaction is exothermic, indicating that palladium hydride is a stable compound. Then too, if we consider the

reverse reaction, some heat must be brought to the system to dissociate the hydride and release the hydrogen.
The formation enthalpy of palladium hydride PdHx depends on the loading quantity X.
In Ref. [8], values are given for different values of X at a temperature of 298 K:

X < 0.7 : ∆H = −18.6 ± 0.3 kJ mol−1H(plateau α− β of the Pd − H2 diagram)
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Figure 1. Schematic sequence of palladium hydride formation.

0.7 < X < 0.86 : ∆H = X. 46.71 − 50.38 kJ mol−1H .

Figure 2 shows the corresponding relationships. It can be concluded that the hydride stability decreases when the
loading factor increases. However, up to X = 1 the formation remains fundamentally exothermic.

To simplify the calculations, one can consider the average enthalpy of formation when X = 1. To do this and for
the ease of the calculation, it is assumed that ∆H = 0 for X = 1 (see Fig. 2). The average value obtained is:

∆H = − 16 kJ mol−1 for PdHx with X = 1.

This is an approximation, but it is sufficient for the present discussion.
In Ref. [1], Fig. 5 shows that the heating of palladium metal up to 2000 K requires 640 kJ.kg−1, or 68 kJ mol−1.

This value includes the latent heat of fusion of palladium (16.7 kJ mol−1), and the sensible heat of the solid and liquid
metal.

In fact, these values correspond to the enthalpy of metallic palladium only and do not take into account the presence
of the hydrogen dissolved or combined with the metal, which is also involved in the eruption. This should be taken
into account. If we assume that the crater results from the melting of PdH up to 2000 K, the overall energy requirement
is the sum of:

PdH dissociation 16.0 kJ mol−1

Pd enthalpy at 2000 K 68.0 kJ mol−1

1/2 H2 enthalpy at 2000 K 25.4 kJ mol−1

Total 109.4 kJ mol−1

(6)

Several authors showed that hydrides may contain a large amount of vacancies, so-called super abundant vacancies
(SAV) [9,10]. The total energy of the ordered defect hydride corresponding to the formula Pd3VacH4 is lower than

Figure 2. Pd–H2 reaction enthalpy – the relationship up to X = 0.86 is from Ref. [8] – the extrapolation between X = 0.86 and 1.0 is from the
author – Value for Pd3VacH4 is from Ref. [10].
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the ideal defect-free PdH hydride. The calculated formation enthalpy of the SAV hydride is −0.15 eV, or −14.49 kJ
mol−1 H. This value is plotted in Fig. 2 for H/Pd = 4/3 = 1.33

Hydrogen absorption is exothermic up to high hydrogen loading rates. As a consequence, the outgassing of the
hydride following the sequence opposite to the one shown in Fig. 1 must consume heat to proceed.

According to this pure thermodynamic analysis, it appears unlikely that a sudden and spontaneous release of
hydrogen could generate the heat bursts able to melt the metal accompanied by a flux of hot hydrogen.

6. MECHANISM B: Reaction with Oxygen

Tsirlin invites us to consider the situation in an electrolysis experiment. Oxygen bubbles are generated on the anode,
part of the oxygen is dissolved in the electrolyte, and because of the vigorous stirring of the bath, some oxygen bubbles
can come close to the cathode. The bubbles are considered to be the major source of oxygen available to drive the
oxidation process.

Let us imagine that some bubbles of oxygen come into contact with the cathode and stick to it (Fig. 3).
The following chemical reaction may arise:

H2g + 1/2 O2g → H2O, ∆H = −285.8 kJ mol−1.

The reaction must logically take place at the cathode surface. The hydrogen may be hydrogen adsorbed on the cathode
before the approach of the oxygen bubble, or hydrogen absorbed within the palladium migrating to the surface.

Let us consider the case of a 50 µm diameter crater. The energy for the formation is 3.2 × 10−5 J if we keep the
value of 68 kJ mol−1 considered in [1]. According to the discussion in the above, the crater formation energy should
rather be 109.4 kJ mol−1 . The energy of formation of this 50 µm crater is then 5.1× 10−5 J.

If we make the rough and optimistic assumption that all the heat produced by oxidation of hydrogen is transferred
without any loss to the metal, the volume of oxygen required to generate the desired heat burst is at least V =
2 × 10−12m3. This corresponds to a 160 µm diameter spherical bubble at standard conditions. The reaction spot is
supposed to have the final crater diameter, 50 µm in this case, with a surface S = 2× 10−9m2.

Figure 3. schematic interpretation of an oxygen bubble in contact with the cathode.
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Let us further assume that the reaction between hydrogen and oxygen is instantaneous. The reaction rate is then
governed by the diffusion of the reactant species:

– Diffusion of oxygen within the bubble towards the cathode surface.
– Diffusion of hydrogen within the metal towards the surface.

The H2O formed on the metal surface must go away from the surface. The water molecules can only migrate into the
oxygen bubble. Inside the bubble attached to the cathode, a layer of vapor-rich gas is formed over the reaction spot.
The oxygen must then diffuse across this layer to reach the metal.

Let us consider for example that the vapor layer attached to the metal over the reaction spot has a thickness of
δ = 10 µm. The diffusion coefficient of oxygen is about D = 0.3 cm2 s−1 or D = 3× 10−5 m2 s−1 .

The order of magnitude of the transfer rate of oxygen is:

Q =
DS

δ
.

The time required to transfer the volume of oxygen V is:

t =
V

Q
, t =

V δ

DS
.

With the values used here, we obtain t = 330 µs
This is only accurate to within an order of magnitude. As the reaction proceeds, the temperature rise can accelerate

the diffusion. On the other hand, the vapor layer grows and the oxygen diffusion slows down. In any case, this value
is clearly much longer than the crater formation, by almost three orders of magnitude. As a result, the oxidation
mechanism is relatively slow and cannot explain alone the fast formation of the craters as they are observed on the
surface of cathodes.

7. MECHANISM C: Sudden Emission of Absorbed Gas

The third mechanism proposed by Tsirlin is a sudden emission of the hydrogen absorbed in the cathode.
It is known that in palladium loaded with hydrogen, many cavities appear under the influence of the stresses

resulting from the hydrogen introduction into the metal lattice [11]. The cavities are filled with hydrogen gas at a
pressure which can be very high.

Super abundant vacancies (SAV) can also generate micro-voids. In Ref. [12], experiments are reported with
palladium loaded at high hydrogen pressure at 800◦C. The vacancies coalesce together to form pores 20–30 nm in
size when present in the interior of the metal, and 1–3 µm when condensed at the surface. Moreover, the pores are
dispersed homogeneously across the surface.

We can imagine the following scenario (Fig. 4):

– The hydrogen combines with the palladium to form the β phase hydride.
– Many small cavities appear, as a result of mechanical stresses and dislocations, or as a result of SAV formation.

The micro-cavities are filled by hydrogen at high pressure.
– At a given moment, a cavity close to the surface breaks out and the gas content is released into the environment.

The local hydrogen pressure is suddenly relieved.
– The pressure of hydrogen is still high in the surrounding hydride and micro-cavities. The distribution of the

stresses in the solid becomes non-uniform. This drives the disintegration of the solid locally. Small debris are
ejected by the gas flow, leaving a crater.
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Figure 4. Schematic view of hydride disintegration.

– The order of magnitude of the disintegration propagation is the sound velocity in the solid, in the range of
103m s−1. A small crater can be formed in the very short time calculated in the paper.

This is only an outline of a possible mechanism. More studies would have to be made to refine the process, in particular
the mechanical behavior of the solids during the disintegration.

The initial breakout may preferentially occur where the surface presents pre-existing defects. This may explain
why craters are sometimes seen aligned along surface defects. See for example Fig. 5, reproduced from Ref. [5].

This model does not explain why the temperature can rise to very high values, or why some craters exhibit frozen
material.

Figure 5. SEM photographs of craters on palladium cathode surfaces after 10 days of electrolysis in a light water based electrolyte. Scale lines
are shown at the bottom of each photograph. Ref. [5].
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Figure 6. Example of craters found on the surface of palladium cathodes that were subjected to intermittent application of ultrasound cavitation
during electrolysis in an heavy water based electrolyte, Ref. [6].

8. Rough Craters and Smooth Craters

All craters are not alike. A review of the different morphologies is given in Ref. [4]. Two different examples are shown
in Figs. 5 and 6.

Figure 5 is taken from a paper by Toriyabe, Mizuno and Ohmori [5]. The craters were observed on palladium after
10 days of electrolysis in light water. The craters whose maximum size is over 10 µm are located along pre-existing
scratches on the surface. The crater walls are very rough, with many small pieces of fractured metal. No evident sign
of fusion can be seen. Mechanism C described above could explain the rough structure observed in this case.

Figure 6 reproduces two micrographs obtained at Energetic Technologies during experimentation with ultrasonic
excitation [6]. The picture on the left shows a crater with a diameter of 3 µm. Apparently, molten matter spouted out
of the crater and formed a kind of “micro-lava flow” about 10 µm long. It seems that the cathode surface was vertical
during the test, and the flow is in the downward direction. Tsirlin could confirm this.

The picture on the right shows another microscopic lava flow. It extends 40 µm downwards. The crater at the
origin of the flow cannot be seen, probably because it is hidden behind the frozen eruption.

These two examples exhibit smooth crater walls and lava flow shapes.
Let us suppose that the “micro lava flows” were formed by a flow of fused matter which dripped along the surface

before cooling down. For cathodes immersed in water, the cooling is very fast. However, if the eruption takes place
when a bubble of hydrogen is present at the same location, the cooling may take more time. Heat flow calculations
could be made to clarify the phenomena, although this is not done here.

We can calculate the minimum duration of the flow of melted matter as follows:

– The matter located at the tip of the “lava flow” follows a trajectory with a speed which can only be smaller
than the free fall velocity of an object induced by gravity

– The distance traveled under the influence of gravity is given by the formula:

Z = 1
2gt

2 with g = 9.81 m s−2 acceleration of gravity

– Considering the flow lengths shown in Fig. 6 (10–40 µm), the duration of the free fall is1.4 × 10−3 s to
2.8× 10−3 s.

The actual duration of the flow is probably longer, because the velocity has to be slower than a free fall. The important
point is that the phenomena at the origin of the flows visible on the microphotographs lasts several milliseconds. This
order of magnitude is completely different from the one considered before (10−6 s), which resulted from the set of
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hypotheses listed in Table 1.
This means that these hypotheses are not valid ways to simulate the phenomena at play during the formation of

the craters shown in Fig. 6. Moreover, the shape of the “lava flows” seems to indicate that the gas velocity during the
eruption was relatively modest. Otherwise the molten metal would have been ejected away from the cathode surface.

9. Further Research is Needed

The conclusion of this investigation is that additional observations should be undertaken.
In the case of “smooth craters”, it would be important to determine the elemental composition of the “micro lava

flows”, to check the influence of a possible contamination.
If a partial melting actually occurs during the formation of some craters, a high temperature is reached during a

short time. Molten metal at 2000 K must emit photons in the visible range. The presence of impurities on the surface
may lower locally the metal melting temperature, but the peak temperature is still probably sufficient to emit photons in
the visible range. A simple method to assess the peak temperature of hot spots is to observe the surface of the cathode
during electrolysis. An experiment could be conducted in a dark chamber. A photon detector or a photographic camera
with a long exposure time would detect the tiny light flashes emitted by the craters, if any.

In Ref. [7], an infrared camera was used to record the evolution of the temperature of a Pd film co-deposited on
a Ni screen during electrolysis in heavy water. Hot spots were detected. The maximum temperature could not be
assessed, because it exceeded the IR camera range. It is proposed here to perform similar experiments with photon
detectors in the visible range. If the observations are made at two different wavelengths, the ratio of the light energies
may give an indication of the temperature level reached.

It is conjectured that no photons in the visible range will be observed under the experimental conditions producing
rough craters. In contrast, the formation of smooth craters should be characterized by light emissions, if the morphol-
ogy of these craters results from partial melting.

10. Conclusions

Tsirlin considers that the assertion about the nuclear origin of craters is premature and that other prosaic sources of
energy should be investigated first. He proposes three potential phenomena that should be evaluated. As an answer,
this paper presents a first approach of the three proposed mechanisms:

• A- Recombination of atomic hydrogen: The hydrogen dissolved in the metal is in monoatomic form. The hy-
drogen absorption in palladium is exothermic. From a pure thermodynamic point of view, the reverse reaction
(dissociation of the hydride, followed by the recombination of the hydrogen molecule) can only consume heat.
Therefore, this mechanism cannot explain the spontaneous heat bursts observed.

• B- Reaction with oxygen: The hydrogen on the palladium surface can react with oxygen present in the bath.
However, the reaction velocity is limited by the diffusion of the reactant species. This mechanism cannot
proceed at the rate required to generate the heat bursts able to form craters.

• C- Sudden emissions of absorbed gas: Palladium loaded with hydrogen contains many micro-cavities filled
with hydrogen at high pressure. Some cavities located close to the surface can break-out and initiate the
formation of craters. This mechanism can explain the role of surface defects in the crater localization. However,
it cannot explain the presence of melted matter found in some cases.

While some craters have a rough surface, which might be explained by mechanism C, others exhibit smooth shapes,
indicating that melting takes place during the eruption. The origin of the fast and strong heat bursts remains unex-
plained.
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It is suggested to confirm the temperature level reached during cratering. This can be done by monitoring the
emission of visible photons during electrolysis in an experiment designed for this purpose. A temperature level of
2000 K must be accompanied by the emission of photons in the visible range, which can be easily detected.

In any case, it is important to keep in mind the fact that craters are only one aspect of the phenomena taking place.
When an experiment yields some excess heat, the energy involved in the crater eruptions is a small fraction of the
total heat measured. This means that the source of the excess heat is not directly linked to the craters. The craters are
intriguing objects, which attract attention. It is tempting to draw a relationship between these micro-explosions and
the excess heat, but other phenomena must be responsible for the major part of the excess heat.

I want to express my thanks to Tsirlin for his comments. My initial paper was not intended to discuss the LENR
phenomenon, but only to have a look at the kinetics of crater formation. His invitation to consider less exotic explana-
tions attracted my interest. For the moment, it does not seem that the potential mechanisms proposed can explain all
the features of the craters.

More research is needed.
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Abstract

The production of excess energy in palladium cathodes electrochemically loaded with deuterium (the Fleischmann–Pons Experi-
ment) has been debated in the literature since its first publication in 1989. In a subset of 61 trials, we electrochemically loaded
palladium–rhodium foil cathodes with deuterium from alkaline solutions of heavy water in specially designed closed calorimeter
cells. We observed excess energy bursts in the range 2.4–44.3 kJ in 6% of these experiments. Additionally, a conservative estimate
of the total integrated output energy is greater than the total integrated input energy in these experiments. This paper documents
the steps taken to examine these results thoroughly for calibration/measurement errors and instrumental artifacts. A 2.4 kJ energy
burst is at least four times greater than the energy released by oxidizing deuterium in the cell headspace. The data and subsequent
elimination of alternative explanations for excess energy production lead us to conclude that the excess energy is real and of yet
unknown origin.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Calorimetry, Deuterium , Excess energy, Palladium

1. Introduction

The most significant claim in the early publications by Fleischmann and Pons was of excess energy production in
palladium cathodes electrochemically loaded with deuterium [1–5]. Experiments were described in which “bursts”
of excess energy were generated in palladium rod electrodes after several weeks or months of electrolysis. Excess
energy produced at high current densities (500–1000 mA cm−2) was tens of watts over many days and reached a
cumulative total of MJ cm−3 of palladium and often caused the electrolyte temperature to reach the boiling point.
These extraordinary results were attributed to unknown nuclear processes since any other cause such as chemistry or
non-nuclear physical energy was implausible [1–5]. The neutron and tritium generation rates were orders of magnitude
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lower than produced by D–D fusion reactions at high temperatures for the given amounts of excess energy measured.
Thus, the excess energy claim seemed to defy conventional understanding of chemistry or nuclear physics and to
require new science to explain its origin.

Since the early publications by Fleischmann and Pons, numerous accounts of excess energy production in palla-
dium cathodes electrochemically loaded with deuterium have been reported [6–13]. However, in spite of mounting
evidence, criticism has been that the excess energy observed is either due to overlooked chemistry, measurement errors
(such as calibration issues), or instrumental artifacts [14,15]. Due to the significant potential scientific and practical
payoffs should this evidence be correct, further research has been conducted.

Excess energy in the early Fleischmann and Pons work can be classified as two types: (1) Type A was a relatively
constant gain in the power out vs. the power in (Fig. 1a) that starts fairly quickly and is not dependent on the current
density. We have seen Type A behavior occasionally in our systems but these offsets (<10% in our cases) could be
dismissed as due to calorimeter calibration shifts or attributed to unknown chemistry. (2) Type B behavior is a large
energy burst (Fig. 1b) that happens after considerable electrolysis and was observed in one of the early Fleischmann
and Pons experiments [2,3]. These bursts are rarer than Type A behavior but are almost impossible to dismiss as
calibration errors or stored energy. For our work, we adopted the sandwich electrode configuration attributed to
Vittorio Violanti (ENEA) [13]. Experiments at Energetics Technologies (ET-Omer, Israel), SRI Int. (Menlo Park, CA),
and ENEA (Frascati, Italy) have also reported excess energy with varying levels of reproducibility with this electrode
configuration. Energetics Technologies found Type B excess energy in eight of approximately 800 experiments (∼1%).
In six of their experiments, the excess energy measured was 1–3 MJ [16]. In 23 attempts at replicating the Energetics
Technologies results, eleven SRI experiments (48%) generated 100–500 kJ excess energy [17,18]. Selecting only those
results where the percentage of excess power is at least 50% greater than the input power at any given time, SRI found 4
of 23 (17%) experiments produced an excess but none of these were clearly Type B behavior. Similarly, 4 of 10 (40%)
experiments at ENEA produced at least 50% excess power with one of Type B behavior [18,19]. The choice of at least
a 50% excess power is arbitrary, but is large enough to exclude measurement artifacts. Other excess energy-producing
experiments carried out at ET, SRI and ENEA exhibited smaller power bursts (mW) often seen superimposed on low
levels of excess power (mW) lasting for many days (up to 40 days). Although using a different electrochemical cell
design, Storms reported that 3 of 80 (4%) Fleischmann–Pons-type experiments showed excess energy [20].

Two types of excess energy are shown in Fig. 1. Figure 1a shows a slow rise in excess energy vs. time. Figure
1b shows a large energy burst that resembles those bursts that are the subject of this paper. The constant rise in excess
energy vs. time is often seen and we termed this Type A heat. By integration over a long time, this small excess can be
an appreciable amount of excess energy, claimed by some to be above that possible from chemical means or storage.
On the other hand, the constant rise could be construed as a calibration error or a change in instrumental calibration.

This paper describes our observations of Type B behavior from a subset of 61 similar cathodes out of more than
300 separate experiments. This subset was chosen to focus on a palladium–rhodium cathode material prepared by the
same process from the same source of palladium, alloyed in a similar manner, and electrolyzed in 1 M LiOD electrolyte
with Pt anodes. High-quality commercial instrumentation custom designed for these electrochemical studies was used.
The data presented do not include results from experiments on pure palladium cathodes, control samples, or cathode
materials prepared under other conditions or run with anodes other than Pt.

Our results demonstrate that the large excess energy observed in our experiments was a real phenomenon worthy
of scientific inquiry and was NOT due to calibration/measurement errors. Although under different conditions than the
sets discussed here, our remaining 240+ experiments showed no excess energy or Type A behavior and therefore will
be discussed elsewhere.
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Figure 1. Examples of two types of excess energy taken from the literature. Figure 1a is an expansion of Fig. 1b. The data were acquired in an
open cell configuration [2,3] and re-plotted from [2]. A ratio of 1 would indicate that the power out = power in, which would be expected from
conventional chemistry.

2. Experimental

2.1. Materials

A 90 at.% palladium –10 at.% rhodium alloy (abbreviated as Pd90Rh10)was prepared using hydrogen-torch melting
on an alumina plate. High-purity palladium (99.95%, Produits Artistiques Métaux Précieux (PAMP)) and rhodium
were used. In the preparation, rhodium pieces were initially wrapped with palladium foil to reduce rhodium oxidation.
The torch melting process lasted for a few minutes until a melt ball formed. After air cooling, the palladium–rhodium
alloy was repeatedly cold-rolled and annealed at 850◦C in a vacuum furnace (10−5 –10−6 Torr) to form 50 µm thick
ribbons. The ribbons were then annealed at 450◦C for 30 min and 850◦C for 90 min in a vacuum furnace. Prior to each
new electrochemical experiment, the 50 µm thick foil cathodes were chemically etched in 50% aqua regia for 2 min.

Heavy water electrolyte (1 M LiOD) was freshly prepared in a glove bag with an argon atmosphere prior to
each new electrochemical experiment by dissolving lithium foil (99.9%, Johnson Matthey) in deuterium oxide (99.9 %
isotopic purity, Cambridge Isotope Laboratory). High surface area catalysts, 0.5% palladium on alumina (Sud-Chemie)
and Pt electrode on carbon fiber paper (Johnson Matthey), were used to recombine the evolved deuterium and oxygen
gases. The recombination catalysts were contained in the perforated chamber above the electrodes near the cell top
(Fig. 2).



18 D.D. Dominguez et al. / Journal of Condensed Matter Nuclear Science 14 (2014) 15–28

Figure 2. Photographs showing (a) the Teflon cell with PEEK cell top fitted with two syringe needles and black polypropylene tubing for chemical
additions to the electrolyte and (b) PEEK cell with PEEK tubing replacing the syringe needles and polypropylene tubing inside the cell.

2.2. Electrolytic cells

Experiments were conducted in two different types of specially designed electrochemical cells. The initial excess
energy observation occurred during an electrochemical experiment with a Pd90Rh10 cathode in an all-Teflon cell
(25 mm internal diameter, 13.5 cm length) with a PEEK (PolyEther Ether Ketone) cell top (Fig. 2a). Two stainless
steel syringe needles (18 gauge) penetrated through the PEEK top to the cell interior to allow chemical additions to
the electrolyte with minimal disturbance. One needle was used as an air vent and the other as an addition port. Black
polyethylene tubing was attached to the addition port needle so electrolyte could be drawn into a syringe from the
cell bottom during chemical additions and electrolyte exposure to the stainless steel would be minimal (there is some
splashing during the cell operation inside the cell). In later experiments, Teflon cells were replaced with identically-
sized all-PEEK cells. In the redesigned cells, PEEK tubing (0.125 in, 3.2 mm diameter) replaced the syringe needles
to eliminate the possibility of shorts and reduce contamination by metals, in particular, those that might leach from the
nickel-plated brass Luer-lock tips. Photos of a PEEK cell and interior PEEK cell parts are presented in Fig. 2b.

Thermodynamically closed (no correction for evolved chemical enthalpy is needed) electrochemical cells were
used with the ENEA/Violante “sandwich” electrode configuration. The electrode dimensions for the cells were: cath-
ode (40 mm × 5 mm × 50 µm), Pt (99.9%) foil anodes (45 mm × 20 mm × 180 µm) and cathode–anode spacing of
5 mm. Teflon-coated 0.5 mm diameter Pt wires provided connections by spot-welding them to Pt disks and to 1 mm
diameter Pt wires extending through the PEEK cell top. The Pt disks made contact with the electrodes through pressure
applied by finger tightening screws threaded through the electrodes, Pt disks and PEEK spacers.

2.3. Calorimeter and calibration

The four-position calorimeter, custom made for this application by Hart R&D Inc., Mapleton, UT, was a Peltier-type
system with a linear response from 0 to 10 W and ±1 mW sensitivity. The Hart calorimeter is described in more detail
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Figure 3. Schematic drawing showing basic experimental design with the Fleischmann–Pons cell, BioLogic VSP power supply, and a precision
power resistor.

elsewhere [21,22] and was typically maintained at 25.00, 40.00, or 60.00◦C in a water bath with a thermal stability of
± 0.002◦C. The calorimeter was initially and intermittently calibrated using a 2.7 ohm stainless steel-coated Inconel
resistor immersed in water inside non-operating cells and with external 100 Ω resistors (calibration heaters) provided
for each calorimeter position. Calibration experiments were also run periodically using Pt or Ni foil cathodes in
1 M LiOD, and using Pd foil cathodes in 1 M LiOH with electrolysis occurring. Additionally, each experiment was
calibrated during the initial application of power into the cell with the assumption that lower power operation would
show no excess energy.

2.4. Experimental procedures and data collection

Calorimetric measurements were carried out isothermally under constant current or constant power conditions. A
schematic drawing showing the basic experimental design is shown in Fig. 3. In a given experiment, two or
three cells were placed in the calorimeter and run concurrently under identical conditions. Power was supplied to
the cells using three of five channels from a computer-controlled power supply (BioLogic VSP Modular Potentio-
stat/Galvanostat/electrochemical impedance spectroscopy). The input power to an electrochemical cell was determined
as the product of the current supplied by the VSP and the cell voltage. Current input to the cell was confirmed by mea-
suring the voltage drop across a wire wound precision power resistor (0.5–5 Ω, 1%, 10 W). Electrolytic loading of a
cathode was started at a low current (50 mA) or low power (50 mW) input to the cell. During a typical experiment, the
current/power was gradually increased to a maximum of 2 A or 9 W in 8–10 steps of 4–6 h duration each.

Chemical compounds (Raney nickel, cobalt sulfate and nickel sulfate) known to produce oxide or magnetic inter-
faces on the surface of the cathodes were occasionally added to the electrolyte in attempts to initiate excess energy
production. The chemicals (reagent grade) were added to the electrolyte (24 mL) in the cells in 10–50 mg quantities
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during cell operation by: (1) placing the additive in a 2 mL all-glass syringe, (2) venting the cell by removing the vent
port seal, (3) removing the addition port seal and attaching the syringe to the addition port, (4) pumping electrolyte
into and out of the syringe a few times, (5) removing the syringe and resealing the cell. Additions were usually made
sequentially in the order listed above once the input power stabilized at its maximum programmed value. Most ad-
ditions did not produce excess energy. Raney nickel (Raney nickel is a 1:1 alloy by weight of aluminum and nickel
and the aluminum undergoes oxidation) reacting with hydroxide is exothermic and 50 mg should produce 488 J from
standard heats of formation. Raney nickel reaction with hydroxide is rapid but the heat evolution was often obscured
by the endothermic spike due to the addition. In any case, if chemistry were causing the heat bursts, it should occur
after every addition.

Four point resistance measurements were made in initial experiments. However, to reduce the measurement com-
plexity and make the system more robust and reliable, these measurements were discontinued in later experiments. It
was also our opinion that the information gained from resistance measurements was not worth the risk of a possible
extra energy source due to a possible intermittent instrument failure. Limited tritium measurements were made on
electrolyte solutions from heat producing and non-heat producing cells before and after electrolysis using the liquid
scintillation method on a Beckman LS-6500 Multi-purpose Scintillation Counter. No evidence of tritium production
was observed. The cathodes were not checked for tritium.

Electrochemical and calorimetric data were collected at 1 s intervals using EC-Lab software provided by BioLogic.
Experiments were carried out in a limited-access building located in a controlled-access laboratory. The building
was vibration-isolated and RF-shielded and the laboratory space within was temperature controlled to 20.0 ± 0.1◦C.
Examination of ingress logs showed that no unauthorized individuals entered around the times of the events.

3. Results and Discussion

During the course of this work, it was determined that many sources of palladium used historically in successful
Fleischmann–Pons experiments actually came from one producer (Engelhard). ICP-MS analysis for trace impurities
on older cathodes indicated a change likely was made in the palladium processing by the supplier [23]. Older cathodes
had Al, Rh, and Pt present whereas newer cathodes had Zr, Hf, and Y, but little Rh or Pt. A change in processing
using zirconia crucibles likely occurred to account for the new presence of Zr and Y. The levels of these impurities
were in the ppm range so the palladium met the supplier stated purity. However, newer lots did not always etch the
same and some were mechanically harder than older lots. The Pd90Rh10 alloy was developed as it was thought the
hypothesized processing changes might have been responsible for newer palladium cathodes showing no excess energy
(about 100 attempts for us) whereas the success rate claimed for older palladium materials was much higher for other
investigators.

The Pd-rich Pd–Rh alloys are an exception to the general rule that Pd alloying results in decreased absorbed
hydrogen [24,25]. Desorption via non-electrochemical recombination reactions (Tafel reactions) is less efficient when
using Pd–Rh alloy than when using pure Pd [26] potentially allowing more efficient loading. We decided to incorporate
Rh at levels near its miscibility point with Pd rather than at trace levels as in the older material. The Pd–Rh alloys
are significantly more resistant to chemical etching. This was thought to be important, as the etching step is one of
the least controlled steps in the cathode preparation. It was expected the enhanced chemical resistance would allow
for more reproducible surface features. It is known that mechanical properties of elemental metals can be improved
by even small alloy additions. Also, alloy addition has a pronounced effect on grain size distribution and indentation
hardness. Following our standard rolling and annealing procedures, typical grains were 20–60 µm in size. After the
aqua regia etch, the foils typically exhibited rough grains with steep sides and deep grain boundaries.

Historically, many electrochemical experiments were run for months before excess power was observed. Long run
times were hypothesized to concentrate impurities on the cathode surface [7]. Initially, our experiments were carried
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out in closed Teflon cells with no capability for chemical additions, and no excess power was produced. To mimic the
concentration process and improve the prospects for observing excess power, cells were modified to allow chemical
additions. However, prior to the change in cathode material from pure palladium to the Pd90Rh10 alloy, cells run with
chemical additions still showed little or no excess power.

The first calorimetric experiment with a Pd90Rh10 foil cathode (cathode #1) and chemical additions showed excess
energy. The experiment was carried out in constant current mode at 25◦C in a Teflon cell (Fig. 2a) and the data obtained
are displayed in Fig. 4. The figure shows plots of electrochemical input and output powers to/from the cell, current,

Figure 4. (a) Plots of input power (Pin), output power (Pout) on left vertical axis, and current, excess power on right vertical axis as a function of
time for Pd90Rh10 cathode #1 run at 25◦C in a Teflon cell with chemical additions to the 1 M LiOD electrolyte as indicated. Cumulative excess
energy is not plotted because of a data gap (due to a loose connection) from 89 to 116 h. (b) An enlargement of the power plots shown in (a) from
156 to 166 h.



22 D.D. Dominguez et al. / Journal of Condensed Matter Nuclear Science 14 (2014) 15–28

and excess power (Pout − Pin) vs. time. Input and output powers were calculated continuously. The steady state data
during the initial eight step increase in current were fit to provide an in situ calibration, assuming no excess energy was
produced during that time. The variation in fitting coefficients between runs was less than 1% over two years, which
confirmed the stable performance of the Hart calorimeter. Additional calibrations performed using resistors placed
inside the cells agreed with those obtained from the power steps. In other experiments, using pressure vessels and H2

combustion, the energy produced was within 1% of that calculated from literature value.
After loading the palladium-rhodium cathode (cathode #1), an instability in the Pout measurement occurred at

about 89 h due to a loose connection on the Hart calorimeter that persisted until the system was temporarily stopped,
repaired, and restarted at about 116 h with a constant current of 2 A (Fig. 4). Once the system regained stability,
chemical additions (Raney nickel, cobalt sulfate and nickel sulfate) were made to the cell. As shown in Fig. 4, an
endothermic transient is observed as the consequence of introducing cooler material into the cell during each addition.
About 36 min following the third chemical addition, evidence of excess power appeared in the data. Excess power
peaked at a maximum of almost 4 W with 9 W input (42% excess) and persisted for over 90 min (Fig. 4b). A fourth
chemical addition (nickel sulfate) was added to the electrolyte solution following appearance of the spike and recovery
of the baseline. The fourth addition produced no additional excess energy.

Calculated energy generated during the 90-minute interval was about 10 kJ. Chemical energy produced by metal
salt additions cannot account for the excess energy observed. In fact, the most energetic chemical reaction conceivable
in the cell would be the combustion of deuterium. That reaction could produce approximately 600 J (see below). The
10 kJ observed in the experiment is at least 15 times greater than the energy released by oxidizing deuterium. It is not
known whether chemical impurities were fully or even partially responsible for triggering the energy burst observed.
Moreover, since this was the first large excess energy burst seen in our laboratory and metal syringe needles were used,
it was hypothesized that a short of the needle to ground could have caused the burst.

Although, calculations could show that a short through the electrolyte would be insufficient to cause the apparent
energy, this prospect was thoroughly examined. While there was no evidence that a short had occurred during the
excess energy-producing experiment with cathode #1, the cells were redesigned to eliminate the possibility of a short
in future experiments. The redesigned cells were all plastic (PEEK) except for the Pt wire feed through penetrating the
PEEK cell tops, which were protected with a tight-fitting plug (not shown). Notably, PEEK tubing replaced the metal
syringe needles and the polyethylene tubing in the new cells as shown in Fig. 2b.

Pd90Rh10 cathode #27 was run in an all-PEEK cell without chemical additions. Excess energy was observed with
this cathode where an electrical short was thought to be physically impossible. However, a special condition on the
external wiring MAY have permitted a short to form intermittently.a Figure 5 shows the time evolution of the calculated
excess power and cumulative excess energy possibly obtained on Pd90Rh10cathode #27. At the start of the experiment,
the electrochemical cell was operated with a constant current of 20 mA. The current was stepped up to 50 mA at 8 h
while maintaining a power balance. But, at 9.6 h the cell began to produce a large amount of excess power and it
continued to do so for the next 5 h. During this time, while the input power fluctuated, the power output approached
a maximum of ∼10 W. No chemical additions were intentionally made during this experiment as the step increase in
input power was not completed. However, the cell may have been contaminated with chemical impurities that were
carried over from additions made in previous experiments as the input tubes were not acid cleaned to avoid degradation

aBriefly, the VSP can supply the required amount of power without generating an error if there is a direct short of the anode to earth ground, the
VSP power supply is in constant power mode, and the electrolyte is 1M. If the VSP were in constant current mode, an error message would be
reported during such a short. Errors were not reported during constant current mode operation of cathodes 1 and 60, but were intermittently seen
for cathode 27. Regardless of the mode of operation, the resistance of the short to earth ground must be less than 2-3 ohms for the VSP to supply
sufficient power to account for the observed heat. We have no evidence that shorts occurred during the observed excess energy events and during
the many hours of null results, no errors were ever reported.), then the VSP could not supply sufficient power to account for the observed heat. We
have no evidence that shorts occurred during the observed excess energy events and in the many hours of null results, no errors were ever reported.
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Figure 5. Variation of input power (Pin), output power (Pout) on left vertical axis and excess power, excess energy on right vertical axis with
time for Pd90Rh10 cathode #27 in 1 M LiOD run at 25◦C in an all-PEEK cell. The total electrical input energy from 0 to 14.7 h was 8.3 kJ. The
cumulative excess energy exceeded the total input energy by 45 kJ.

of the PEEK. The cumulative excess energy generated from the series of bursts was 44 kJ, assuming a short did not
occur. This represents a maximum power gain of almost 40 times and an energy gain over 6.

Excess power and cumulative excess energy produced with Pd90Rh10cathode #54 run in an all-PEEK cell, in
constant power mode without chemical additions are shown in Fig. 6. In this instance, the excess power burst occurred
with an input power of 4 W and excess power production reached a 2.5 W maximum, or approximately 63% of the
input power. The integrated value of excess energy generated from the burst was about 2.4 kJ. The cell returned
to power balance after a step increase in power to 7 W. Again, no chemical addition was intentionally made to the
electrolyte since the step increase in power was incomplete.

Pd90Rh10 cathode #60 was run in an all-PEEK cell with chemical additions. Excess power and cumulative excess
energy obtained in the mostly constant power experiment with cathode #60 are presented in Fig. 7. The figure shows
the cell in power balance with Pout = Pin and excess power equal to near zero at the start of the experiment. The cell
remained in power balance during step increases in power to 9 W in constant power mode and for another 2 h near
9 W while in constant current mode. Then, the cell voltage suddenly increased, raising the input power to a preset
limit of 12 W, and a large excess power burst was observed, followed by a second similar burst approximately 10 h
later. Excess power from these bursts reached ∼83% of the input power, or about 10 W maximum. Integrated values
of excess energy produced in the two bursts were 18.2 and 14.7 kJ, respectively, which was 6–8 times greater than
in cathode #54. The trigger for these excess energy bursts is unknown. The first burst occurred before any chemical
addition was intentionally made to the electrolyte. A Raney nickel addition was made prior to the second excess energy
burst. However, it is not known whether the addition was in any way responsible for initiating the burst.
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Figure 6. Plots of input power (Pin), output power (Pout) on left vertical axis and excess power, excess energy on right vertical axis as a function
of time for a Pd90Rh10 cathode #54 run at 60◦C in an all-PEEK cell with 1 M LiOD.

For a closed electrochemical cell, power output should equal power input. Thus, the expected excess power
(Pout − Pin) should equal zero. Deviations from this expectation may be attributed either to simple chemistry or,
if shown not to be a measurement artifact, to new science. Energy can be stored in two forms during electrolysis. In
the first, energy is used to heat the cell contents. The negative spikes observed in the excess power plot during the
power steps are due to the instantaneous change in the electrochemical input power whereas the Hart calorimeter re-
sponse is limited by its time constant (∼15 min) needed to heat the components. From several non-energy-producing
cells, it takes approximately 8 kJ (7.8 ± 0.6 kJ, n = 7) to heat a cell to its steady-state operating temperature with
a power input of 9W (see Fig. 7a). This heat can be recovered when power is removed and the cell cools down.
The second form is stored chemical energy. The most energetic chemical reaction conceivable in the cell would be
combustion of deuterium by oxygen. If only oxygen filled the headspace (∼25 mL, 1 atm pressure) above the elec-
trolyte (to produce maximum oxidizing energy) and deuterium was somehow sequestered in the palladium cathode
and suddenly released to react with the oxygen, approximately 600 J could be produced. This is four times less than
the 2.4 kJ observed on the low end of the energy bursts (cathode #54). Furthermore, stored chemistry (the production
of H2 and O2 is accounted for in our energy balance) is not evident because such stored chemical energy must come
from somewhere in addition to the energy used to heat the cell. If there were appreciable stored energy, the cumulative
excess energy would be more negative than 8 kJ by that amount of stored chemical energy. This has not been observed
in our experiments. The heat pulses cannot arise from the heat content of the cell as there is no known mechanism in
an isothermal system by which this heat can be converted to a heat pulse and thereby concentrate the heat. This would
violate the first law of thermodynamics. To reiterate, the observed energy bursts must come from some other source
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than cumulative stored energy. Although we believe it to be unrealistic, and if one assumed that all the excess input
energy went into stored chemical energy powering some unknown chemical reaction (which in itself would be very
energy dense) instead of heat, one still could not account for the two cells with Pd90Rh10cathode #27 (Fig. 5) and
cathode #60 (Fig. 7), where the cumulative energy output (∼25 kJ) greatly exceeds the energy input even considering
the 8 kJ necessary to heat the cells.

Following each of these excess energy-producing experiments, an extensive investigation was undertaken to ex-
amine the possible cause of these events. These efforts focused on electrical shorting as the only instrumental artifact
that could conceivably explain the data. In these investigations, the requirements and consequences of electrical shorts
deliberately produced in the power supply, inside the cell or external to the cell and calorimeter were exhaustively
explored. Some of the excess power data could be reproduced by shorting the power supply in a certain manner as
explained in footnote a. However, the likelihood that a short (∼1 Ω) could form and then disappear and reform in
the manner necessary to mimic the data (cathode #60) was extremely remote, given the care taken to prevent such an
occurrence. Detailed results of our investigations on the effect of electrical shorts in the experiments described will be
published separately.

Results of the four excess energy-producing experiments presented have some similarities and differences worth
noting. Experiments were all carried out on Pd90Rh10 foil cathodes in 1 M LiOD electrolyte and all displayed large
magnitude (≥2.4 kJ) excess energy bursts that could not be accounted for by chemistry. Since the cathode volumes
were about 0.01 cm−3, the excess energy generated was approximately 1 MJ cm−3 which is similar to that observed
by Fleischmann and Pons [1–3]. Two of the four cathodes were run in experiments with constant current while the
other two cathodes were run with constant power. The four experiments were run isothermally at three different
temperatures, 25, 40, and 60◦C, and excess energy bursts were obtained in three different Hart calorimeter positions
and run using three different VSP channels. During each excess energy-producing experiment, one or two additional
cells, run concurrently under identical conditions in the calorimeter, did not produce excess energy. These disparate
results indicate a power supply or calorimeter malfunction is an unlikely source of experimental error. Moreover,
there doesn’t seem to be any individual temperature, cell, calorimeter position or VSP channel that is particularly
favorable for producing the excess energy results observed. In addition, null results acquired on more than 100 other
Pd90Rh10 cathodes and on a large set of palladium cathodes run before and after the excess energy results serve as
control experiments and provide sufficient evidence that the instruments were performing correctly throughout and
measurement or calibration errors were non-existent.

We observed large amounts (tens of kJs) of excess energy in four out of 61 similar experiments (∼6%). These
bursts are much greater than chemical energy and are similar to those observed in other laboratories. We cannot rule
out an instrumental artifact for one cathode. However, the other three cathodes have signatures that differ from a
short in substantial ways. For example, cathode #60 requires more power than a short could provide and has none
of the disturbances in other channels that would indicate a short. The result from cathode #27 could be due to an
instrumental artifact caused by a short under very selective conditions as it had disturbances in the other channels and
a lower power output which could be provided by the power supply. As such, the demonstration of cathode #27 as
an unconventional energy source should be discounted at this time. This particular kind of instrumental artifact will
be discussed in detail in a subsequent paper, but an instrumental artifact is not consistent with the results from the
other three positive cathodes. Although the number of events is small, these results taken in combination with others
acquired under varied conditions reduces the chance of an unrealized systematic error. Thus, we propose that this data
set showing large events whose energy production is above chemistry in a thoroughly vetted system demonstrates new
science that should be explored.
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Figure 7. (a) Plots of input power (Pin), output power (Pout) on left vertical axis and excess power, excess energy on right vertical axis as a
function of time for Pd90Rh10 cathode #60 run at 40◦C in an all-PEEK cell with chemical additions to the 1 M LiOD electrolyte as indicated. (b)
An enlargement of the power plots presented in (a) from 35 to 55 h showing the two large excess power bursts.

4. Conclusions

From over 300 Fleischmann–Pons-type calorimetric experiments, a subset of 61 experiments on a palladium–rhodium
alloy cathode material, Pd90Rh10, electrochemically loaded with deuterium in 1 M LiOD electrolyte solution are
presented. Three to four of these experiments produced Type B excess energy bursts too large (≥2.4 kJ) to be of
chemical origin. The large collection of null results confirmed that the instruments were performing correctly and
measurement errors were non-existent. We achieved some success initiating a few excess energy events with incubation
times of days (vs. weeks or months) using cathodes made with the palladium–rhodium alloy and with chemicals
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deliberately added to the cells. Shorter incubation periods can minimize drifts that might occur over long experiment
times and, thus, simplify the data analysis and interpretation. The levels of excess energy produced and reproducibility
achieved in our experiments is comparable to what has been reported in some of the literature. Attempts to improve
the reproducibility and understand the initiation and source of these energy bursts are continuing in our laboratory.
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Abstract

In this communication, the use of CR-39 detectors to detect energetic charged particles and neutrons in LENR experiments is
discussed. The main advantages of these detectors over real-time electronic detectors are its integration capability and its ability
to speciate energetic particles. Unlike real-time detectors, CR-39 can be placed in close proximity to the cathode and can be used
for both electrolysis experiments and gas loading. These advantages of CR-39 detectors over real time, electronic detectors are
particularly important when energetic particle emissions occur either sporadically in bursts or at a low flux.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

Columbia Resin 39 (CR-39) is an allyl glycol carbonate plastic that is optically clear and amorphous. In 1978,
Cartwright et al. [1] were the first to show that CR-39 could be used to detect nuclear particles. As an energetic,
charged particle traverses through the plastic, it creates along its path an ionization trail that is more sensitive to chem-
ical etching than the bulk material. After etching with an aqueous 6 M NaOH solution between 60 and 70◦C for six
or more hours, tracks due to the energetic particles remain in the form of pits that can be examined with the aid of an
optical microscope. As will be discussed in this communication, the size, depth of penetration, and shape of the track
provides information about the mass, charge, energy, and direction of motion of the particle that created the track [2].

Since its introduction as a solid state nuclear track detector (SSNTD), CR-39 has found extensive use as a charged-
particle spectrometer to study inertial-confinement-fusion (ICF) plasma [3] and to detect secondary neutrons and cos-
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Table 1. Summary of LENR Experiments Using CR-39.a

Researcher Experiment Conclusions
X.Z. Li et al. [5] D2 (H2) gas loading of Pd foils Track density: Pd/D2 >>>> Pd/H2 >

D2

Jin et al. [6] D2 gas loading of YBCO pellets and
powder

Circular tracks with diameters between
2 and 7 µm (for comparison 241Am α
tracks have a diameter of 6 µm)

Lipson et al. [7] Electrochemically load Au/Pd/PdO
heterostructures with D. Once loaded
put cathode in contact with CR-39
and cycle temperature

Detected tracks consistent with 2.5–3.0
MeV p and 0.5–1.5 MeV t

Roussetski [8] Electrochemically
load Au/Pd/PdO and PdO/Pd/PdO
heterostructures with D. Once loaded
put cathode in contact with CR-39
and cycle temperature

Detected tracks consistent with ∼3.0
MeV p, ∼1 MeV t, triple tracks due
to 14.1 MeV n. The number of tritons
needed to create triple tracks greater than
the yield of DD tritons.

Karabut et al. [9] Glow discharge of Ti cathodes in D2

gas. CR-39 detectors covered in Al
foils

Detected 3 MeV p, 1.7 MeV p or 2.3
MeV d, and 13.5±2.0 MeV α

Oriani and Fisher [10] Pd sheet foil, electrolysis
in Li2SO4/D2O, CR-39 placed above
and below Pd cathode

Track density of CR-39 used is elec-
trolysis experiments (150–3760 tracks
cm−2) greater than CR-39 used in con-
trols (59–541 tracks cm−2)

Lipson et al. [11] Cathode was 50 µm thick Pd foil in
contact with CR-39. Electrolysis in
Li2SO4/H2O

Tracks were concentrated in areas where
the cathode was in contact with the CR-
39 detector

Lipson et al. [12] Cathode was thin Pd films in contact
with CR-39. Cu and Al spacers sep-
arated the Pd cathode from the detec-
tor. Electrolysis in Li2SO4/H2O

Tracks in CR-39 detectors consistent
with 1.7 MeV p and 11–16 MeV α

Roussetski et al. [13] Irradiate TiHxand TiDxfilms with
psec laser beam. CR-39 in chamber
either bare or covered with Al or Cu
films

Detected 3 MeV p, n, and ≥10 MeV α

Lipson et al. [14] TiDx and Pd/PdO:Dx targets stimu-
lated with a electron beam. Target
surrounded by CR-39 covered with
various metal foils

Detected 3 MeV p and 11–20 MeV α

Mosier-Boss et al. [15-
18]

Pd/D codeposition on Ni screen and
Ag, Au, Pt wires in contact with CR-
39. Electrolysis in D2O and H2O

Detected tracks due to energetic charged
particles and triple tracks due to 14.1
MeV n. Track density: D2O >>>>
H2O

Tanzella et al. [19] Pd/D codeposition on Ag wire in con-
tact with CR-39 covered with either 6
µm Mylar or 60 µm polyethylene

Detected tracks due to 3 MeV p, 2.5
MeV n, 12.6–17.5 MeV p, 14.1 MeV n,
and ≥ 12 MeV α

a p = proton, t = triton, d = deuteron, n = neutron, α = alpha

mic rays at the international space station (ISS) [4]. This detector has also been used in a number of low-energy nuclear
reaction experiments for over two decades. These experiments and their results are summarized in Table 1. As shown
in Table 1, these detectors have been used in gas phase experiments as well as electrolysis and glow discharge experi-
ments. Hydriding materials used include Pd, Ti, Pd/PdO heterostructures, and YBCO. Energetic particles detected in
LENR experiments include protons, alphas, tritons, and neutrons.
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Lately, there has been much discussion on the validity of using SSNTDs in place of electronic, real-time detectors
in LENR experiments. It has been argued that SSTNDs are a relatively new detector material whose use has not
been fully vetted by the scientific community. In this communication, we indicate that the physics community has
indeed fully evaluated and characterized SSNTDs such as CR-39 for energetic particle detection. We also discuss the
advantages and disadvantages of SSNTDs and show that these detectors are not only ideal but are, in many cases, the
detector of choice for use in LENR experiments to elucidate the nuclear nature of the phenomenon.

2. Overview of Real-time Methods to Detect Neutrons and Charged Particles

2.1. Neutron detection

Neutrons have no charge. Consequently, these particles cannot be detected directly. Instead indirect methods are
used. In these methods, the neutrons interact with other atomic nuclei and it is the response of that interaction that is
detected. In general, there are two categories of neutron interaction with other atomic nuclei. These are neutron capture
or elastic scattering. In the neutron capture method, a target nucleus captures a neutron to create an unstable nucleus.
This unstable nucleus then spontaneously loses energy by either emitting ionizing charged particles or gamma/X-rays.
These are the decay products that are then detected. Because the cross sections for neutron capture are lower at high
neutron energies, moderators are typically used to slow down the neutrons so that capture can occur. As a result, the
energy of the neutron cannot be determined by this method. Neutron detectors that rely upon neutron capture include
BF3 and 3He detectors. The efficiencies of these detectors for fast neutrons are of the order of 7.6 × 10−3 when
in direct contact with the source [19]. The efficiency decreases with d2, where d is the distance between the source
and the detector. Srinivasen et al. [20] used three BF3 counters embedded in a paraffin moderator block to monitor
neutron emissions from a commercial Milton Roy diffusion type hydrogen generator. The cathode was comprised of
16 Pd0.75Ag0.25 straws that were 3 mm OD and 200 mm in length. The total surface area was 301 cm2, much larger
than is typically used in most LENR experiments. Neutrons were observed to occur in bursts. De Ninno et al. [21,22]
used a BF3 detector to monitor deuterium gas loading of 100 g of Ti shavings. Changes in temperature and pressure
were used to create nonequilibrium conditions in adsorption/desorption of deuterium in the lattice. Neutron emissions
were observed to occur in bursts that were between 35 and 500 times above background.

In the elastic scattering method, the neutron scatters off nuclei causing the struck nucleus to recoil. The recoiling
nucleus can ionize and excite additional atoms through collisions. These collisions produce charge and/or scintillation
light which are then detected. Since these types of detectors do not require moderators, the energy of the neutrons can
be determined. However, these detectors also respond to gamma and X-rays. Consequently, a pulse-shape analyzer
is required to differentiate neutrons of a given energy from gamma/X-rays. An example of a neutron detector that
relies upon elastic scattering is the NE-213 liquid-scintillation detector. This detector was used by Lipson et al. [7]
to measure neutron emissions from their Au/Pd/PdO:D heterostructures during exothermic deuterium desorption. To
decrease the natural neutron background, the detectors were surrounded by boron-containing polyethylene, and the
entire setup was placed in the underground laboratory of Hokkaido University under 10 m of heavy concrete. Because
the efficiencies of these detectors to detect neutrons were on the order of 5%, Lipson et al. were able to measure
2.45 MeV neutrons at a count rate of (19 ± 2) × 10−3n s−1 in a 4π solid angle. Srinivasen et al. [20] also used high
recoil type plastic scintillator NE102A to monitor their Milton Roy hydrogen generators. In their experiments, the
proton recoil counter tracked the BF3 counters.

Jones et al. [23] used a neutron detector comprised of an outer ring of 16 3He-filled proportional counter tubes
embedded in a polyethylene moderator and an inner ring of a plastic scintillating neutron detector viewed by a PMT
to detect fast neutrons. A stainless steel sample chamber was placed inside the inner ring. Both gas loading and
electrolytic loading of Ti foils were done. Neutron emissions were observed for the D2 and D2SO4/D2O systems but
not for the corresponding H2 and H2SO4/H2O systems.
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Figure 1. (a) Bubble detector results where red is for the cell and black is the background. Measurements began after the Pd was plated out.
Summary of probability analysis done for (b) background (correlation = 0.99993) and (c) cell (correlation = 0.99964). Data points are indicated by
(red filled circles) and calculated by (blue dotted line).

Bubble detectors are quasi-real-time neutron detectors. Tiny droplets of superheated liquid are dispersed through-
out a clear moderating polymer inside the clear housing of the detector. When a thermalized neutron strikes a droplet
and interacts with 6Li, the droplet immediately vaporizes, forming a visible gas bubble trapped in the gel. The number
of droplets provides a direct measurement of the tissue-equivalent neutron dose. The bubbles in the detector can be
compressed and the detector can be reused for up to three months. Shyam and Rout [24] used an array of bubble
detectors to detect neutrons created by imploding palladium deuteride X pinches using a low energy capacitor bank.
The PdD0.5 X pinches emitted 5×104 neutrons per discharge. Bubble detectors were used in a Pd/D co-deposition
experiment on Ni screen. The bubble detector results are summarized in Fig. 1. It can be seen that more bubbles
were seen for bubble detectors near the cell than were observed for the background (Fig. 1a). Probability analysis was
used to analyze the data. The results for the cell and background are summarized in Fig.1b and c. From the analysis,
the average number of neutrons per day for the cell was 69, 200 ± 6600 and the background was 12, 600 ± 3300.
By paired t-test, the probability that the bubble detector results are random is one in a thousand. This indicates high
statistical significance between the experiment and background. The neutron emission rate for the cell was estimated
to be 0.65 n/s.

2.2. Charged particles

Ionization detectors are commonly used to detect charged particles in real time. Ionization detectors include gaseous
ionization detectors and semiconductor detectors. Gaseous ionization detectors use the ionizing effect of radiation
upon a gas-filled sensor. If a particle has enough energy to ionize a gas atom or molecule, the resulting electrons and
ions cause a current flow which can be measured. The basic design of these detectors is two electrodes separated by
air or a special fill gas. Examples of gaseous ionization detectors are ionization chambers, proportional counter, and
Geiger–Müller tube. While these detectors are robust and inexpensive, they respond to gamma radiation, X-rays, beta
particles, as well as charged particles. No spectral information can be generated and there is no discrimination between
radiation types. An example of detectors of this type used in LENR experiments is the Femto-tech tritium gauge used
by Claytor et al. [25]. In these experiments, a number of palladium alloys were loaded with either deuterium or
hydrogen under low energy plasma bombardment. Tritium production was only observed when deuterium gas was
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used. It was observed that most of the alloys did not produce tritium. Only the PdRhCoB, PdCu, PdRh (0.1%) and
PdB alloys produced tritium under these experimental conditions.

Surface-barrier detectors are an example of semiconductor nuclear detectors used to detect charged particles in
real time. These detectors consist of a piece of semiconductor (Si or Ge) that has been doped with impurity atoms to
form a p–n junction. A reverse bias voltage is applied to this junction to create a depletion region near the front of
the device in which there are no free charge carriers. When a charged particle enters the detector it loses its energy
by the creation of electron–hole pairs in the depletion region. This is similar to ionization in gases. It is these small
ionization currents that are detected and measured. To detect charged particles during electrolysis, Taniguchi et al.
[26] used electrolysis cells whose bottoms were comprised of thin foil cathodes. The cathodes used were either thin
Pd foils or Pd layers deposited on either stainless steel or Cu foils. The backside of these cathodes was placed on top
of a conventional silicon surface barrier (SSB) detector. Count rates above background were observed for electrolysis
experiments done in D2O but not for H2O. Taking into account energy losses, they attributed the species giving rise to
the increased count rates to 3.03 MeV protons. Lipson et al. [7] used an SSB detector to detect the emission of 2.5–
3.5 MeV protons during exothermic deuterium desorption of Au/Pd/PdO:D heterostructures. These heterostructures
were mounted on top of a heater in a vacuum chamber. The SSB detector was positioned above the Au/Pd/PdO:D
heterostructure. They also detected the emission of long-range alphas (alphas with energies between 8 and 14 MeV)
during exothermic deuterium desorption of Au/Pd/PdO:D heterostructures under a 10−1 Pa vacuum [27]. To detect
these long range alphas, they used a SSB ∆E − E counter telescope comprised of a thin ∆E-detector (h = 20µm)
and thick E-detector (E = 100 µm). A coincidence timing gate of 20 ns was used. The requirement of coincidence
between ∆E and E detectors eliminated electromagnetic noise and enabled identification of the charged particle type.

Jones et al. [28] developed a dual plastic/glass scintillator system to detect charged particles emissions by Ti
foils. This charged particle spectrometer incorporated a 76 µm thick plastic scintillator adhered onto a thicker glass
scintillator which was glued onto the face of a 12.7 cm diameter PMT. In these experiments, an array of five Ti
foils (total surface area 180 cm2) were loaded with deuterium in the gas phase. Afterwards, these TiD0.5−1.4 foils
were placed on the surface of the detector. Joule heating was used to create non-equilibrium conditions. Using this

Figure 2. (a) Schematic describing the layers a charged particle has to negotiate before it reaches a real-time electronic detector. After its birth, a
charged particle has to exit the metal lattice and cross a thin water layer and a thin window before it arrives at the detector. (b) LET curves calculated
for charged particles traversing through palladium and water.
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Figure 3. (a) Side view schematic of the cell used in the silicon surface barrier detector experiment. (b) Schematics of the Au-wire cathode and
collimator used in the experiment. (c) Silicon barrier counts per day for the 1.0–1.5 MeV energy region. Arrow indicates when the current was
turned on. (d) Relative counts per hour (day 4 count/day 3 bkg count) as a function of energy (MeV).

detector, they observed charged particle emissions in excess of 2000 counts per hour. Using an Al degrader between
the TiD0.5−1.4 foil and the plastic scintillator, they attributed those emissions to 3 MeV protons.

2.3. Problems with real-time detection methods

Many of the LENR experiments summarized in Table 1 involved electrolysis. Real-time, energetic particle detectors
cannot be immersed in the cell. They have to be placed outside the cell. Since real-time detectors are positioned outside
the cell, the likelihood of detection decreases by a factor of the square distance from the cathode. Consequently, these
detectors have to be placed in close proximity to the cell and, in particular, the cathode. Figure 2a shows a schematic
of the placement of a real-time detector next to a thin window that is in close proximity to a Pd cathode. A thin film
of solution separates the cathode from the window. The emission of energetic particles from a source, i.e. cathode,
occurs isotropically. The presence of the cathode, water film, and thin window will not impact neutrons. However,
charged particles will experience energy losses as they traverse through the cathode, water film, and thin window to
reach the detector. Linear energy transfer (LET) curves for charged particles traversing through Pd and water, Fig. 2b,
were calculated using the SRIM-2003.26 code of Ziegler and Biersack [29]. These curves show that charged particles
do not travel far through Pd metal and an aqueous medium.

Electronic particle detectors can be subject to low level electronic noise picked up from the local environment. For
example, Jones et al. [30] retracted claims of neutron emissions from Pd/LiOD electrolytic cells when it was found
that the large bursts they were seeing with their 3He detectors were actually the result of high voltage breakdown in the
electronics. The retraction was for the 3He detector only and does not imply a retraction of highly-publicized earlier
results and publications using the BYU neutron spectrometer nor the charged-particle spectrometer described above.
Those results have not been retracted. Besides electronic noise, these real-time detectors are temperature sensitive.
Also with real-time detectors, long acquisition times are typically used to improve the signal to noise ratio. If the rate
of energetic particle production is sporadic and/or at a low level, the resultant signal can be averaged away when long
acquisition times are used. Another problem with neutron detectors is multiplicity. If multiple neutrons hit the detector
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Table 2. Estimated energies of charged particles emitted from the surface of the Pd cathode.

Layer Proton (MeV) Triton (MeV) 3He (MeV) Alpha (MeV)
Measured by SSB 1.1 1.1 1.1 1.1
6 µm Mylar 0.45 0.55 1.45 1.40
10 µm water 0.53 0.7 1.80 1.80
Total 2.98 2.35 4.35 4.30

at the same time, the discriminator will reject the signal.
As indicated in Table 1, CR-39 detectors used in Pd/D co-deposition experiments showed the presence of energetic

charged particles and neutrons [15–18]. To illustrate some of the problems using real-time charged particle detection in
electrochemical cells, a Pd/D co-deposition experiment was conducted using a silicon surface barrier detector to detect
charged particles in real time. Figure 3a shows a schematic of a cell that was assembled to conduct this measurement.
A circular hole was cut into the bottom of the butyrate cell. A 6 µm thick Mylar window was epoxied over the hole
using aquarium RTV silicone. Figure 3b shows a schematic of the Au cathode. The Au wires making up the cathode
are pressed against the Mylar window. To decrease scattering, a 100 µm thick acrylic collimator, shown in Fig. 3b,
was placed on the outside of the cell. The holes cut into the collimator line up with the gold wires. This collimator
only allows particles traveling perpendicular to the surface to enter the silicon barrier detector. Once assembled the
cell was filled with electrolyte and placed on top of a silicon barrier detector.

Results of the experiments are summarized in Figs. 3c and d. A plot of counts per day for the energy region 1.0–1.5
MeV is shown in Fig. 3c. The arrow indicates when the current was applied to the cell. An increase in the number
of counts was observed which immediately dropped down by the next day. This decrease is not surprising. As Pd
plates out, the increasing Pd deposit will impede charged particles from reaching the silicon barrier detector. There is
also the effect of the Mylar window on the number of observed charged particles. Linear energy transfer (LET) curves
indicate that the 6 µm thick Mylar window will cut off <0.45 MeV protons, <0.55 MeV tritons, <1.40 MeV 3He, and
<1.45 MeV alphas. Figure 3d is a plot of the count rate on the fourth day divided by the count rate on the third day
vs. energy. It is an attempt to characterize the energy of the charged particles observed for the first day of electrolysis.
The plot shows that the majority of the charged particles that reached the detector have energies between 1.0 and 2.0
MeV with a peak maximum at 1.1 MeV. To estimate the energy of the energetic charged particles at their birth, it is
assumed that they were born near the surface of the Pd and that they transverse through a 10 µm thick water film and
a 6 µm thick Mylar film. LET curves were used to determine the energy losses through the water and the Mylar film.
The results of these calculations are summarized in Table 2. Because of the experimental configuration used, it was
not possible to ascertain the identity of the charged particles.

3. Advantages and Disadvantages of SSNTD

CR-39 is not a relatively new detector material. As indicated vide supra, Cartwright et al [1] were the first to demon-
strate that CR-39 could be used to detect nuclear particles in 1978. Since then hundreds of papers in the literature
describe the use and development of CR-39 for charged particle detection and neutron dosimetry. Countries involved
in this research include Italy [31], Egypt [32,33], India [34], Japan [35], Hungary [36], as well as the United States
[1,37]. Landauer uses CR-39 in their Neutrak dosimeter for neutron detection [38]. City University of Hong Kong has
a Trackology Research Group headed by Nikezic and Yu [39].

Recently, Durrani [40] wrote a review article discussing the advantages and disadvantages of SSNTDs in detecting
energetic particles. Table 3 lists these advantages and disadvantages of SSNTDs as identified by Durrani. SSNTDs do
not require a power source nor do they require shielding. They do not generate false signals due to either electronic
noise or temperature changes. They are not affected by electromagnetic pulses (EMPs), which is why these detectors
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Table 3. Strengths and Weaknesses of SSNTDs [29].

Strengths Weaknesses
Inexpensive Lack of real-time capability
Ruggedness and simplicity Poor charge and energy discrimination-track size/shape

depends upon the charge and mass of the particles as well
as the angle of incidence. There is significant overlap in
the size distributions of the tracks due to energetic parti-
cles

Integrating capability
Responds to both charged particles and neutrons
Small geometry—trails of damage are nm/µm in
diameter and length

Variability in SSNTDs—environmental conditions and
manufacturing procedures results in problems of preci-
sion and reproducibility

Long history and selectivity of track recording—
SSNTDs can retain a record of activity for billions
of years
Existence of thresholds for registration—SSNTDs
can register particles only if their charge and LET
value are above a threshold

Lack of theoretical understanding—no theoretical work
explains how certain properties of materials can pred-
icate or ascertain a viable ability for track forma-
tion/retention

are used in the ICF field [3].
It has been shown that the background of CR-39 detectors varies from batch to batch, from foil to foil in the same

batch, from one side to another of the same foil and within the same foil surface [41]. Prolonged etching of CR-39
detectors showed that the background track density remains constant once they are fully etched. This indicates that
the background is basically due to surface defects. It was also found that the manner in which CR-39 detectors were
stored influences the magnitude of the background [42]. When unetched CR-39 detectors were exposed to a neutron
source, it was shown that storage at higher temperatures (up to 37◦C) resulted in partial or complete removal of tracks
[43]. The annealing of damage trails occurs due to diffusion of atomic defects through the crystal lattice or movement
of molecular fragments within the polymer. This indicates that, until they are etched, self healing of the detectors will
occur with time and that the number of background tracks in the detectors will reach a steady state.

Besides background, there is variability in the response of CR-39 detectors from different vendors to energetic
particles. Figure 4a shows the response of CR-39 detectors from TASL [44], Landauer [8], and Fukuvi [8] to different
energies of alpha particles. The etching conditions were very similar. It can be seen that the response of Landauer and
Fukuvi CR-39 to alpha particles is very similar. However, the alpha tracks obtained using TASL CR-39 are 43% larger
than the alpha tracks obtained on either Landauer or Fukuvi CR-39. This is due to the fact that both Landauer and
Fukuvi CR-39 have more cross-linking than TASL CR-39. As a result both Landauer and Fukuvi CR-39 are harder
than TASL CR-39. The response of Landauer and Fukuvi CR-39 to protons is shown in Fig. 4b. The response to
protons overlaps for proton energies greater than 2 MeV but diverges for lower proton energies.

For the electrolysis experiments summarized in Table 1 [10–19], Fukuvi CR-39 was used. Fukuvi brand CR-39 is
resistant to chemical damage. This was not true of TASL CR-39. Experiments were conducted using TASL CR-39.
An experiment was done in which a Ni screen was placed in contact with a bare TASL CR-39 detector. Electrolysis
was then done in a LiCl–H2O solution for two weeks. Figure 5a shows a photograph of the unetched detector at the
end of this experiment. The detector has a frosty appearance except for where the Ni screen was in close contact with
it. When this same experiment was done using Fukuvi CR-39, no fogging of the unetched detector was observed.
A Pd/D co-deposition experiment was then done on Ag wire in contact with a TASL CR-39 detector. The standard
plating/charging protocol was followed [45]. The CR-39 detector was only etched for 2 h. Visual inspection of the
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etched detector showed that it had a fogged appearance except for where the cathode had been in close contact with
the CR-39. Figure 5b shows a photomicrograph taken at 500× magnification of a cloudy area that was away from
the cathode. In the cloudy area, bright, shallow, irregularly shaped features are observed that show no contrast. These
features are due to chemical damage of the detector. In the area that had been in contact with the cathode, circular
objects are observed that strongly resemble tracks, Fig. 5c. These circular objects are dark on the surface but show
bright spots inside when the microscope optics are focused inside the objects. These observations are diagnostic of
nuclear generated tracks. A photomicrograph of the interface, Figure 5d, shows the transition from the cloudy area that
has been damaged by electrolysis to the area under the cathode. The area damaged by electrolysis shows irregularly
shaped features which are distinctly different from the circular shapes observed under the cathode. These experiments
demonstrate that not all brands of CR-39 can be used in LENR experiments. The formulation used to fabricate TASL
CR-39 detectors makes the detector more sensitive to the detection of energetic particles. However, it also makes
TASL detectors more susceptible to chemical damage when used in electrolysis experiments.

One of the most significant advantages of CR-39 for LENR experiments is its integrating capability. Typically
emissions occur sporadically or at low fluxes in LENR experiments. For example, Lipson et al. [7], using a NE-
213 detector to detect neutrons and a CR-39 detector to detect protons, reported count rates of (19± 2)×10−3 n s−1

and (4 ±1) × 10−3 p s−1 in 4π solid angle for their Au/Pd/PdO:H heterostructures. For a CR-39 detector used in
a Pd/D co-deposition experiment, Lipson et al. [19] reported count rates of (0.6 ± 0.1) n s−1 in 2π solid angle.
It would be very difficult to measure such low count rates using real-time detectors. As discussed vide supra, one
problem has to do with the solid angle of detection. These issues are eliminated when using a SSNTD. In many of
the experiments summarized in Table 1 [10–12, 15–19], the CR-39 detectors were placed in direct contact with the
cathode thereby nearly eliminating solid angle detection issues. Because CR-39 is a constantly integrating detector,
events are permanently stamped in the plastic. While it will not be known when the events occurred, the signal will
not be averaged away and the number of events recorded in the plastic becomes statistically significant. Given the low
flux rates and sporadic nature of the emissions, real-time detection can be sacrificed in LENR experiments.

4. Speciation of Energetic Particles Using SSNTD

Another advantage of CR-39 is its ability to speciate energetic particles and neutrons. When a charged particle passes
through the plastic, it leaves a trail of damage along its track in the form of broken molecular chains and free radicals.
The amount of local damage along the track is related to the local rate at which energy is lost by the particle, dE/dx
where x is the distance along the track [46]. Generally, given the bulk etch rate, the first 6 µm of the surface of the CR-

Figure 4. CR-39 calibration curves obtained for (a) alpha particles and (b) protons using TASL (blue), Fukuvi (black) and Landauer (red) CR-39
[8,44]. Fukuvi and Landauer CR-39 detectors were etched in 6 N NaOH solution at 70◦C for 7 h. The TASL detector was etched in 7.25 N NaOH
solution at 70◦C for 7 h.
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Figure 5. (a) Photograph of a TASL CR-39 detector used in a Ni/H2O electrolysis experiment. (b–d) Photomicrographs taken at 500X magnifi-
cation of a TASL CR-39 detector used in a Pd/D co-deposition experiment done on a Ag cathode where (b) was taken in a cloudy area that was not
in contact with the cathode, (c) was taken in the area directly under the Ag/Pd cathode, and (d) was taken at the interface (the area above the dotted
line was directly underneath the cathode while the area below the dotted line was outside of the cathode).

39 is removed. Any particle, whose LET would stop it within that distance, would not produce a track. This includes
particles arriving at oblique angles to the surface. As the particle traverses the CR-39, losing energy, an energetic
particle will lose energy along a path dictated by the sine of the entrance angle. Consequently, there is a limit on how
oblique the resulting track will be due to LET losses upon entering the CR-39. Furthermore, the track obliqueness
provides a means to differentiate between primary charged particles and secondary neutron-induced charged particles.
Neutrons interact by either elastic scattering or inelastic interactions with the individual atoms comprising the CR-39.
Although these reactions favor forward scattering they are nearly isotropic, resulting in secondary charged particle
production over a wide range of angles. Secondary neutron spallation and scattering produces more oblique tracks
than primary charged particle.

It turns out that dE/dx is different for different particle types. It is also different for particles of a given type that

Figure 6. (a) Photomicrograph of CR-39 that was used in an ICF implosion experiment [46]. The detector had been etched for 6 h in 6 M NaOH
at 80◦C. Republished with permission from the America Institute of Physics. (b) Photomicrograph of a CR-39 detector exposed in the ISS [4]. The
detector had been etched for 20 h in 6 M NaOH at 70◦C. Republished with permission from Oxford University Press.
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  (a)                                    (b) 

Figure 7. Symmetric triple tracks observed in CR-39 detectors where (a) were generated in Pd/D co-deposition experiments and (b) were generated
upon exposure to DT generated neutrons. In both (a) and (b) the left-hand image was obtained with the microscope optics focused on the surface of
the CR-39 detector while the right-hand image is an overlay of two photomicrographs taken at different focusing depths (surface of the detector and
the bottom of the pits).

have different energies. The diameter of the etched pit provides a measure of dE/dx for the particle. Consequently,
diameters can often be used to identify the particle type if the energy is known. Calibration curves, such as those
shown in Fig. 4, are used for this purpose. Figure 6a [46] shows tracks obtained as a result of an ICF implosion using
D3He fuel in a thin glass shell. Tracks due to 3.3 MeV protons, 3.3 MeV alphas, and 1.1 MeV tritons are identified.
It can be seen that each particle type can be distinguished based on track size. Figure 6b shows tracks obtained on a
CR-39 detector inside the International Space Station (ISS) [4]. This detector was part of a stack comprised of three
CR-39 sheets. The first and second sheets were separated with 50 µm thick Ti foil. The second and third sheets
sandwiched 350 µm Lexan. The stack was wrapped in 30 µm thick Al foil and sealed hermetically in a 40 µm thick
polyethylene bag. After etching, the detector shows tracks due to neutron elastic scattering on H, recoil of C and O

Figure 8. Comparison of neutron energy spectra on three different days as measured by the Bonner ball [48].
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Figure 9. LET curve calculated for alpha particles traversing through CR-39.

atoms, fragmentation, and neutron-induced charged particle reactions including fission. A triple track is seen that is
due to the C(n,3a)n’ reaction. Additional methods to speciate the charged particle emissions are discussed below.

4.1. Triple tracks

The most easily identified neutron interaction in CR-39 is the carbon break-up reaction. If the energy of a neutron is
greater than 9.6 MeV, the inelastic neutron interaction can cause the carbon atom to shatter into three alpha particles.
The residuals of the reaction can be viewed in the CR-39 detector as a three-pronged star, or triple track, where each
prong represents each charged particle that occurs in the decay. The presence of these triple tracks is diagnostic of
>9.6 MeV neutrons.

Roussetski [8] was the first to report seeing triple tracks in his CR-39 detectors that had been placed in contact
with Au/Pd/PdO and PdO/Pd/PdO heterostructures that had been loaded electrochemically with D. Once in contact
with CR-39, the sample was heated to 50◦C to stimulate the desorption of deuterium. The electrolytic loading and
thermo-stimulation steps were repeated several times.

Mosier-Boss et al. [17,18] reported seeing triple tracks in CR-39 detectors used in Pd/D co-deposition experiments.
Figure 7 shows representative Pd/D co-deposition generated triple tracks as well as their corresponding DT neutron
generated triple tracks. Focusing deeper inside the triple tracks, it can be seen that there are three alpha particle
generated tracks breaking away from a center point. These features are diagnostic of the carbon breakup reaction.
Comparing both sets of triple tracks, it can be seen that the Pd/D co-deposition triple tracks are indistinguishable from
the DT neutron generated tracks. The examples of Pd/D and DT neutron tracks do not have the exact same shape. The
n +12C reaction can proceed to the four-body final state through one or more of the following reaction mechanisms
[47]:
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Processes (1)–(3) are sequential decays going through different excited states of intermediate systems and process
(4) is a simultaneous four-body break-up. The observed relative sizes and shapes of the lobes making up the triple
tracks in Fig. 7 are the result of these different processes.

No triple tracks have been observed in either control experiments using either CuCl2 or NiCl2 in place of the
PdCl2. Nor have they been observed in blank detectors. This indicates that the triple tracks observed in Pd/D co-
deposition experiments are not due to cosmic ray spallation neutrons. This is further supported by the cosmic-ray
neutron spectrum measured by Nakamura et al. [48], Fig. 8. These spectra were obtained using three neutron detectors,
a 3He-loaded multi-moderator detector (Bonner ball), a NE213 organic scintillator, and a high sensitivity rem (dose
equivalent) counter. As can be seen in Fig. 8, the energy spectrum of cosmic-ray-induced spallation neutrons consists
of three peaks: thermal, 2 MeV evaporation, and a cascade peak at 100 MeV. The thermal and 2 MeV evaporation
neutrons will not cause a carbon atom to shatter as the threshold energy for a neutron to cause a carbon atom to shatter
is 9.6 MeV. The 100 MeV cascade neutrons will cause a carbon atom to shatter. Energy in the carbon shattering
reaction is conserved, where:

En = Eth + Eα1 + Eα2 + Eα3 + En′ , (5)

where En is the energy of the incoming neutron; Eth is the threshold energy required to shatter the carbon atom (9.6
MeV); Eα1, Eα2, and Eα1 are the energies of the alpha particles formed when the carbon atom shatters; and En′ is
the energy of the outgoing neutron. If En′ = 0 MeV, each alpha particle will have an energy of 30.1 MeV. The LET
curve for alpha particles in CR-39, Fig. 9, is used to determine how far these particles will travel through the CR-39
detector. According to the LET curve, 30.1 MeV alphas will travel 635 µm in CR-39. Should a 100 MeV neutron
cause a carbon atom to shatter, there will not be a discernible triple track because of the long lengths traveled by the
alphas. The residuals of the reaction with a 100 MeV neutron will look like three solitary alpha tracks.

As shown in Fig. 8, the 12–17 MeV neutron energies, which overlaps the energy of DT fusion neutrons, occur
an order of magnitude less frequently than either evaporation or cascade neutrons. The total measured background
spallation neutron flux was 7.5× 10−3 n cm−2 s−1, with < 10−4 n cm−2 s−1 in the DT fusion neutron energy range.
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This low neutron flux, coupled with the CR-39 relative neutron detection inefficiency, < 10−6 for triple tracks [37],
accounts for the complete absence of triple tracks in the background.

4.2. Fission tracks

Figure 6b shows tracks due to high-Z fission fragments. These are examples of fission tracks. As can be seen, the
tracks due to these high-Z fission fragments are significantly larger than the tracks due to smaller tritons, protons, and
alpha particles. The large size of these tracks make them easily identifiable.

Pd/D co-deposition experiments were conducted using uranium as a witness material to determine the energies of
the neutrons emitted during the co-deposition process. 235U is fissioned by thermal and higher energy neutrons while
238U is fissioned by >2 MeV neutrons. The cross section for interaction with fast neutrons is equivalent for 235U and
238U, on the order of < 2 barns (as compared to >500 barns for the thermal fission of 235U).

To demonstrate that native uranium isotopes can be fissioned by neutrons, a uranium wire was placed in contact
with a CR-39 detector and was exposed to DT neutrons. Afterwards the detector was etched for 1 h. Figure 10a
shows a photomicrograph of the etched detector. The arrow indicates a long cylindrical track amongst the oval/circular
shaped alpha/neutron recoil tracks. This long cylindrical track is a fission track.

In the Pd/D co-deposition experiment, a 250 µm diamter Au wire was wrapped around a 1 cm length of uranium
wire. This composite cathode was placed in contact with a CR-39 detector and Pd/D were electrochemically deposited
onto this composite cathode. Figure 10b shows a photomicrograph of tracks observed in the CR-39 detector used in
this experiment. Circular and oval alpha tracks due to the decay of uranium and its daughters are observed. Among
these alpha tracks, large cylindrical tracks, like the one indicated by an arrow in Fig. 10b, were observed. As shown
by the bright streak in the overlay image, this track is shallow. The large track is approximately 40 µm long and 10
µm wide. It is about five times larger than the surrounding alpha tracks and resembles the high-Z tracks shown in Fig.
6b and the DT neutron induced uranium fission track shown in Fig. 10a. Such large tracks have not been observed in
CR-39 detectors exposed to uranium wire that had not been subjected to Pd/D co-deposition.

Figure 10. (a) Photomicrographs of a CR-39 detector that had been in contact with uranium wire exposed to DT neutrons. Magnification is 1000×.
The detector had been etched for 1 h in 6 M NaOH at 60◦C. (b) Photomicrographs of a CR-39 detector that had been used in a Pd/D co-deposition
experiment conducted on an Au/U cathode. Magnification is 1000x. The detector had been etched for 6 h in 6 M NaOH at 60◦C. The images on the
top were obtained with the optics focused on the surface of the detector. The bottom images are an overlay of two images taken at different focusing
depths (surface and the bottom of the tracks). Arrows indicate a large elongated track among the uranium alpha tracks.
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Figure 11. (a) Schematic of the placement of CR-39 detectors used in electrolysis experiments. (b) Number of charged particles vs. track diameter
for CR-39 detectors in contact with the thin Pd film cathode and the alumina substrate during electrolysis. (c) Number of charged particles vs. track
diameter for CR-39 detectors, shielded with 25 µm Cu film, in contact with the thin Pd film cathode and the alumina substrate during electrolysis.

4.3. The use of shielding films for particle identification

Lipson et al. [11,12,14,49], Karabut et al. [9], and Roussetski et al. [13] have used various foils (11–66 µm thick Al,
25–50 µm thick Cu, and 60 µm thick polyethylene) between the H/D absorbing metal and the CR-39. These shielding
foils have known stopping ranges which are used to identify the charged particles.

Figure 11a is a schematic showing the placement of open and shielded CR-39 detectors used in electrolysis exper-
iments [49]. The results using bare and Cu shielded CR-39 detectors are summarized in Fig. 11b and c, respectively.
Comparison of track diameters obtained with open and shielded CR-39 allows the identification of charged particles
by using the stopping range of the shielding material. A 25 µm Cu film completely absorbs all alpha particles and
protons with energies below 9.0 and 2.3 MeV, respectively. For foreground runs (t 2–30 days) with electrolysis of Pd
thin film cathodes, the open CR-39 detectors show the appearance of tracks not found in the background detectors in
the same electrolysis run. As shown in Fig. 11b, two significant peaks at 6.0 and 7.0 µm are observed. For shielded
CR-39 detectors (25 µm Cu film) using the same cathode, the 6 µm peak of the open CR-39 disappears due to the Cu
shielding, Fig. 11c. The disappearance of the 6.0 µm peak in the Cu shielded detector indicates that this peak is due to
low MeV protons. From calibration data, the proton energy was estimated to be 1.5–1.7 MeV. The 7.0 µm peak in the
open CR-39, Fig. 11b, shifts to larger track diameters and splits into three narrow peaks, Fig. 11c. Due to its shift and
splitting after crossing the Cu shield, the 7.0 µm peak in Fig. 11b is attributed to α-particles with energies between
11.0 and 16.0 MeV.

4.4. Successive (or sequential) etching for particle identification

Lipson and Roussetski [19] developed a successive etching technique to identify the charged particles and their energies
responsible for the tracks in CR-39 detectors. This successive etching method has been used by other groups working
with radioactive materials to identify and determine the energies of emitted charged particles [50–53]. In this approach,
calibration curves were generated by exposing CR-39 detectors to alpha particles and protons of known energies.
Lipson et al. exposed CR-39 detectors to alpha sources with energies in the range of 1.6–7.7 MeV and to monoenergetic
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cyclotron alpha-beams in the energy range of 10–30 MeV. Detectors were also calibrated with Van de Graff accelerator
producing monoenergetic proton beams with energy ranges of 0.75–3 MeV. Only circular tracks are used to generate
calibration curves. These tracks are created by charged particles with trajectories normal to the surface of the detector.
There is an inverse relationship between the charged particle energy and the track diameter. The smaller the diameter,
the higher the energy. There is also a cutoff in energy that will result in a track. Figure 12a and b show alpha and
proton calibration curves, respectively, after 7, 14, 21, and 28 h of etching. As can be seen from these calibration
curves, alpha particles with energies less than 6 MeV and protons with energies less than 1 MeV can be identified after
a 7 h etch time. However, longer etching times are required to unambiguously identify alphas and protons energies
greater than 6 MeV and 1 MeV, respectively.

SRI conducted several Pd/D co-deposition experiments that used CR-39 detectors. The experiments were con-
ducted in the presence of a magnetic field. Two experiments were done with the detector inside the cell. In these
experiments a 60 µm thick polyethylene film separated the Ag cathode from the detector. These detectors, identified

Figure 12. Calibration curves generated for energetic alpha and proton particles. (a) Alpha track size as a function of energy (7 h etch). (b) Track
diameter vs. etching time for six different alpha energies. Alpha particle energies are indicated. (c) Proton track size as a function of energy (7 h
etch). (b) Track diameter vs. etching time for four different proton energies. Proton energies are indicated.

Figure 13. Results obtained for the sequential etching. (a) The front side spectrum of nuclear tracks in detector 10-5 after subtracting the neutron
induced proton recoil spectrum from its back side (etch time is 21 h). (b) Reconstruction of the proton recoil spectra for detector 10-7 and a detector
exposed to 252Cf neutrons (etch time 14 h).



P.A. Mosier-Boss et al. / Journal of Condensed Matter Nuclear Science 14 (2014) 29–49 45

Figure 14. LET spectra of differential fluence calculated for the front and back surfaces of detectors 10-5 and 10-6. The front surface was the side
closest to the cathode.

as 10-5 and 10-6, underwent successive etching analysis by Lipson and Roussetski. Using this process, they identified
3 MeV protons, 16 MeV alphas, and 12 MeV alphas in the CR-39 detectors used in heavy water experiments, Fig. 13a.
No tracks above background were observed in the light water experiments. In another SRI experiment, the CR-39
detector was placed outside the cell. A 6 µm thick Mylar film was placed between the detector and the Ag cathode.
The detector used in this experiment also underwent successive etching analysis by Lipson and Roussetski. In their
analysis, they identified proton recoil tracks due to 2.45 MeV (DD) neutrons, Fig. 13b.

4.5. LET spectrum analysis for particle identification

The CR-39 detectors used in the SRI immersion experiments, detectors 10-5 and 10-6, were scanned using an auto-
mated scanning track analysis system to obtain quantitative information on the pits produced in the CR-39. The scanner
has a high quality microscope optical system operating at a magnification high enough to discriminate between tracks
and background. The images obtained were analyzed by the proprietary software that made 15 characteristic measure-
ments of each feature located in the image. These measurements were used to reliably discriminate between etched
tracks and background features present on and in the plastic detector.

Zhou, of NASA-Johnson Space Center, took the scanned data of detectors 10-5 and 10-6 and analyzed them using
a LET spectrum method [54–59]. In this analysis, Zhou used the scanned values of the major and minor axes of the
tracks to differentiate the charged particle species and energy. Applying the LET spectrum method, differential/integral
fluence, Fig. 14, and the energy distributions of the charged particles, Fig. 15, were determined. For protons, a the
major peak is observed at 11.5 − 12 MeV for the front CR-39 surfaces and 9.75 MeV for the back CR-39 surfaces.

Figure 15. Energy distribution of particles calculated for the front and back surfaces of detectors 10-5 and 10-6. The front surface was the side
closest to the cathode.
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The distribution of a particles is nearly uniform because they are mainly secondary particles.

5. Conclusions

Compared to electronic, real-time detectors, solid state nuclear track detectors, such as CR-39, are ideal for use in
LENR experiments. The advantages of CR-39 over real-time, electronic detectors are:

(1) CR-39 detectors do not require power and can be placed in close proximity to the cathode. This eliminates the
solid angle detection losses.

(2) CR-39 detectors can be used in both electrolysis and gas loading experiments.
(3) CR-39 detectors are not affected by low level electronic noise from the local environment and do not require

shielding. Nor do they respond to temperature changes.
(4) CR-39 is an example of a constantly integrating detector. When an event occurs it is permanently stamped in

the plastic. Nothing gets averaged away. This is important for reactions that occur sporadically in bursts or at
low flux levels, which is often true of LENR experiments.

(5) The size and shape of the tracks in CR-39 detectors can be used to identify the energetic particles that caused
them.

(6) CR-39 detectors are robust and inexpensive.
(7) CR-39 detectors retain their record of nuclear activity for decades and can be repeatedly re-examined.
(8) Real-time electronic detectors require expensive and complicated electronic modules that are required for

both timing and background discrimination, even if shielding is present. Unlike CR-39, electronic, real-time
detectors tend to discriminate against multiple simultaneous events. This results in an undercounting of the
nuclear products.

Given all these advantages over electronic, real-time detectors, solid state nuclear track detectors, such as CR-39,
are the detector of choice in LENR experiments.

Acknowledgements

This work was funded by the Defense Threat Reduction Agency (DTRA), and JWK Corporation. The authors would
like to thank Dr. Gary Phillips, nuclear physicist, retired from the Naval Research Laboratory, US Navy, Radiation
Effects Branch for valuable discussions on CR-39. They would also like to thank Dr. Roger Boss for doing the
probability analysis of the bubble detectors. The authors would also like to thank Mr. Mark Morey, Dr. Jim Tinsley,
and Mr. Paul Hurley of National Security Technologies, LLC, Special Technologies Laboratory in Santa Barbara, CA
for exposing CR-39 detectors to DT neutrons. Finally, the authors would like to thank Dr. Frank Gordon, retired Head
of Research and Applied Sciences Dept. SSC-Pacific, for all the support he had provided in this field of research.

References
[1] B.G. Cartwright, E.K. Shirk and P.B. Price, A nuclear-track recording polymer of unique sensitivity and resolution, Nucl.

Instrum. Meth. 153 (1978) 457–460.
[2] D. Nikezic and K.N. Yu, Formation and growth of tracks in nuclear track materials, Mater. Sci. Eng. R 46 (2004) 51–123.
[3] J.A. Frenje, C.K. Li, F.H. Séguin, D.G. Hicks, S. Kurebayashi, R. D. Petrasso, S. Roberts, V. Yu. Glebov, D.D. Meyerhofer,

T.C. Sangster, J.M. Soures, C. Stoeckl, C. Chiritescu, G.J. Schmid and R.A. Lerche, Absolute measurements of neutron
yields from DD and DT implosions at the OMEGA laser facility using CR-39 track detectors, Rev. Sci. Instrum. 73 (2002)
2597–2606.



P.A. Mosier-Boss et al. / Journal of Condensed Matter Nuclear Science 14 (2014) 29–49 47

[4] J.K. Pálfalvi, Y. Akatov, J. Szabó, L. Sajó-Bohus and I. Eördögh, Evaluation of solid state nuclear track detector stacks
exposed on the international space station, Radiat. Prot. Dosimetry 110 (2004) 393–397.

[5] X.-Z. Li, D.-W. Mo, L. Zhang, S.-C. Wang, T.-S. Kang, S.J. Liu and J. Wang, Anomalous nuclear phenomena and solid state
track detector, Nucl. Tracks and Rad. Meas. 22 (1993) 599–604.

[6] S. Jin, F. Zhan and Y. Liu, Deuterium absorbability and anomalous nuclear effect of YBCO high temperature superconductor,
Proc. Fourth Int. Conf. on Cold Fusion, Vol. 3, Nuclear Measurements Papers, Lahaina, Maui, Hawaii, Dec. 6Ű9, 1993, T.O.
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Abstract

A high voltage electron irradiator was used to generate high vacancy content VP metal samples. High Frenkel defects (FD) con-
tent (vacancy phase) metal samples of Pd and Ni were generated by a single treatment with a high voltage electron irradiator (2.5
MV electrons, 2500 Gray/s dose rate, single portal, 1.50–3.0 megaGray midplane dose) at room temperature. These irradiation-
synthesized, vacancy-phase (ISVP) metals were examined for their room-temperature annealing rate using four-terminal conduc-
tivity measurements. We show that high dose rate supervoltage irradiated palladium and nickel can achieve saturation densities of
defects at the level of a few tenths percent and that level can be followed with the appearance of lattice quakes repairing the damage.
The most heavily irradiated samples developed incremental electrical resistivities of ∼4 µΩ-cm, with rapid recovery consistent
with room-temperature annealing. The early labile vacancy phase state of ISVP metals has a half-life ∼2.5 h. Lattice quakes are
observed when electrical transconduction spectroscopy is used to monitor the lattice healing and vacancy recombination. The irra-
diation produced an effective increase in the cross-sectional area of the palladium wires (99.98%) pure) of ∼2.5% at 3 megaGray
delivered, consistent with the literature.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction – Frenkel Defects and Lattice Vacancies

1.1. Frenkel defects

A Frenkel defect (FD) (each a paired entity) is a lattice “hole” AND its counter-defect which is simultaneously pro-
duced when an atom jumps from its normal position to an interstitial site, such as secondary to bombardment from
a high energy incident neutron, electron, or other particle [1]. Frenkel defects must be distinguished from Schottky
defects where atoms move to the grain boundaries, and surfaces, leaving the vacancies far behind.
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c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123



M. Swartz and P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 14 (2014) 50–60 51

Why are Frenkel defects (FD) important to cold fusion and lattice-assisted nuclear reactions (LANR)? FD are
important to excess enthalpy reactions (CF or LANR) because they create empty lattice sites which are possibly nuclear
active sites for the desired reactions. In addition, they can be stabilized by hydrogen atoms in the metal lattice, and –
on some occasions – the FD themselves can become further ordered, and that too may also play a role in CF/LANR.
For example, requisite deuterons, or their clusters, could enter the sites [2–5], including by Anderson focusing [5].

Furthermore, FD aggregation may be a second sine qua non for the success of excess enthalpy reactions in hydrogen
(and deuteron) loaded metals – after high loading. As is now known, full loading of metals such as palladium with
deuterons is the first sine qua non [6–8] but insufficient for the reactions which generate excess enthalpy; there is also
required a time period of weeks [9]. One hypothesis suggested at ICCF-10 is that FD are diffusing into the metal
lattice, and that diffusion is the reason for the long wait before the appearance of the desired excess enthalpy reactions.
One relationship to CF/LANR is that up to several (perhaps 6) deuterons (10) can be associated with each FD, and
they selectively enter the defects during deuteron flow producing critically required effects before the desired reactions
appear [5]. Figure 1 shows the FD (vacancy) density, and electrical resistivity (µΩ-cm).

These values are plotted in two dimensions both as a function of time and delivered dose. Shown are the FD
Density and ρ for theoretically “pure” palladium, what was actually measured in the control specimen, and what was
observed for irradiated Pd specimens (ISVP) to which 1.5 and 3.0 megaGray dose were delivered.

Paired FD (vacancies) in pure metals are well known, but are transient and recombine rapidly, driven by the 1.5
eV released per combining defect pair. And so, FD are present in pure metals only at very low concentrations –

Figure 1. Frenkel Defect (vacancy) density, and electrical resistivity (µΩ-cm).
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Table 1. Some properties of irradiation-induced FD.

Enthalpy of formation 0.32 eV Fukai
Number of hydrogen trapped in a vacancy 6 (for Pd) Fukai
Diffusivity (cm2/s) 108

Theoretical max possible concentration 7.7% Fecht (Fuk)
Peak achievable vacancies in Pd 18 at.% Fuk
Remnant vacancies after annealing 1/3
Specific incremental resistivities of some metals ρF (µΩ-cm)
per at.%

Cu 1.3, 2.0 von Hippel, Ehrhart and Schlagheck
Al 3.9 Ehrhart and Schlagheck
Ag 1.5 von Hippel
Au 1.5 von Hippel
Ni 7.1 Bender and Ehrhart
Pd 900100

unless some procedure has specifically been used to generate them and if means are also provided to halt thermally
driven recombination of such vacancies [11]. When formed, the Frenkel pair defects (often termed ‘vacancies’ or
discomposition in the literature) are characterized by diffusivities and the induced specific electrical resistivities listed
in Table 1.

Palladium hydrides have been long studied [12–16]. When FD defects are produced in large quantities in select
Group VIII metals such as when hydrogen atoms (well known from the hydrides of such metals) stabilize them, the
defects can, on occasion, form ordered clusters [17–20]. These were first noted in 1994, during X-ray diffraction
studies, when Fukai [17,18] discovered that palladium lattices filled with hydrogen could undergo a irreversible lattice
contraction at high temperatures into an ordered state, and one with characteristic features of vacancy formation. What
was most interesting was that this new observed phase of matter had concentrations of vacancies (up to circa 30%)
which were many orders of magnitude greater than had ever been seen previously. These ordered states of hydrides
are, therefore, called super abundant vacancies (SAV) or Fukai states. Surprisingly, these HTHP FD have vacancies
which are stable following outgassing of the hydrogen, and on occasion can be observed to form ordered clusters. Such
high FD/vacancy state metals are referred to as vacancy phase (VP) materials. These include ordered vacancy phases
and new types of lower density hydrided “pure” metals and alloys.

1.2. Vacancy phase metals

The generation of FD, and possible attainment of high levels of VP metals is reasonably well understood theoretically.
In hydrogen loaded palladium, FD defects can exist a bit longer, stabilized by the electronic structure of the loaded
PdH. Their existence is still limited by the vacancy diffusion rate and the very low production rate of vacancies.
Hydrogen atoms and the FD stabilize each other by a few tenths of an eV per neighboring hydrogen. In NiH, a metal
vacancy is energetically favored by ∼0.5 eV; in PdH by a few tenths of an eV. These numbers should be compared to
the ∼1.5 eV formation energy required for FD (vacancy) creation in the pure metal. As a result of the stabilization,
thermodynamics predicts that the number of hydrided metal lattice vacancies, which can exist in loaded NiH and PdH,
can be limited by the vacancy diffusion rate and the production rate of vacancies [5]. The dynamics of such ordered
cluster formation is complicated; and that includes because interstitials which can impede the clustering formation,
and because other isotopes of hydrogen (H vs. D) can impede the loading.

Increased quantities of FD in metals can be generated by near-melting temperatures, by high temperature-high
pressure systems [21] and by electron [5,17,18, 21–25] or neutron irradiation, and torsion [20]. The first (and easiest)
method takes the metal just below the melting point to generate vacancies which are then frozen into position by
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lowering the temperature. This procedure attains a maximum vacancy concentration of 0.1%. The FD production rate
can be increased when metals are irradiated by a flux of high energy electrons. Metals irradiated with neutrons or
supervoltage (>1.5 MV) electrons at high doses, and high dose rates, achieve a saturation density of defects that are a
few tenths of a percent, and involving many modes of annealing. There is also much interest in the high temperature
high pressure (HTHP) vacancy phase (VP) synthesis because of the observation of ∼25% metal FD in NiH and 18%
in PdH developed by the anvil-presses on six sides of the samples [17].

Both the FD, the rarer clusters, and SAV which can form from them, are observable through their Huang anomalous
scattering [26–29], and relatively strong small-angle X-ray scattering, respectively. Huang scattering [26] is the de-
velopment of relatively wide angle diffuse scattering produced by the vacancies upon the very sharp diffraction peaks
which characterize x-ray diffraction images of “pure” perfect crystals.

Previously, we briefly reported the presence of transient vacancy phase states [30] and the performance of vacancy
phase nickel cathodes in ordinary water [31]. This paper reports further investigations which were made on electron-
irradiation-induced metal lattice dislocations and vacancies in palladium. We use two units of irradiation here. The
first is the dose delivered to the material, which is Gray (where 100 rads is one Gray). The second is the normalized
fluence (flux) of electrons (number of electrons/cm2) which actually generates that delivered dose.

2. Experimental: Materials and Methods

Palladium samples (wire, annealed post cold-drawn, lot “Z” (IMRA), Johnson Matthey (99.98%, nominal 1.0 mm
diameter, 1 cm length, generally characterized with the 311 metal crystalline axis being perpendicular to the long
axis of the wires) were used. To correct for geometric factors, the physical size of the wires were measured using a
Sylvac caliper (Fowler Type Ultracal-III, Newton MA; spatial resolution 0.01 mm, accuracy 30 µm, precision 10 µm).
The sample wires were measured, before and sequentially after irradiation, for diametric changes at 0, 45 and 90 de-
gree angles along their entire length in the setup configuration. Thereafter, diametric measurements and four-terminal
conductance measurements were used with the geometric sample factors to derive the semiquantitative electrical con-
ductivity of the samples.

Dual Angle X-ray spectroscopic examination was performed on some of the palladium wire samples to determine
the impact of loading pre-irradiation Spectroscopic curves were generated using a Cu anode, 300 mA, 60 kVp; 1/2
degree scatter slit, 1/2 degree divergence slit, Molybdenum vertical collimators, 0.15 mm receiving slit, dose rate ∼10
kiloGray per second, with a scan rate 0.25 degrees/min at 0.02 degree increments for fine structure determination.

To generate high vacancy content metal samples, a high voltage electron irradiator was used to produce damage
for all experiments, except the controls. A van de Graaff was adjusted to deliver 2.5 MV electrons [32] at ultrahigh
dose rate at the MIT High Voltage Research Laboratory (∼2500 Gray/s dose rate) with a single portal over 20 min to
1.5–3 megaGray midplane dose with the samples located approximately 7 cm from the horn. All samples were located
within that peak cross-section of the incident beam. The irradiated wires were arranged on filter paper (Whatman
#1, 9.0 cm) and irradiated perpendicular to their long axis. No rearrangement was used during irradiation, but half
the samples were removed midway through the irradiation procedure. The wires were handled by their penultimate
terminal segments, <1.5 mm). They were contained in polypropylene or polyethylene; and kept at room temperature,
except during irradiation.

The presence of vacancies was qualitatively estimated through the changes observed by electrical resistivity mea-
surements performed before and after irradiation. A significant increase in the resistivity was caused by the substan-
tial defect production after the single dose irradiation, and thereafter the resistivity and sample area were examined,
metachronously. (In contrast to synchronous, metachronous means later, after the event.)

The electrical conductivity was monitored by a four-terminal measurement (Keithly 225 current source, 610C
electrometer). In control experiments determined that when sample input power exceeds 20 nW (∼3 nW for gold),
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Figure 2. Dual angle X-ray spectroscopic examination of the of palladium wire.

there resulted a degree of electrical dissipation sufficient to generate stable electrical conduction measurements using
this system. All measurements thereafter exceeded that minimum power dissipation.

3. Results

Figure 2 shows three X-ray spectroscopic curves for two palladium samples. They are a “virgin” palladium wire (prior
to both loading with hydrogen and prior to irradiation), and a palladium wire after loading with hydrogen. The virgin
control wire had been annealed and cold worked. The thin solid curves are for the virgin wire. The thin dashed curve is
the raw data which includes both of the Kα1 and Kα2 peaks which are characteristic of the horizontal rocking system.
These are corrected in the thin solid curves. The thicker and broader curve is the output of a hydrided (loaded to 0.95)
palladium wire.

One result of this measurement was the corroboration that these palladium wires tended to have their crystallo-
graphic 311 vector perpendicular from the long axis of the palladium wire. Another result is that loading severely
changed the lattice structure. All curves in Fig. 5 demonstrate the 311 characteristic peak (plotted as 2*θ). Relatively,
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this is especially true for the virgin palladium wire compared to the loaded wire. The virgin wires have much greater
magnitude of the 311 peak.

Three X-ray spectroscopic curves are shown (300 mA, 60 kVp) as discussed in the text.
Figure 3 shows the diameter of palladium wires three days following a single irradiation dose. The size of the wire

in millimeters is shown as a function of given dose. The results of eight (8) wires are shown. The range of thicknesses
of palladium wires are shown three days after electron beam irradiation. The limits show the range of measurements
(two standard deviations). Two given irradiation doses (1.5 and 3 megaGray) are shown, along with the controls (that
is unirradiated or “virgin”) palladium wire.

The palladium samples (nominally “1.0 mm”) were ∼1.01 mm diameter, and their diameter increased with remnant
structure damage for days following a single irradiation dose (Fig. 3). Their girth increased for those most highly
irradiated samples to 1.02 mm. The produced effective increase in the cross-sectional area of the palladium wire
(99.98% pure) was 0.75% at 1.5 megaGray, and was ∼2–2.5% at 3 megaGray delivered dose (standard deviation
∼10–20 µm).

The results of eight (8) different wires are shown. The range of thickness of palladium wires are shown three days
after the single electron beam irradiation of all samples (nominally “1.0 mm”).

By the use of area measurement here with the measured electrical resistance, a semi-quantitative correction for
the irradiated wire electrical resistivities were derived (Figs. 1 and 2). Figure 4 shows the palladium wire electrical

Figure 3. Palladium wire diameter three days after electron-beam irradiation-created vacancy states.
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resistivity after its single-dose electron beam irradiation This curve shows the electrical resistivity of a palladium wire
sample (99.99%) over time. At t = 0, the single dose electron beam irradiation occurred. The palladium sample
received 3.0 megaGray midplane dose over twenty minutes. The electrical resistivity is compared with the theoretical
expected resistivity of “pure” palladium.

The most heavily irradiated samples developed increased resistivities of as much as 4 µΩ-cm. This fell off with a
half-life of approximately 2–3 h, until by 6 h after irradiation the resistivity was approximately 11.5 µΩ-cm (Fig. 4).
There appear to be two distinct falloff regions of electrical resistivity, with final drift back toward the normal resistivity
of virgin samples. Following the rapid falloff region shown in Fig. 1 with the half-life of 2.5 h is a region of slower
resistivity falloff in the range of 2.4 × 10−5µΩ-cm/s (over circa a range of 6–9 h). This shows the post-irradiation,
loss of Fukai state material over 20 min. The electrical resistivity of the virgin (unirradiated) Pd samples were approx-
imately 1.01% greater than theoretically expected (expected 10.8 µΩ-cm, measured 10.909). This resistivity of the
samples postirradiation was time-dependent consistent with room-temperature annealing as shown in Figs. 1, 4 and 5.

The upper curve shows the electrical resistivity of a palladium wire sample (99.99%) over time before, and after

Figure 4. Palladium wire electrical resistivity post electron beam irradiation.
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Figure 5. Fine structure of palladium sample resistivity as a function of time, following electron beam irradiation.

irradiation at t = 0. The palladium sample received 3.0 megaGray midplane dose over twenty minutes. The electrical
resistivity is compared with the theoretical expected resistivity of “pure” palladium, which is the lower dashed curve.

Figure 5 shows the fine structure of a palladium sample’s electrical resistivity following its electron beam irradi-
ation. Of special interest are the lattice –quakes. In Fig. 5, two curves are shown. The upper, thicker, curve is the
electrical resistivity of the sample over time (in 10 s time blocks) and demonstrates the fine-structure changes which
occur during room-temperature annealing. The palladium wire sample received 3.0 megaGray. The second curve
(solid dots) shows the average temperature of six thermocouple probes used to examine the immediate environment
around the sample.

The upper, thick, curve is the electrical resistivity of the sample over time, in 10 s time blocks. The fine-structure
changes are room-temperature annealing. The second lower curve (solid dots) shows the average temperature of six
thermocouple probes used to examine the immediate environment around he sample.

4. Discussion and Interpretation

There exists major, yet significantly recoverable, effects wrought upon palladium wire samples following high dose-
rate electron beam irradiation yielding large numbers of FD. High FD content (vacancy phase) metal samples were
generated by a single treatment with a high voltage electron irradiator (2.5 MV electrons, 2500 Gray/s dose rate, single
portal, 1.5–3.0 megaGray mid-plane dose) at room temperature, initially, and they were transient.

Irradiation produced an effective increase in the cross-sectional area of the palladium wires (99.98% pure) of 0.75%
at 1.5 megaGray, and as much as 2–2.5% at 3.0 megaGray delivered dose, consistent with the literature. This finding
of volumetric expansion of the irradiated wires is consistent with the literature because it is well known that irradiation
of metals causes lattice site breakdown and that the creation of defects so wrought increases the volume (and in this
case area).

The most heavily irradiated samples developed incremental resistivities of ∼4 µΩ-cm (virgin unirradiated sample
resistivities and theoretical resistivities of 10.9 and 10.8 µΩ-cm). This electrical resistivity of the samples, post-
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Figure 6. Induced incremental derived FD concentrations in palladium and other metals.

irradiation, was time-dependent, consistent with room-temperature annealing. In palladium, post 3 megaGray, after
the rapid early falloff (half-life ∼2.5 h) there is a region of fewer induced FD and a much slower resistivity falloff
(∼2.4 × 10−5µΩ-cm /s).

In palladium, we have separated the annealing of irradiation-induced vacancies into two phases of FD recombina-
tion and loss. The first has the possible appearance of a level of vacancies similar to those described by Fukai [17,18].
The latter short-lived phase occurs within hours and are levels consistent with the other electron irradiation reports [16,
21–25].

Lattice quakes are observed in the second region. The fine structure of the electrical resistivity (Fig. 5) shows
that in intermediate time region, most observable at circa 7–9 h after the irradiation, there can be seen these complex
dynamic structural changes.

Figure 6 plots from several experiments the induced incremental derived FD concentrations in palladium, and other
metals, as both obtained by electron irradiation here, compared to the high temperature-high pressure (HTHP) system.

These are the incremental induced derived FD concentrations, for metals, obtained by electron irradiation. Here,
results are compared to the high temperature-high pressure (HTHP) systems.

In these palladium samples, post high dose irradiation, based on the electrical resistivity changes, the calculated
FD concentration (% atomic FD) within the first 3 h post-irradiation was in the range of ∼30–45%. We believe that
this is an over-calculation based upon reliance on electrical resistivity; and that the more likely range obtained was
∼20–30%, similar to that reported by Fukai for palladium and by Ehrhart for copper.

In the longer term, the calculated FD concentration was in the range of 8–10%. The FD formation rate as function
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of the electron irradiation flux is estimated at 10-60% atomic FD/coulombs/cm2 within the first 3 h post-irradiation. In
the longer metachronous post-irradiation period, this decreased to 7–10% atomic FD/coulombs/cm2. These levels are
greater by more than orders of magnitude than those observed for copper and nickel [25].

By contrast, in nickel, electron bombardment by 3 MeV leads to vacancy concentrations of 0.0003-0.0007 for 1–2
× 1018 electrons/cm2, with a defect saturation of about 0.0018. These nickel control experiments produced short-lived
defects, fewer in number than those left frozen in at 4.5 K.

5. Conclusion and Summary

In summary, electron irradiation offers opportunity for larger levels of defects than that achieved by other methods.
FDs, and ordered vacancy phase (VP) solids loaded with FDs, may be important because they offer new materials
with novel properties arising because of stabilizing hydrogen atoms offering a few tenths of an eV per neighboring
hydrogen.

From a materials point of view, one important impact of these findings is that by electron-irradiating Group VIII
metals, there may be opportunity for obtaining larger concentrations of FD than achieved by other methods. Competing
kinematics, and other metallurgical issues, make producing large amounts of such defects (vacancy phase metals) quite
difficult. However, metals loaded with hydrogen, such as deuterium in palladium, can change all that.

Another implication is also that electrical transconduction spectroscopy, normally used to monitor hydride loading
in the Group VIII metals, can also examine the lattice healing and vacancy recombination, through these lattice-quakes.

Another impact of this work is that, looking forward, wire diameter should be considered during electron beam
irradiation or hydrogen loading so as to further supplement and correct Archemedic estimations and X-ray spectro-
scopic deduction of the loading. Specifically, correction for geometric factors to determine the electrical resistivity will
improve loading determinations based on the variation of resistance for the b phase palladium following loading with
deuterons [33]. Electrical resistivity, rather than electrical resistance, may be more important because it is indicative
of material composition by removal of the geometric factors. Although X-ray spectroscopy can be used to evaluate
lattice spacing, samples should be physically followed thereafter to correct for their changing geometric size.
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Abstract

An electron capture reaction e−+d+ → 2n followed by deuteron to triton transmutation, the n+d+ → t+ reaction, is judged to be
the prime reaction in polarized Pd/D–D2O system . Supporting evidence for the proposed mechanism is interpreted and discussed
in terms arising from the content and meaning of chemical and nuclear reactions occurring in condensed matter.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

The substitution of cathodes prepared by the Pd+D co-deposition for massive palladium when applied correctly assured
a 100% reproducibility in excess power generation. It was expected that they will reproducibly produce tritium as
well. Indeed, this was the case. Samples of electrolyte from ten (10) cells were sent to Stanford Research Institute (Dr
McKubre) and to University of Utah (Prof. Pons) for analysis. All showed marked increase in tritium concentration.
In what follows, we examine the arguments leading to the proposed model of tritium production. These arguments
are based on evidence resulting from the work done in the laboratory at the SPAWAR Center. The purpose of this
communication is not to review the published literature, but to emphasize the connection between the event, e.g.
e− + d+ → 2n reaction and the removal and transport of tritium from the reaction space to the environment in
which they occur. To avoid misunderstanding, we define the content and meaning of the background material using
terminology common in reporting results of chemical research.

2. Background Material

Fleischmann et al. [1], noted that nuclear reactions in a host lattice are affected by coherent processes and that .... there
are appropriate thermodynamic conditions for the formation of large clusters of hydrogen nuclei or of regions of the
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lattice containing ordered arrays of hydrogen nuclei at high H/Pd ratios, resulting in the .... formation of clusters of
deuterons dispersed in palladium lattice that would lead to the formation of ordered domains having high D/Pd ratios.
These quotes augmented by, and derived from the thermodynamic structure of electrochemistry[2], guided the order
in which the material is presented.

2.1. Chemical reaction

A chemical reaction is usually described by aA + bB = cC + Q, where Q > 0 denotes an exothermic and Q < 0 an
endothermic reaction. This representation of a chemical reaction indicates that a mole of A react with b mole of B
to yield c mole of C and d mole of D. Characteristic features of any equation, whether chemical or not, are its form
and content. Here as written, only the initial and final states are not specified, i.e. the system consists of unbounded
particles in the sense that there is a continuous range of possible energies. Thermodynamic considerations specify
conditions for the reaction to occur.

2.2. Electron capture: a chemical reaction

In the Landau and Lifshitz treatise [3] one reads It is not difficult to write down the thermodynamic conditions which
govern the “chemical equilibrium” of the nuclear reaction, which may be symbolically written as AZ+e− → AZ−1+ν
where AZ denotes nucleus of atomic weight A and charge Z, e− an electron and ν a neutrino. The neutrinos are not
retained by matter and leave the body, i.e. this nuclear reaction may be represented by equations which correspond
exactly to those employed in chemical reactions.

2.3. Reaction space

Chemical reactions and/or processes do not occur in ideal conditions. Here, the reaction space, a three-dimensional
entity, its location, structure and dynamics, and time when the reaction takes place, are discussed.

2.3.1. Location

One procedure to locate the reaction space for nuclear events is to electrolyze heavy water and record emission of
particles. This can be done by placing a co-deposited Pd + D film on the CR–39 chip [4]. If the Pd + D film is
co-deposited onto an open metallic substrate, e.g. a screen or a single wire and if the emission of particles occurs,
then they are detected only along the electrode edge, as illustrated in Fig. 1. Evidently, the nuclear reaction is located
very close to the contact surface. The bright line along the peripheries of a single eyelet is an overlap of hundreds of
impingement tracks.

2.4. The interphase: its structure

The interphase is an element of the cathode structure where the concepts and definitions must be clearly presented and
it is here, where the complex interplay involving kinetic and thermodynamic considerations must be considered.

2.4.1. Its structure

When the system is in equilibrium, its structure can be defined in terms of physical properties. When the system is not
in equilibrium, then it is often convenient to discuss its structure in terms of occurring processes [2]. Moreover, in a
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Figure 1. Emission of charged particles from a polarized Pd + D film. (a) Single eyelet, bright line consists of hundreds of impingement tracks
along the edges of the screen. (b) Expanded section indicated by an arrow.

number of situations, the interphase represents a region consisting of a number of thin layers that are homogeneous and
where, to assure their homogeneity, an average value of a particular variable is taken. The imposition of homogeneity
on each layer results in its non-autonomous character which arises from the interaction of molecules in adjacent layers
[5]. Consequently, changes in any part cause changes throughout the whole region. An abrupt change in any of the
process variables will produce a relaxation spectrum with gradients associated with this variable.

2.4.2. Its dynamics

Random distribution of gas bubbles results in local changes in the charge transfer current density which, in turn, pro-
duces changes within the interphase and insures formation of localized gradients. Moreover, any motion of hydrogen
within the interphase generates stresses that, in turn, produce dislocation and other types of interaction sites. How
deep into the interphase they occur depends on the relaxation time of dominant processes. That it is to say, within
the interphase exists a state of dynamic equilibrium which governs the distribution of hydrogen interacting with the
palladium lattice which means that some interaction sites are formed, others disappear thus releasing the interacting
protons and making them available for the electron capture reaction.

3. A Brief History

Shortly after the discovery of nuclear reaction in a test tube, referred to as as cold fusion, the tendency was to explain
everything including tritium production, as the result of deuteron fusion reactions. Here we present a different mech-
anism from that due to d+ + d+ fusion reaction (namely where the excited helium decays into t+ and p+) i.e. that
arising from electron capture being the first step leading to tritium production which leads to a different interpretation
of the observed behavior.

With the discovery of transmutation it was natural to consider a reaction path involving an electron capture by
a deuteron. In September 2006, we suggested that the reaction e− + d+ → n2 → 2n, plays significant role in the
initiation of the F–P effect [4]a In this paper we suggested a set of nuclear reactions, where the reactants within the
reaction volume are: D+, and neutrons generated by the electron capture and where the reaction products are: excess
enthalpy, γ-radiation and tritium, the latter being : n + d+ → 3

1H+ + ν, an analog of e− + p+ → n.

aIn June 2007, we submitted a manuscript “On the evidence for and origin of nuclear activities in polarized Pd/D–D2O system” to Zeitschrift fuer
physikalische Chemie. This paper was send for review on 14 June 2007 to Mr Martin Radke who advised us to check the review status with the
Editor-in-Chief, Prof. Dr Baumgaertel. Our attempts to contact Prof. Baumgaertel were not successful.
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Figure 2. Flow diagram showing reactions and processes in polarized Pd/H–H2O system exposed to an external magnetic field. ψm which reduces
the interaction energy with u2 < u1. Arrow 1 – produces neutrons, arrow 2 – transmutes p+ → d+, arrow 3 transmutes deuteron to triton.

3.1. Electron capture

The reluctance to accept the e−+d+ → 2n followed by n+d+ → t+ reaction path for tritium production in the Pd/D–
D2O system was due to the difficulty in how to separate the electron capture reaction from other nuclear events. This
difficulty could be removed if we could demonstrate the e− + p+ → n reaction. To test this premise, we considered an
analog, viz. the polarized Pd/–H2O system and the e− + p+ → n reaction. For an electron capture reaction to occur,
the proton interaction energy, u(r), must satisfy the condition µ(n)− µ[p+ + u(r,φ)] > 0. Now, it should be possible
to produce conditions that would allow the e− + p+ → n reaction to proceed. Indeed such conditions can be created
by placing an operating cell in an external magnetostatic field (0.06T). Through the analysis for the hydrogen isotopes
content in cathodes we showed the presence of all hydrogen isotopes in various ratios [6]. This can lead to only one
conclusion: e− + p+ → n reaction did occur and started the transmutation n + p+ → d+ and n + d+ → t+. This set
of events is illustrated in Fig. 2.

Evidently the exposure of an operating cell to an external magnetic field reduced the energy u2 to a value so that
the electron capture mechanism can start and that the forces of the proton/lattice interaction are of electronic nature
[6].

4. The n + d+ → t+ Reaction

Since all deuterons, located in the reaction volume, interact with the Pd lattice defects to a various degree, consequently
their chemical potential is of the form µ(d+

∗ )l = µ(d+) + u(r,φ). In this representation, the u(r,φ) function indicates
that a part of the interacting site is incorporated into the deuteron itself, i.e. it represents the degree of overlap which,

Figure 3. Reaction path generating tritium in polarized Pd/D–D2O system. (a) Electron capture by deuteron, (b) electron capture by deuteron and
triton. (3a) primary reaction, (3b) likely for for high concentration of triton is present in the reaction space.
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in turn, determines whether or not the electron capture by deuteron can occur. To force the system into its nuclear
active state, the quantity µ(n)− µ[d+ + u(r,φ)] must be positive.

4.1. Reaction path

The path for the n + d+ → t+ reaction is shown in Fig. 3. The starting point is the electron capture by a deuteron,
e−+d+ → 2n, a reaction that can be described by the rules of chemical kinetics. The generated neutrons interact with
a deuteron to produce a triton, n+ d+ → t+, or they can react with triton to produce helium n+ t+ →4 He+ e−. This
reaction path is illustrated in Fig. 3a.

Because the value of u(rφ) function for deuteron and triton is approximately the same, it is possible that an electron
can also be captured by triton yielding three neutrons, e− + t+ → 3n. This situation, illustrated in Fig. 3b, is likely
to occur when concentrations of deuterons and tritons are approximately the same. The proposed reaction path is an
example of coupling of chemical processes with those governed by nuclear physics. The chemical processes take place
within the confines of the interphase and change its structure which, in turn, affects their response.

5. Tritium Production and Recovery

Tracing of the tritium production and recovery of tritium in polarized Pd/D–D2O system is illustrated in Fig. 4. It
provides two sets of information. The first set shows that the interphase contains three characteristic segments, viz.
reaction space and transport zone on the solid side, λ2 and desorption of tritium from the contact surface on the solution
side, λ1. If viewed at a given time, t0, then it represents the structure of the interphase by identifying the processes
and assigning relevant driving forces (chemical potentials). The second set provides information on the relationship
between tritium and the environment as it moves across the transport zone, crosses the contact surface and enters the
λ1 segment of the interphase.

Since the processes of production and recovery of tritium are located within the interphase, their behavior depends
on and reflects the conditions arising from the its dynamic equilibrium. In discussing the processes of interest are (i)
the state of two variables namely electrons and deuterons while the recovery involves events occurring in the transport
zone and (ii) their response to conditions imposed by the operating cell.

5.1. Tritium production

A cursory examination of Fig. 3 implies that the rate of tritium production is governed by deuteron and neutron
concentrations as well as the rate constants for n+d+ → t+ and n+ t+ →4 He+e− reactions. But, the rate of neutron
production depends on the rate of electron capture, i.e. on the e−∗ + d+∗ → 2n reaction where binding energies must
be specified (cf. Section 2.1). These, expressed in terms of chemical potentials, are (i) for an electron is of the form
µ(e−∗ ) = µ(e−)+e−φ] and (ii) for deuteron of the form µ(df+

∗ ) = µ[d++u(r,φ)]. In addition, the electron trajectory
must be such that it will collide with a deuteron.

5.2. Tritium recovery

The process of tritium recovery can be described in two ways (i) tracing its motion from the reaction space to the
collection space and (ii) describing changes in the generated triton as it travels through the interphase. In the first case
the generated triton, t+, transmutes to tritium, 3H, which enters the void, 3Hv . Since transport of tritium occurs during
deuterium evolution, the state of dynamic equilibrium which governs the distribution of lattice defects/voids exists
and determines the transport mode. In particular, due to localized forces associated with the dynamic equilibrium, the
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Figure 4. Schematic representation of tritium removal. Path I, line 1 to gas phase, line 2 to liquid phase. Path II, line 3 return to reaction space.

tritium transport occurs via a zig-zag path, proceeds toward the contact surface and enters the absorption layer followed
by crossing the contact surface or returning to the reaction space. The empirical evidence suggests that there exists
a correlation between the kinetics of deuterium evolution and the structure of the interphase which means that voids
capable of retaining tritium , 3H, are formed. This establishes the link between the kinetics of deuterium evolution and
transport of tritium.

The second path is to examine possible reactions involving triton that has returned to the reaction space. The rate
of tritium production is controlled by concentration of neutrons which, in turn, is controlled by the electron capture
reactions (e−+d+ → 2n and e−t+ → 3n). In addition to the n+d+ → t+ reaction, other reactions consume available
neutrons. One set of possible reactions: a nucleus X having mass A transmutes to one of mass number (A + 1)
expressed by equation n+AX →A+1 X , e.g. n+ d+ → t+; n+ t+ →4 He; etc. There are yet other possible reactions
that consume neutrons.

The processes illustrated in Fig. 4. show clearly the difference between tritium which is detected and that which
is generated. This difference arises from and is affected by the coherent processes occurring within the transport zone
and reaction space. It is this coherence that leads to the observed sporadic production of tritium .

6. Conclusions

The proposed model and the presented empirical evidence leads to the following conclusions.

(1) Nuclear reaction in condensed matter require establishment of a nuclear active state.
(2) Direct evidence (cf. [6]): The electron capture by a proton starts the set of nuclear reactions via neutron

production. Because the binding energy of d+∗ is less than for the p+
∗ specie, there is no need to apply an

external magnetic field for the electron capture reaction to occur because the Pd/D–D2O system is all ready in
its nuclear active state where the reaction steps are identical.

(3) It is necessary to differentiate between what is produced and what is measured. The usually reported rate of
tritium generation refers to tritium transported across the interphase region only (transport zone, cf. Fig. 4). If
the term sporadic production implies that there are periods of no production, then the proposed mechanism is
questionable. But this model accounts well for periods of increased tritium production.
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Abstract

The preparation of electrodes by a co-deposition is discussed in detail. The electrode reactions are identified, the structural features
of the deposit are described and the relevant experimental evidence is assembled.
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1. Introduction

Recently, I learned that Letts and Hagelstein [1] modified the Szpak protocol to assure a 100% reproducibility in excess
heat production. Upon repeated reading, I concluded that I should respond because not all pertinent and available
information was used. In their paper, there is the sentence ... an issue in the Szpak experiment is reflected in the
literature in the relative absence of replications showing excess heat due to insufficient loading and poor adhesion.
But, in a publication [2], we discussed the deuterium uptake in detail and have shown that the deuterium loading
exceeds 100%. In this communication I present a very different discussion of the Pd + D co-deposition process.

My involvement in the research of the F–P effect dates back to May 1989 when I proposed a variant of the usually
employed massive electrodes, viz working electrodes prepared by the Pd + D co-deposition, a process in which the
Pd2+ and D+ ions are electrodeposited onto a substrate which does not absorb deuterium, e.g. Cu, Au, Pt, etc. One
obvious reason was to eliminate the charging time. The other, more interesting, was to study the processes that initiate
nuclear activity in the polarized Pd/D–D2O system.

In 1989, not much was known about the Pd + D co-deposition. The development and evaluation of an experi-
mental procedure is not instantaneous. It requires the determination of conditions that maximize its usefulness. In
the SPAWAR laboratory we carried out collateral research involving (i) deuterium absorption during co-deposition
[2] as well as the electrochemical charging of solid palladium [3,4], (ii) response to change in cathodic over-potential
during co-deposition and on solid palladium [5]. We examined the thermal behavior of cells using cathodes prepared
by co-deposition using a model which differs from that presented in [1].

∗Current address: 3498 Conrad Ave, San Diego, CA 02117, USA. E-mail: stan.szpak@gmail.com
†Retired.

c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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Figure 1. Schematic representation of the co-deposition process.

2. Process

The Pd + D co-deposition may be viewed as a special case of production of alloys by electrochemical processing, i.e.
it involves simultaneous deposition of more than one component. To assure good adhesion several steps must be taken,
among them (a) selection of the substrate, (b) surface preparation, and (c) co-deposition control. Here, the discussion
of co-deposition considers (i) relevant kinetics of electrode reactions and (ii) the art of co-deposition.

2.1. Kinetics of electrode reactions

Briefly, for the production of Pd/D alloy, the relevant reactions are: Pd2+ + 2e− → Pd and D2O + e− → D + OD−. In
practice, however, these reactions depend on the electrolyte composition. For co-deposition from a solution containing
PdCl2−4 complexes, Naohara [6] found that the reduction of Pd2+ proceeds via the reduction of an adsorbed PdCl2−4
complex resulting in a layer-by-layer growth of the Pd film. However, the orderly growth of deposited palladium is
disturbed by the adsorbed deuterium generated by the reduction of heavy water. Ohmori et al. [7] using a scanning
tunneling microscope, proposed a model where the H+ ions are adsorbed and reduced at the surface. A part of the
adsorbed hydrogen enters the Pd lattice and accumulates around lattice defects. Through this process, the surface is
transformed into a modular-like structure.

2.2. The art of Pd + D co-deposition

Figure 1 illustrates the procedure when (i) reduction of PdCl2−4 and D2O are independent of each other, (ii) electrolyte
volume and electrode surface remain constant, (iii) reduction of Pd ions is diffusion controlled and (iv) no other
charge transfer reactions occur. Under these conditions the electrode rest potential, Φ(0), is determined by solution
composition. At t = 0, a constant cell current, I1 , is applied.

In practice , the cell current is much smaller than the diffusion limiting current, I1 < jlim. Note that in Fig. 1, j∗
denotes the limiting current. This is done to assure an adherent Pd deposit. With the passage of time, the Pd2+ ions
are depleted, the electrode potential, driven by the cell current, becomes more negative. At t = t1 the cell current is
increased to I2, i.e. to a value very close to the limiting current. This is done to assure a long co-deposition period.
When the applied current , I2, by reducing the concentration of Pd2+ ions, becomes the diffusion limiting current
(for that concentration) the electrode potential is driven into the region of heavy water instability and at t = t2, the
reduction of D+ ions commences and the co-deposition begins. If the co-deposition is galvanostaticaly controlled
and if the cell current exceeds the diffusion limiting current, then, at constant volume and surface area, the Pd2+ ions
concentration decreases linearly with time. The co-deposition is completed at t = t3.
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Figure 2. Deuterium up-take during co-deposition. jc = −5 mA cm−2 and ja = 5 mA cm−2, with cell current reversal at 1, 2, 4 and 8 s.

2.3. Corollary

(1) The Pd + D co-deposition process does not specify (i) the electrolyte concentration except to say that (a) the
reduction of Pd2+ ions is diffusion controlleda , (b) ratio D/Pd reduction determines morphology of the deposit
and (c) substrate preparation prior to co-deposition is a crucial component of the process.

(2) Deuterium up-take during co-deposition at constant cell current can be determined from the cathodic and
anodic potential/time relationships shown in Fig. 2. The line parallel to the time axis represents potential/time
during the co-deposition of the Pd/D film whose composition at a given time depends on how much charge
was consumed by Pd2+ ions, QC,1 and how much for hydrogen generation, QC,2 which for the atomic ratio
D/Pd =1 is 2. Upon switching from cathodic to anodic current, the potential/time curve identifies the following
processes: changes in the double layer, desorption and oxidation of deuterium and oxygen evolution.

The atomic ratio D/Pd in is obtained from the ratio ∆tn/∆t where the subscript n = a, b, c, d, identifies the
potential/time curve and ∆t is the time needed to obtain the atomic ratio D/Pd =1 at the time of current reversal. The
deuterium up-take, expressed as a D/Pd atomic ratio, taken at 1, 2, 4 and 8 seconds of charging are 0.95, 1.07, 1.1 and
1.3.

(3) In the co-deposited Pd/D film the D/Pd = 1.0 atomic ratio is obtained immediately in agreement with and
support of thermal data, cf. Fig. 6.

3. Product

The product quality is judged by its performance which, in turn, imposes demands on its construction and/or function.
Here, the Pd/D cathodes serve as a seat for heat generation that is nuclear in origin. In practice, one has to answer the
following: (i) what is its stability at high cell currents as well as when subjected to highly energetic nuclear reactions,
(ii) what is the optimum thickness of the deposit to assure maximum excess heat. The research done in the SPAWAR
laboratory indicates that to answer it is necessary to consider (i) the structure of the deposit and its stability, (ii) the
interphasse and (iii) the act of absorption.

aThe composition 0.03 M PdCl2 , 0.3 M LiCl in D2O was found to be satisfactory.
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Figure 3. SEM of co-deposited Pd/D film. (a) After completion of co-deposition, (b) exposed to an external electric field, and (c) exposed to
magnetic field.

3.1. Structure: Effect of external fields

The structure of the co-deposited Pd/D film from a solution containing PdCl2−4 is shown in Fig. 3. In particular, Fig. 3a
is the SEM of the deposit after completion of co-deposition. Its structure did not change when used as a cathode at
current densities up to 400 mA cm−2. When the cell was placed in an external electric and magnetic field, its structure
has changed as shown in Fig. 3b for an electric field and in Fig.3c in the magnetic field.

(1) Figure 3b is the SEM of the Pd/D cathode shortly after placing the cell in an external electric field which
results in swelling and alignment with the field. The initial porous cauliflower-like structure has changed to a
columnar arrangement of globules.

(2) The placement of an operating cell in magnetic field changed the globules into pancake-like entities that appear
to be firmly affixed to the substrate.

3.2. The interphase

The interphase, λ = λ1 + λ2(τ), is a region separating two homogeneous phases. When the system is in equilib-
rium, its structure can be defined in terms of physical properties. When the system is not in equilibrium, it is often
convenient to discuss its structure in terms of occurring processes, i.e. the interphase can be viewed as an assembly
of a set of homogeneous layers whose structure is determined by the operating processes and their relaxation times.
To assure their homogeneity, an average value of a particular variable is taken [8]. The imposition of homogeneity of
each layer results in its non-autonomous character which arises from the interaction of molecules in adjacent layers.
Consequently, changes in any part cause changes throughout the whole region.
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Figure 4. Deuterium crossing the interphase region. (open circle) D+ ion, (black circle) deuterium atom, (shaded circle) deuteron, ct–charge
transfer layer, ab–absorption layer, shaded areas- domains.

3.3. Crossing the interphase

Transport of deuterium across the interphase is due to coupling processes at the contact surface followed by transport
into the electrode interior, with the concentration of deuterium being larger in the λ2(τ) segment of the interphase [4].
The solvated D+ ions are driven toward the negative electrode at the rate determined by the cell current. The electro-
deposited deuterium is removed from the contact surface by gas evolution and by absorption. The adsorbed/absorbed
deuterium is distributed as follows: (i) The subsurface, Ds is formed just below the topmost layer of Pd atoms and
provides the link between the chemisorbed surface atoms, Da , and the dissolved in metal, Dm, (ii) two energeti-
cally different Da exist, (iii) with chemisorption there is associated surface reconstruction, but only Ds is responsible
for its maintenance, (iv) there is an energy barrier separating Da and Ds which affects transport in both directions.
Chemisorbed Ds is responsible for surface reconstruction while absorbed Ds maintain state of reconstruction [9].

3.4. Corollary

(1) Any solid undergoes shape change when the internal forces exceed the elastic limits. In general, three types of
forces can be identified as acting during the deformation of a solid. These are (i) internal forces, i.e. forces that
obey Newton’s law, (ii) applied external forces and (iii) capillary forces (forces that act between the internal and
surface molecules, or between solid boundary and the molecules of surrounding liquid). By definition, when
the surface forces are not uniformly distributed, they act as external forces. If, in fact, the latter are involved
in producing shape changes, Fig. 3, then their action can be magnified by an external electrostatic and/or
magnetostatic fields. The relationship between surface forces and the bulk response is given by the Gauss
theorem which states that forces acting on any finite body can be reduced to forces applied to the surface and
vice versa. It follows that the shape change at constant volume is the result of motion due to forces acting on
the surface. Consequently, the deformation is determined by the distribution of surface forces while the rate of
deformation, by their magnitude.

(2) The structure of the interphase controls its performance via (a) generation of lattice defects through activities
in the λ1 segment, (e.g. gas bubbling and the associated charge transfer current density), (b) porosity which
affects the distribution of the primary charge transfer current density and which determines the useful thickness
of the Pd/D deposit.
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Figure 5. Thermal and mechanical effects. (a) Hot spots and (b) piezoelectric sensor response to a hot spot.

4. Performance

The large quantities of excess enthalpy generation in the Pd/D–D2O system raised questions: (i) Is the excess enthalpy
generation reproducible? (ii) Is the heat source uniform throughout the whole electrode volume or distributed? Expe-
rience shows that, if correctly applied, electrodes prepared by the Pd + D co-deposition provide answers: yes to (i) and
the discussion based on experimental evidence to (ii).

To confirm the existence of the F–P effect one needs only to establish an excess enthalpy production by calorimetry.
But calorimetry, being an integrating procedure, cannot do much more. There are other tools that can add to a better
understanding the nature of the polarized Pd/D–D2O system. One such tool is the infrared (IR) imaging of the surface
of an active electrode [10]. The other, prompted by the first, is the use of a pressure sensitive substrate, onto which
the Pd/D films are co-deposited, to demonstrate mechanical changes that do occur when an instantaneous and high
intensity exothermic reaction takes place [11]. This communication includes a brief discussion of the thermal behavior
immediately after beginning of a run.

4.1. Infrared imaging and pressure and temperature wave

Figure. 5a shows the IR image of the cathode and Fig. 5b the associate pressure and temperature waves. The IR
imaging shows discrete reaction sites randomly distributed in time and space. The short lived hot spots resemble
mini-explosions which, in turn, generate pressure and temperature waves recorded by the piezoelectric sensor. As the
solution temperature raises, the hot spots become brighter and an amplified sensor response.

4.2. Initial thermal behavior

The co-deposition starts with endothermic absorption of deuterium. However, within seconds, the endothermic absorp-
tion is balanced by an exothermic nuclear reaction, Fig.6, point a. The balance involving endothermic and exothermic
process ends at point b.

4.3. Corollary

(1) Existence of domains containing clusters of deuterons or of regions of ordered deuterons dispersed in the Pd
lattice that lead to the formation of ordered domains having high D/Pd atomic ratio.
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Figure 6. Initial thermal behavior: endothermic absorption – 0 < Q < A, endothermic absorption balanced by exothermic reaction – a <
Q < b, exothermic reaction dominates Q > a.

(2) The heat source arises from fast chain of nuclear reactions or from a kind of cluster collapse.
(3) The size of the cluster or the rate constant of the chain reaction are temperature dependent

5. Conclusion

The Pd + D co-deposition produces not only effective cathodes but also provides an insight into the conditions that
give rise to, and are associated with, the nuclear events that occur within the confines of the Pd lattice. A complete de-
scription must include (i) the processes and/or reactions involved, (ii) product and its function and (iii) the performance
that determines its effectiveness. In concluding remarks I will address the (i) kinetic aspects very near the starting of
co-deposition and (ii) the similarities and differences between the co-deposition described in this communication and
that in [1].

5.1. Kinetic aspects at the start of co-deposition

Within seconds after starting co-deposition a series of events takes place. The first set is the accumulation of absorbed
deuterium around the lattice defeats, cf. Section 2.1, forming ordered clusters of deuterons dispersed in the Pd lattice.
Their size can be estimated by examining the hot spots, cf. Fig. 4a. Using this approach Chubb [12] suggested 104–199
events occurring within a volume having a diameter of 100 Å.

The question, what is happening during the time separating complete saturation and onset of nuclear reaction,
needed an answer. Fleischmann et al. [13] suggested that... there are appropriate thermodynamic conditions for
the formation of large clusters.... This statement can be extended to include self-organization which implies that there
exists a volume element within the system having dimensions much larger than the characteristic molecular dimensions
but smaller than the total volume of the system [14]. Within this volume fluctuations behave coherently thus modifying
its microscopic behavior. At far from equilibrium, new structures, involving coherent behavior are formed and can be
maintained only through a sufficient flow of energy [15]

Thermodynamic arguments imply that energy flow external to the clusters may affect their behavior. Indeed,
as the solution temperature rises from 30 to 80◦C, the hot spots are brighter and the mini-explosions stronger [11].
Since within this temperature range nuclear reaction rates are not affected, it means that either rate constant of the
chain reaction increased or the cluster became larger. As a general proposition – a complex interplay of kinetic and
thermodynamic quantities create conditions that allow the nuclear event to occur
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5.2. The Letts–Hagelstein (L–H) protocol – a variant of co-deposition

The comparison of the co-deposition described in [1] and that presented in this communication can be best accom-
plished by the discussion of (i) process, (ii) product and (iii) performance.

(i) Process. Difference in (a) electrolyte composition, viz added H+ ions, less PdCl2, (b) in processing, e.g.
co-deposition at 600 mA cm−2 results in very different kinetics of co-deposition. (ii) Product. The L–H protocol
specifies the structure of the cathode, i.e. it requires the deposition of gold film prior to Pd + D co-deposition. (iii)
Performance. Reproducible production of excess enthalpy.

If to modify means to introduce minor changes in either electrode preparation or cell operation, then based on
information presented in [1] the L–H protocol is a new procedure rather then modification of another one. It does not
matter how to call it. What matters is that cells using cathodes prepared by the L–H protocol can be operated at much
higher current densities.
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Abstract

In our recent paper [1] we asked: why an exothermic system with the positive feedback, such as the Fleischmann–Pons experiment,
does not suffer thermal run-a-way. In seeking an answer we selected two items (i) formation of hot spots and (ii) system’s response
following a fast nuclear event, that seem to point to a simple model of cathode to electrolyte energy transfer.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Cold fusion, Electrolysis, Hot spots

1. Development of the Model

Reactions and processes associated with the selected items are discussed in [1]. Here, a brief description of relevant
conclusions derived from (a) hot spots and (b) system’ response forms the basis for the proposed model of heat transfer
path.

2. Cathode to Solution Heat Transfer Path

Prior to the mini-explosion the system is in its pre-nuclear active state. A large number of deuterons and electrons
is contained within a volume having radius of a few hundreds Angstroms, symbolically illustrated in Fig. 1 c1. At a
certain time the fast nuclear reaction, resembling a mini-explosion, occurs, point A, causing local lattice destruction
followed by forcing the hot reaction products into the solution, Fig. 1 c2.

3. Comments

Experience shows that the polarized Pd/D–D2O system typically maintains a temperature difference of a few degrees
C above the solution. This is unexpected behavior for a positive feedback system unless (i) the heat is generated at
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Figure 1. .

surface or (ii) very close to the surface and hot reaction products can penetrate the interphase. There is no evidence for
(i) and limited information for (ii).

A domain, containing large number of reactants (deuterons and electrons), in its pre-nuclear active state is shown
symbolically in Fig. 1 c1 where it undergoes fast nuclear reaction (reaction time: a few nanoseconds). One possible
explanation is that the reactions produce a very fast increase in pressure (e.g. a mini explosion) that “opens up” a
pathway for the reaction product (probably helium) to escape before substantial damage of the lattice occurs due to
the heat of reaction. The explosive event causes (i) an increase in volume, (ii) lattice expansion/destruction at the
interphase and (iii) transfer of hot reaction products to the solution phase, Fig. 1 c2. That it is to say that practically
all energy generated is transferred to the solution. The heat stored at periphery of the expanded reaction volume is
insignificant.

The system returns to its normal state within a fraction of a second (∆t = 0.6 s, Figs. 1 and 2 ( b1 and C2).
The endothermic heat of deuteriun absorption off-sets the residual heat stored in the periphery so that the cathode
temperature remains constant.

Figure 2. (a) The infra-red imaging of the cathode, prepared by co-deposition, of an operating cell reveals the presence of randomly distributed in
time and space hot spots. These discrete heat sources are located in the close proximity to the contact surface, Fig. a. Information derived from hot
spots is as follows: (i) formation of domains having the volume corresponding to the radius of a few hundred Angstroms, in which 109 fast reactions
occur [2], (ii) the energy released is on the order of 0.1 kJ/g and must have been occurred on at time scale of less than 10 ns [3]. (b) System’s
response to the nuclear reaction recorded by a piezo-electric sensor, b1 is that due to explosion. An extended view, Fig. b2, shows: point 1 - system
at rest. Point A - explosion, time period ∆t system relaxes to its initial state. .
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Abstract

Experiments over the last 25 years have demonstrated sonofusion: the formation of He by ultrasound incident on D2O. The observed
effect is described. Neither the characteristic gamma nor the neutron typically seen in the formation from two deuterons of 4He
and 3He, respectively, is observed. The experimental arrangement is specified. A proposed model, based on cavitation-produced
z-pinch jets in target-foil implants, is outlined. It involves formation in the implants of a BE condensate that provides the source of
the deuterons and whose recoil ensures energy-momentum conservation. The model accounts for all experimental results. It also
provides a guide for future work on sonofusion.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

A summary is presented of over 25 years of the author’s experimental results on the formation of 4He initiated by a
high-frequency acoustic wave incident on circulating D2O in the presence of an exposed Pd, Ti or other lattice. 4He
analysis was also carried out in part by others [1–3], as summarized in the Appendix.

The observed effect is described in Section 2. The emitted heat correlates with the energy released in the counted
number of 2D events. The process – termed sonofusion – produces, for each observed 4He atom, excess heat slightly
greater than the binding energy B (2D,4He). Most applications of calorimetry to fusion have been based on electro-
chemistry [4–7], not on ultrasound. In both the ultrasound-generated and electrochemically generated calorimetry-
based measurements, both 4He and 3He production were observed. Neither the characteristic 23.8 Mev gamma nor
the 2.45 Mev neutron typically seen in 22H →4He + γ and 22H → 3He + n, respectively, has been observed in the
ultrasound or electrochemical systems [3,8,9]. No gammas were found during sonofusion experiments when measured
with GM and BF3 detectors [8,9] and no 3He was found in Pd target foil runs [3]. There was T detected via MS of a
growing presence of 3He over time from gases collected from Ti target foil runs [3].

The circulating D2O system, comprising six major subsystems, is specified in Section 3.
A theoretical model for sonofusion is outlined in Section 4. It accounts for the process as a whole, including the

absent gamma and neutron. The model is based on diverse experimental results [3,10,11]. It comprises the formation,
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by acoustic-driven cavitation, of bubbles that form a plasma containing deuterons and electrons. The plasma is com-
pressed by a pinching magnetic field (Z-pinch), causing a sequence of picosecond sub-nanometer events consequent
to implantation of D+ ions in the lattice. The fusion occurs in a BE condensate formed in the lattice implantation.
The single events are shown in a 1 µm2 FE SEM photo [12]. Sonofusion differs from bubble fusion, which relies on
neutrons producing fusion events within the confines of a cavitation bubble [13]. The model should provide a guide
for future work, both experimental and theoretical, on sonofusion.

2. Observed Effect

An ultrasound pulse of energy Qa, incident on a room-temperature system of circulating liquid D2O, has been observed
to produce 4He and energy in the form of calorimetrically measured heat, Q0,

mD+ +Qa → (m− 2)D+ +4 He +Q0

the number, m, of deuterons in the interacting cluster can range from about 100 to 2. The excess heat, Qx, produced
by the reaction is then

Qx = Q0 −Qa

The numerical values of (Qa, Q0, Qx) given below will be those (delivered, measured, calculated) in one second [11].
The frequency of the acoustic wave is about 1 MHz; the pulse is on for about 120 s, then off for about 120 s. The

temperature of the system reaches 90% of its steady-state value of about 15◦C higher than the start temperature within
about 60 s.

A single cycle of the ultrasound wave was found to produce about 107 events (an event is the production of a
single 4He atom [12]), observed spectra of sonoluminescent and bremsstrahlung photons, and measured heat in the
amount Q0 = 58 J for an acoustic energy Qa = 15 J, so that Qx = 43 J. This translates into 1013 events/s and
determined excess heat per event of qx = 4.3 × 10−12 J = 26.9 MeV. The energy of an event is independent of the
size of the number m of deuterons in the cluster. It is about 3 MeV higher than the binding energy of 4He in terms
of deuterons (the D2O disassociation energy of 15.5 eV is neglected), which is related to the listed binding energies
based on nucleons:

B
(
2D;4 He

)
= B

(
2p, 2n;4 He

)
− 2 B (p, n; D) = 28.3 − 2 × 2.22 = 23.9 MeV.

The helium atoms were detected and counted by a mass spectrograph by B. Oliver [3,14]

3. Circulating D2O System

The circulating D2O system comprises six major subsystems, as shown in Fig. 1. The subsystems are next listed in
the sequence in which D2O circulates through them.

(1) A bubbler containing argon-saturated D2O, with argon gas above the saturated liquid. The initial concentration
of 4He in the Ar, prior to circulation through the system, was measured in a mass spectrograph (see (7), below) at less
than 2 ppm. The bubbler maintains constant pressure throughout the system; after the fluid has passed through the
system, it also transfers any bubbles that have been formed from the liquid into the argon gas, separates the argon gas
from the liquid D2O, and collects about half the total 4He produced; see (4) below. Calorimetric flow was determined
through heat measurements in a system that used 1.6 MHz resonators. In another system, using a Mark I 20 kHz
resonator, the amount of 4He in the gases over the circulating D2O was measured to be 551±1 ppm.

(2) An FMI pump, which pumps the circulating Ar/D2O fluid and establishes a constant D2O mass-flow rate.
(3) A filter, which eliminates any small particles.
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Figure 1. Typical D2O Flow System.

Figure 2. Typical resonator; see (4).
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(4) A light box that contains a foil (target lattice), typically Pd, Ti or another material; a MHz piezo resonator; and
thermocouples that measure the change in the D2O temperature, ∆T = Tout −Tin. The resonator produces a calibrated
ultrasound pulse of magnitude Qa, with a 120 s on/off mode; Qa can be adjusted to deliver from 0 to 15J in 1 s. A
typical resonator is shown in Fig. 2. The MHz ultrasound pulse creates cavitation bubbles in the circulating D2O. The
number of deuterons in a bubble is estimated reliably using the ideal-gas law for the collected portion of the total 4He
produced and the measured pressure and temperature. Each bubble grows and gains mass in the negative pressure of
the acoustic input; at a maximum radius it collapses adiabatically to a final radius with a million-fold increase in energy
density. 106 bubbles, each producing 103 photons, are counted by a multipixel photon counter (MPPC). The measured
photon emission, shown in Fig. 3, includes two types of photon radiation: sonoluminescent and bremsstrahlung. The
observed spectrum shows a single sharp peak of about 100 ns duration for each cycle [15].

(5) A heat exchanger, a heat sink that brings the temperature back to its initial base value.
(6) A flow meter that measures the flow rate, which together with ∆T determines the heat output Q0. The excess

heat produced by the reaction is determined from the delivered Qa and mass-flow calorimetrically measured Q0 by Eq.
(2).

(7) A mass spectrograph (MS, not shown in Fig. 1) that measures the helium atoms in ppm concentration in the
argon gas. A measured aliquot – known volume of gas at measured pressure and temperature – was transferred into
the MS and compared to a known ppm standard. The number N of experimentally produced alphas was determined
from pV = NkT.

4. Theoretical Model

The author has proposed a theoretical model to account for his 25-year collection of experimental results – with
differing resonator sizes, frequencies, and acoustic inputs. The model involves a multi-stage process for the fusion of
two deuterons into an alpha particle [9-2,14,15]. The discussion is carried through for 4He, but it applies to T →3 He
as well [10].

(A) The ultrasound pulse ionizes some of the D2O and, in the first stage of a compression process, creates a
population of transient cavitation bubbles with a wide spectrum of sizes. Bubbles whose size is in resonance with the

Figure 3. Measured photon spectrum, showing a single sharp peak of about 100 ns duration for each cycle. There is no activity in the region
between peaks. Upper right shows the expected photon emission, which was not resolved experimentally, from one out of 106 bubbles/cycle.
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acoustic wavelength grow in size and gain energy isothermally by picking up additional mass – deuterons and sheath
electrons – from the D2O and Ar [14], then collapse adiabatically in a few nanoseconds. The collapsing bubbles emit
the observed sonoluminescent and bremsstrahlung photons. This sequence of events occurs on a time scale which
is a tiny fraction of the time of a single ultrasound cycle, and millions of bubbles per cycle satisfy the resonance
criterion for such pressure-driven growth in mass followed by its adiabatic collapse/emission. The supersonic collapse
of sonoluminescent bubbles and photon emission on such a short time scale is itself a known phenomenon [16]. The
collapsing bubbles also form a neutral plasma jet containing deuterons and sheath electrons.

(B) The jet is compressed further by a pinching magnetic field, produced by the jet’s sheath electrons (Z-pinch),
along the axis of the jet’s motion [17].

(C) The compressed jet becomes implanted in the target foil, itself a two-stage process. The deuterons implant in
the lattice inside the electron cloud. The free electrons accelerate towards and compress the less mobile deuterons.
The oxygen and argon ions remain free of the lattice because O− and Ar+ are about 104 larger than the D+, but the
geometry of the jet is such that it is sufficiently close to the target foil for them to combine with the lattice material.
The oxygen has been detected in the systems as thin oxide films, which were measured by EDS methods [10].

(D) To account for the absence of both a neutron and a gamma in the fusion process, the model postulates the
formation, in the implanted deuteron cluster and electrons, of a system comprising two concentric components: a
transient BE condensate M of deuterons and possibly another of Cooper pairs of electrons, with the latter on the
outside. The number of deuterons in M can vary from 100 to 2. In the limiting case of 2, sonofusion corresponds to
muon fusion. The Lawson criterion, Lc, for fusion to occur can therefore be approximated by that for muon fusion,
for which it is Lc > 1016 s/cm3. In its simplest from the Lawson parameter is given by Lc = nDtE, where nD is the
deuteron density and tE is the deuteron contact time. For sonofusion we have tE ∼ 10−14 s, so the deuteron density has
to satisfy nD > 1030 cm3. At present there is no independent determination of nD. The physical makeup of the two
connected charged components results in two special conditions: (1) the M deuterons, with the condensate property
of behaving as a single state in momentum space, will compress to astrophysical densities of picoseconds duration,
with particle separation less than an Angstrom, whereas a group of individual charged particles, fermions or bosons,
would resist this compression to the M center [18]; and (2) permittivities of the two charged components across their
interface that have a ratio of 1000 due to the large difference in deuteron and electron mobilities. These two conditions
work in tandem, along with the electric fields of the free-electron cloud surrounding M, to compress M.

(E) With increasing compression, the density becomes high enough for the M condensate to break up into a debris
M’ of D+ ions, containing two fewer D+ ions than the condensate M, and an alpha,

M → M′ + a + heat.

Recoil is taken up by the D+ ions in M’.
The fusion releases heat in the amount B(2D; 4He) via bremsstrahlung; see Fig. 3.
(F) The heat released by the fusion of the deuterons vaporizes the region of the foil in which they are implanted,

leaving a hemispherical heat footprint in the range of the binding energy and size of 50 nm and craters shown in Fig. 4.
The transition (4a), with an initial temperature of 107 K, initiates a heat pulse in the lattice from a lattice depth of about
25 nm. The locations on the foil where the fusion events occur are termed ejecta sites. The site expands by 25 nm
to the lattice surface as a radial heat pulse, ejecting 104 Pd lattice atoms; an FE SEM photo of surveyed sites [12] is
shown in Fig. 4.

The temperature of the event is on the order of 104−105 K at the surface. A portion of the heat pulse is released into
the D2O from ejecta sites. The remaining heat is released into the lattice, where it continues to expand hemispherically
outward through the lattice, reaching its outer edge at 90 nm. As the heated portion of the lattice reaches the melting
point of the target foil, 1825 K for Pd, it forms a melt zone – a footprint – that removes most old sites remaining from
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Figure 4. SEM photo of a Pd target foil, 1 mm square, showing ejecta sites with single DD fusion events for an acoustic pulse in the MHz range.

previous cycles. The sum of the heat released into the D2O and the lattice is 20 ± 10 MeV, consistent with the 23.8
MeV of the alpha-producing event.

(G) While still in the foil, the alpha picks up two electrons from the plasma to form 4He.
(H) The helium atoms are ejected into, and carried along and distributed with, the flow of the circulating D2O and

argon gas.

5. Conclusion

I conclude that the experimental results show the occurrence of the fusion process
(2D, 4He), producing (43 ± 3) ×10−13 J of energy per event. (A similar treatment for the T measurements and its
decay to 3He is understood [10].) Theoretical analysis suggests that this process is enabled by the compression of
deuterons and electrons squeezed to astrophysical densities of about 1ps duration. The compression is produced by
the combination of a high-frequency acoustic pulse and a magnetically contained plasma comprised of the compressed
deuterons and electrons to form BE condensates that terminate in the single-event fusion process and heat release.
Corresponding results and analysis apply to T measurements and its decay into 3He [10].

Acknowledgements

This paper was a joint effort by Richard Spitzer who upon gaining some knowledge of sonofusion decided to write an
explanation of my work in his words with my help.

Appendix

The author has many scanning-electron-microscope photos of target foils in various stages of heat-produced damage,
and many videos and DVDs showing the temporal experimental progression and the actual melting or disintegration
of the target foils discussed in refs. [8–12,14,15]. The extent of target-foil damage depends on the foil thickness and
element composition, and resonant frequency and amplitude of Qa.

Thomas used an adapted low-mass, KEV MS to measure 4He in the presence of Ar and D2 in the gas from the
resonator during two weeks of testing in 1991–1992 at SRI [1]. The sampled gas at vacuum conditions was pre-treated
by passing it from the bubbler to an evacuated 25 ml glass bulb, as shown in [7]; then through 60 g of heated CuO
powder, removing hydrogen. The pre-treated gases were passed through an LN trap, removing the Ar and D2O, and
into the MS for analysis. Thomas found 4He at a 2-sigma level.

Davidson analyzed gas samples for 4He in 1992 at the Amarillo facility [2]. As in the SRI method, the sampled
gases from the resonator were pre-treated by being passed through a heated granular CuO bed and collected in evac-
uated 25 ml glass bulbs. Gas standards from the Ar supply (gas prior to interacting with the acoustic pulse) and from
the resonator (post interaction with the acoustic pulse) were shipped to Amarillo for analysis. There were fewer than 2
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ppm of 4He in the Ar supply, well below the 5 ppm generally accepted for helium in background air. Davidson found
4He at 20 ppm in the sampled gases from the resonator. This represents a partial pressure of the total 4He present. No
complementary calorimetry measurements were made.

In May and June, 1994, T. Claytor, D. Tuggle, R. Stringham, and R. George at Los Alamos National Laboratory
(LANL) prepared seven gas samples in 50 ml stainless-steel sampling cylinders for analysis: three samples from
target-foils runs and four standards. At 20 kHz, no gammas were observed using Geiger-Muller counters during
sonofusion runs. The sample gases were not pre-treated. The target-foil experiments were performed using the M2
20 kHz resonator described in Section 3. The gas samples were then shipped to B. Oliver for the He analysis at
the Rocketdyne facility [3]. The foil gases were cleaned in a 12-inch long 1/4-inch diameter charcoal-packed “U”
tube column, before injection into the MS chamber. This absorbed the hydrogen and froze out the Ar and D2O
vapors. Oliver used three successive aliquot injections, determining the 4He present in each aliquot by the technique
described in Section 3. The three measurements showed consistent results, 552 ± 1ppm. These measurements were
complemented by a calorimetric measurement of 65 W for the 19 h run, matching the counted number of alphas,
552± 1 ppm. The 4He results were reported in “Helium Analysis of Target Metals”, B.M. Oliver, 1994.
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Abstract

A new mechanism of LENR in solids is proposed, which is based on the large amplitude anharmonic lattice vibrations, a.k.a.
intrinsic localized modes or “discrete breathers” (DBs). In particular, so called gap DBs, which can arise in diatomic crystals such
as metal hydrides, are argued to be the LENR catalyzers. The large mass difference between H or D and the metal atoms provides
a gap in phonon spectrum, in which DBs can be excited in the H/D sub-lattice resulting in extreme dynamic closing of adjacent
H/D atoms (∼ 0.01 Å) required for the tunneling through the nuclear Coulomb barrier. DBs have been shown to arise either by
thermal activation at elevated temperatures or by knocking atoms out of equilibrium positions under non-equilibrium gas loading
conditions, employed under radiolysis or plasma deposition methods. The DB statistics in both cases are analyzed, and an attempt
is made to quantify part of the vibrational problem in terms of electrochemical current or ion flux, connecting them with external
excitation of DBs that act as nano-colliders of deuterons, triggering LENR. Resulting analytical expressions (under a selected set
of material parameters) describe quantitatively the observed exponential dependence on temperature and linear dependence on the
electric (or ion) current. Possible ways of engineering the nuclear active environment based on the present concept are discussed.
c© 2014 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Anharmonic lattice vibrations, Discrete breathers, Nuclear fusion, Quantum tunneling

1. Introduction

Copious experimental data on low–energy nuclear reactions assisted by the crystalline environment [1–3] leave little
doubt about the reality of LENR, but a comprehensive theory of this phenomenon remains a subject of debate [2–4].
Some of the proposed models try to modify conventional nuclear physics by introducing various types of transient
quasi-particles and structures such as the Hydrino, Hydron, Hydrex, etc. that were expected to lower the Coulomb
barrier. Other, less radical, models point out at the possibility of screening of the Coulomb barrier by atomic electrons.
Comprehensive reviews can be found in refs [2–4]. However, none of these models can explain even qualitatively all
salient conditions required for LENR, which have been summarized by McKubre et al. [2] as follows.

LENR observed in heavy water electrolysis at palladium cathodes requires the simultaneous attainment of four
conditions: (i) high loading of D within the Pd lattice; (ii) an initiation time at least ten times larger than the D dif-
fusion time constant: (iii) a threshold electrochemical surface current or current density that is not correlated to the
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bulk D loading; (iv) deuterium flux plays an important role in determining the excess heat power density. The first
two requirements can be understood as thermodynamic preconditioning needed to bring D atoms within Pd lattice as
close as possible. But the most “mysterious” requirements, from the point of view of current models, are triggering
mechanisms (iii) and (iv), which do not depend on the loading mechanisms (i) and (ii). One can cite the conclusion by
McKubre et al.on this issue: [2] “It is not at all clear how effectively the electron charge transfer reaction or the ad-
sorption/desorption reaction couple energy into modes of lattice vibration appropriate to stimulate D + D interaction.”

The present paper is aimed, first of all, at answering this question. Its main argument is that in crystals with suf-
ficient anharmonicity, a special kind of lattice vibration, namely, discrete breathers (DBs), a.k.a. intrinsic localized
modes, can be excited either thermally or by external triggering, in which the amplitude of atomic oscillations greatly
exceeds that of harmonic oscillations (phonons) [5–15]. Due to the crystal anharmonicity, the frequency of atomic
oscillations increases or decreases with increasing amplitude so that the DB frequency lies outside the phonon fre-
quency band, which explains the weak DB coupling with phonons and, consequently, their robustness even at elevated
temperatures. DBs have been successfully observed experimentally in various physical systems [8] and materials rang-
ing from metals to diatomic insulators [9], and they have been proposed recently as catalyzers for various chemical
reactions in solids [16–18]. This field of research is mainly new, and it lies at the conjunction of nonlinear physics
with material science. The main message of the present paper is that DBs present a viable catalyzing mechanism for
the nuclear reactions in solids as well, due to the possibility of extreme dynamic close approaching of adjacent atoms,
which is required for tunneling through the Coulomb barrier.

This paper is organized as follows. In the next section, a short review of the DB properties in metals and diatomic
crystals is presented based on results of molecular dynamic (MD) simulations, using realistic many-body interatomic
potentials. In Section 3, a rate theory of DB excitation under thermal heating and under non-equilibrium gas loading
conditions (radiolysis or plasma deposition) is developed, and the average rate of D-D “collisions” in DBs is evaluated.
In Section 4, tunneling through the Coulomb barrier with an account of electron screening is discussed, and the
tunneling coefficient is presented as a function of the barrier width. This is the only section where conventional
nuclear physics is employed. It is shown to be just one link in the chain of mechanisms required for the realization of
LENR. In Section 5, combining the tunneling coefficient with the rate of D–D “collisions” in DBs, the LENR energy
production rate is evaluated as a function of temperature, ion (electric) current and material parameters, and compared
with experimental data. The results are discussed in Section 6 and summarized in Section 7.

2. Discrete Breathers in Metals and Diatomic Crystals

Discrete breathers are spatially localized large-amplitude vibrational modes in lattices that exhibit strong anharmonic-
ity [5–8]. They have been identified as exact solutions to a number of model nonlinear systems possessing translational
symmetry. [8] They have been successfully observed experimentally in various physical systems [8,9]. Presently the
interest of researchers has shifted to the study of the role of DBs in solid state physics and their impact on the physical
properties of materials [9,16–20].

The evidence for the existence of DB was provided by direct atomistic simulations, e.g. molecular dynamics
(MD). Until recently, this was restricted mainly to one and two-dimensional networks of coupled nonlinear oscillators
employing oversimplified pairwise interatomic potentials [6–8]. Studies of the DBs in three-dimensional systems
by means of MD simulations using realistic interatomic potentials include ionic crystals with NaCl structure [10],
graphene [12], carbon nanotubes [13] and metals [14,15,20].

2.1. Metals

For a long time, it has been assumed that the softening of atomic bonds with increasing vibrational amplitude is a
general property of crystals, which means that the oscillation frequency decreases with increasing amplitude. There-
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fore DBs with frequencies above the top phonon frequency were unexpected. However, in 2011, Haas et al. [14]
have provided a new insight into this problem by demonstrating that the anharmonicity of metals appears to be very
different from that of insulators. The point is that the essential contribution to the screening of the atomic interac-
tions in metals comes from free electrons at the Fermi surface. As a consequence, the ion–ion attractive force may
acquire a nonmonotonic dependence on the atomic distance and may be enhanced resulting in an amplification of even
anharmonicities for the resulting two-body potentials. This effect can counteract the underlying softening associated
with the bare potentials with a moderate increase of vibrational amplitudes to permit the existence of DBs above the
top of the phonon spectrum. MD simulations of lattice excitation in fcc nickel as well as in bcc niobium and iron
using realistic many-body interatomic potentials have proven that stable high-frequency DBs do exist in these metals
[14,15]. Notably, the excitation energy of DBs can be relatively small (fractions of eV) as compared to the formation
energy of a stable Frenkel pair in those metals (several eV). Moreover, it has been shown that DBs in Fe (and most
likely in other transition metals) are highly mobile, hence can efficiently transfer a concentrated vibrational energy
over large distances along close-packed crystallographic directions [15,20]. Recently, a theoretical background has
been proposed to ascribe the interaction of moving DBs (a.k.a ‘quodons’ – quasi-particles propagating along close-
packed crystallographic directionsa) with defects in metals to explain the anomalously accelerated chemical reactions
in metals subjected to irradiation. Irradiation may cause continuous generation of DBs inside materials due to external
lattice excitation, thus ’pumping’ a material with DB gas [18,19].

In order to understand better the structure and properties of standing and moving DBs, consider the ways they are
externally excited in Fe by MD simulations [20]. The key feature of the procedure is the initial displacement of the two
adjacent atoms from their equilibrium position along the close 〈111〉 direction, which should oscillate in the anti-phase
mode with respect to each other, thus forming a stable DB, as shown in Fig. 1 (a). The initial offset displacement
d0 determines the DB amplitude and oscillation frequency and, ultimately, its lifetime. DBs can be excited in a
narrow frequency band (1÷1.4)×1013 s−1 just above the Debye frequency of bcc Fe, and DB frequency grows with
increasing amplitude as expected from the “hard” type anharmonicity of the considered vibrational mode. Application
of a displacement larger than 0.45 Å generates a chain of focusons, while a displacement smaller than 0.27Å does not
provide enough potential energy for the two oscillators to initiate a stable DB and the atomic oscillations decay quickly
by losing its energy to phonons. The most stable DBs can survive up to 400 oscillations, as shown in Fig. 1 (b), and
ultimately decay in a stepwise quantum nature by generating bursts of phonons, as has been predicted by Hizhnyakov
as early as in 1996 [22].

The movement of a DB can be induced by translational kinetic energy Etr given to the two central DB atoms in
the same direction along the x-axis. Their velocities range from about 300 to 2000 m/s while travel distances range
from several dozens to several hundreds of atomic spaces, depending on the d0 and Etr [20]. Figure 2 (a) shows a DB
approaching the atoms with index 3415 and 3416. The two atoms pulsate in the anti-phase mode for about 1ps (∼10
oscillations) and then oscillations cease but they are resumed at the subsequent atoms along the x-axis. In this way,
the DB moves at a speed of 2.14 km/s, i.e. about the half speed of sound in bcc Fe. The translational kinetic energy
of the DB is about 0.54 eV, which is shared among two core atoms, giving 0.27 eV per atom. This is very close to the
initial kinetic energy Etr = 0.3 eV transmitted to the atoms to initiate the DB movement. The deviation of the potential
energy of the atoms from the ground state during the passage of the DB is presented in Fig.2b. The amplitude of the
energy deviation can reach almost 1 eV. In an oversimplified ‘thermodynamic’ analogy, a moving DB can be viewed
as an atom-size spot heated up to 104 K propagating though the crystal at sub-sonic speed.

aIt should be noted that Russell and Eilbeck [21] have presented experimental evidence for the existence of quodons that propagate at great distances
in atomic-chain directions in crystals of muscovite, an insulating solid with a layered crystal structure. Specifically, when a crystal of muscovite
was bombarded with alpha-particles at a given point at 300 K, atoms were ejected from remote points on another face of the crystal, lying in atomic
chain directions at more than 107 unit cell distances from the site of bombardment.
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Figure 1. Oscillation of × coordinate of two neighboring atoms, 2480 and 2479 in a [111] row in Fe in a “standing” DB excited with d0 =
0.325 Å: (a) initial stage of DB evolution; (b) all stages of DB evolution showing a stepwise ‘quantum’ nature of its decay.

DB excitations in [20] were done in a cell with initial and boundary conditions imitating a perfect crystal at the
lattice temperature of 0 K, i.e. when all other atoms were initially at their lattice positions and had zero initial velocities.
This poses an important question on the effect of lattice temperature and the crystal size on the robustness of DBs,
since the most successful LENR experiments were conducted at temperatures above 300 K and employed metal-based
(such as Pd, Pt or Ni) small (or even nanosized) particles. Recently, Zhang and Douglas [23] investigated the interfacial
dynamics of Ni nanoparticles at elevated temperatures exceeding 1000 K and discovered a string-like collective motion
of surface atoms with energies in the electron-volt range, i.e. exceeding the average lattice temperature by an order of
magnitude. One of the most intriguing observations of this study was the propagation of the breather excitations along
the strings, providing a possible mechanism for driving the correlated string-like atomic displacement movements. The
authors conclude that these dynamic structures might be of crucial significance in relation to catalysis.

Various electrolytic reactions which can proceed during the course of absorption/desorption at the cathode surface
can be a source of the vibrational energy required for the formation of DBs in the subsurface layer (see e.g. [4] p. 664
and discussion in the present paper). It should be noted that, based on the MD modeling results, only a fraction of an
electron-volt may be sufficient to initiate a moving DB along any of the 12 close-packed directions 〈110〉 in fcc Pd
sub-lattice.

In heavily deuterated palladium, a compound PdD forms where each octahedral site of the fcc-Pd structure is
occupied by one D atom (thus forming another fcc sub-lattice: Fig. 3) and where the lattice constant expands by
6%. Moving DBs may be produced in the D sub-lattice as well. The nearest-neighbor separation between D atoms
in PdD is 2.9 Å, while the equilibrium distance between two D atoms inside one octahedral site (in the hypothetical
crystal PdD2) is 0.94 Å, as demonstrated by the ab initio density-functional calculations [24]. Thus, the equilibrium
distance between two D atoms is increased by 0.2 Å from the gas value of 0.74 Å, which makes the LENR extremely
improbable for any equilibrium configuration of D atoms in the palladium lattice. However, a dynamic closing of
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Figure 2. (a) Oscillation of × coordinate of two neighbouring atoms, 3415 and 3416 in a [111] row in Fe during the passage of a moving DB
(d0 = 0.4 Å, Etr = 0.3 eV); (b) deviation of the potential energy of the atoms from the ground state during the passage of DB [20].

two D atoms performing anti-phase oscillations in a DB within a deuterium sub-lattice cannot be excluded, as will be
demonstrated in the following subsection.

2.2. Diatomic crystals

Oscillation frequencies of the DBs in ionic crystals are found to be in the gaps of the phonon spectrum, being essentially
dependent on long-range forces. This means that disregarding the long-range polarization effects, which cause a strong
broadening of the optical phonon band, results in a totally unrealistic value of the DB frequency in the optical band of

Figure 3. Left: PdD crystal structure. Right: the crystal with NaCl structure modeled in [10]. Heavy (light) atoms are shown by open (filled)
circles. Adapted from [10], Copyright APS.
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Figure 4. (a) The maximum frequency ω (solid line) and edges of the gap (dashed line) of the phonon spectrum, as the functions of the mass ratio,
ML/MK . (b) Frequencies, as the functions of the DB amplitudes, A, for the DBs of three types: [110]1, [100]1, and [100]2, excited by simulations
[10] for ML/MK = 0.1 where figures in brackets describe polarization and the subscript indicates the number of the atoms oscillating with large
amplitude. Solid line gives ω(A) found for the DB [100]1 in frame of the single degree of freedom model developed in [10]. Horizontal line gives
the upper edge of the phonon gap. Adapted from [10], Copyright APS.

the real phonon spectrum [25]. So, only a correct account of the localized anharmonic forces with long-range harmonic
forces can produce an adequate description of DBs.

PdD has the NaCl structure, which consists of two face-centered cubic lattices with lattice parameter a, one oc-
cupied by the light and another one by the heavy ions, displaced with respect to each other by the vector (a/2,0,0) as
shown in Fig. 3. In order to preserve its identity, a DB must have oscillation frequency and its entire higher harmonics
lying outside the phonon bands of the crystal lattice. MD simulations have revealed that diatomic crystals with Morse
interatomic interactions typically demonstrate a soft type of anharmonicity [10], which means that a DB’s frequency
decreases with increasing amplitude, and one can expect to find only so-called gap DBs with frequency within the
phonon gap of the crystal. A necessary condition of existence of such DBs is the presence of a sufficiently wide gap
in the phonon spectrum of the crystal, which can be expected in crystals with components having sufficiently differ-
ent atomic weights. The atomic weight ratio effect on the properties of DBs was studied by Khadeeva and Dmitriev
[10] who used interatomic parameters that are not related to any particular crystal but give stable NaCl structure and
realistic values of interaction energies, lattice parameter, vibrational frequencies, etc. This makes their results relevant
also in the case of PdD even though the explored weight ratio was in the range of 1–0.1, i.e. considerably larger than
the D/Pd weight ratio of 0.019. It means that the weight difference in the PdD case is larger by a factor of 5 than the
maximum difference considered in [10].

Figure 4(a) clearly shows that the gap width grows with decreasing weight ratio ML/MK , so it might be expected
to be wider in the case of PdD. The DBs were excited in [10] simply by shifting one light atom or two neighboring
light atoms from their equilibrium positions while all other atoms were initially at their lattice positions and had zero
initial velocities, similar to the DB excitation procedure employed in [20] for Fe. Breather’s initial amplitude, d0,
was taken from the range 0.01a < d0 < 0.05a, where a = 6.25Å is the equilibrium lattice parameter of the NaCl
structure. In this way, for the minimal weight ratio ML/MK = 0.1, three types of stable DBs have been excited,
frequencies of which are shown in Fig. 4(b) as the functions of their amplitudes. One can see that the maximum DB
amplitude was about 0.35 Å (similar to the iron case [20]), which could bring two adjacent light atoms with initial
spacing b =

√
2a

/
2 ≈ 1.77 Å, as close as to the distance of ∼1 Å, which, although being much smaller than any

phonon-induced closing, is not yet sufficient for tunneling. However, numerical results on the gap DB in NaI and KI
crystals has shown that DB amplitudes along 〈111〉 directions can be as high as 1 Å, and the lifetimes can be as long
as 10−8s (more than 20000 oscillations) [6]. Besides, decreasing the weight ratio down to the PdD value of 0.019 can
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be expected to decrease the minimum attainable spacing within a DB down to a fraction of an angstrom, but such MD
modeling has not been tried so far.

Another principle question concerns the mechanisms of excitation and the properties of gap DBs at elevated tem-
peratures. This problem was studied by Kistanov and Dmitriev [26] for the different weight ratios and temperatures.
Density of phonon states (DOS) of the NaCl-type crystal for the weight ratio ML/MK= 0.1 at temperatures ranging
from 0 to 620 K is shown in Fig. 5 (a–d). A small decrease in the gap width of the phonon spectrum with increasing
temperature is observed. The appearance of two additional broad peaks in the DOS at elevated temperatures (starting
from T = 310 K) is observed. One of them is arranged in the gap of the phonon spectrum, while another one lies
above the phonon spectrum. The appearance of the peak in the gap of the phonon spectrum can be associated with
the spontaneous excitation of gap DBs at sufficiently high temperatures, when nonlinear terms in the expansion of
interatomic forces near the equilibrium atomic sites acquire a noticeable role. In connection with this, it has been
concluded that as the temperature increases, if the difference in weights of anions and cations is sufficiently large, the
lifetime and concentration of gap DBs in the crystal with the NaCl structure increase. The appearance of the peak
above the phonon spectrum at sufficiently high temperatures can be associated with the excitation of DBs of another
type, which manifest hard nonlinearity.

Figure 5(f) shows DOS for PdD and PdH based on the force constants obtained from the Born von Karman model
[27],which quantitatively reproduces the intensity distribution in the experimental S(Q,E) spectrum of PdD obtained
in [28] at deuterium pressure of 5 GPa and T = 600 K. A slight discrepancy between the calculated and experimental
spectra of the second and higher optical bands in PdD suggests a certain anharmonicity of D vibrations in these bands
[28]. Quantitative estimates [28] show the anharmonicity of the potential well for D atoms at energies as low as
∼0.1eV, counting from the bottom of the well.

High-temperature excitation of DBs has been demonstrated also for the two-dimensional crystal of A3B compo-
sition with long-range Morse interactions [11]. The lifetime of high-energy atoms was measured for various temper-
atures for two atomic weight ratios, MA/MB = 0.1 and 0.46. In the first case, the crystal supported gap DBs in the
sub-lattice of light atoms, whereas in the other case there were no DBs in the crystal due to the absence of the gap in
the phonon spectrum. Figure 6 shows atomic displacements and DB frequency as the function of its amplitude, which
can be as large as 1.3 Å for one oscillating atom at zero Kelvin. This means that two adjacent atoms oscillating in
the anti-phase mode could span 2.6 Å (which equals the lattice parameter of the A3B crystal) and bring the two atoms

Figure 5. DOS of the NaCl-type crystal for the weight ratio ML/MK = 0.1 at temperatures T = (a) 0, (b) 155, (c) 310, and (d) 620 K. Adapted
from [26], Copyright APS. (f) DOS for PdD and PdH crystals based on the force constants obtained from the Born von Karman mode1 [27], which
quantitatively reproduces the intensity distribution in the experimental S(Q,E) spectrum of PdD obtained in [28] at deuterium pressure of 5 GPa
and T = 600 K. Adapted from [27] Copyright by APS.
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Figure 6. (a) Stroboscopic picture of atomic displacements in the vicinity of gap DB in the crystal A3B with atomic weight ratio MB /MA = 0.1
at zero Kelvin. Open (solid) circles correspond to heavy “A” (light “B”) atoms. Displacements of atoms are multiplied by a factor of 4. (b) DB
frequency as the function of its amplitude. The horizontal line indicates the upper edge of the phonon gap. Adapted from [11], Copyright APS.

quite close to each other. Excitation of such DBs has not been looked at, but the most important result of [11] is the
demonstration of the “natural” thermally activated way of the DB excitation in a crystal under thermal equilibrium
conditions. To do so the authors obtained a crystal at thermal equilibrium using a special thermalization procedure for
100 ps. After that the analysis of thermal fluctuations in the crystal was carried out within 200 ps. The temperature of
the crystal was characterized by spatially (over the ensemble) and temporally averaged kinetic energy per atom, K̄, as
T = K̄

/
kB, where kB is the Boltzmann constant. Atoms with kinetic energy KA,n,KB,n > eK̄ were considered to be

high-energy atoms, and their energies averaged over the lifetime were evaluated separately for heavy and light atoms.
An example of the time evolution of the relative kinetic energy of a particular light atom, KB,n

/
K̄, is presented in

Fig. 7 in the units of the DB’s oscillation period Θ for K̄ = 0.1 eV corresponding to the lattice temperature of 1160
K. The kinetic energy of the light atom, KB,n, was averaged over time 0.18 ps ≈ 3Θ. In this example, the lifetime of
the high-energy state of an atom is t∗/Θ ≈ 70, and its kinetic energy averaged over the lifetime isK∗

B,n

/
K̄ ≈ 5.1.

Analogously, high-energy heavy atoms were analyzed and concentrations of heavy and light high-energy atoms were
evaluated. It appears that the average lifetime and concentration of high-energy light atoms increases exponentially

Figure 7. Relative kinetic energy of particular light atom, KB,n/K, as a function of dimensionless time, t/Θ where Θ = 0.06 ps is the DB’s
period. The kinetic energy of the light atom, KB,n, was averaged over time 0.18 ps ≈ 3Θ. The horizontal dashed line indicates the level of kinetic
energy equal to eK̄, where e ≈ 2.7 is the base of the natural logarithm. The lifetime of the high-energy state of the atom is t∗/Θ ≈ 70 and its
kinetic energy averaged over the lifetime is K∗

B,n/K ≈ 5.1. Results are for MB/MA = 0.1 and K = 0.1 eV. Adapted from [11], Copyright
APS.
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with increasing average energy, K̄, in a marked contrast to heavy atoms, which is consistent with the fact that only
light atoms have large vibrational amplitudes in DBs. It is the amplitude rather than the energy of atomic vibrations
that plays a key role in the triggering of LENR, since the probability of tunneling through the Coulomb barrier depends
crucially on the separation of D ions before the tunneling (see Section 4), which can be drastically reduced in DBs due
to the specific combination of localized (anharmonic) and long-range (harmonic) forces.

These findings are of primary importance for the concept of LENR driven by DBs, since they point out at the two
ways of creation of the so called “nuclear active environment” (NAE, as defined by Storms [3]), which is associated
with an environment supporting DBs in the present paper. The first way is thermal activation of DBs in the sub-lattice
of D or H within the compound nanocrystal, in which the heavy component is represented by a suitable metal such as
Pd, Pt, or Ni. This way seems to be the basic mechanism for the LENR observed, e.g. in specially treated nickel surface
exposed to hydrogen at high temperatures (see refs.76–79 in [3]). The second way is the DB excitation by external
triggering such as the atomic displacements in the course of exothermic electrolysis at metal cathodes (majority of
LENR experiments) or due to energetic ions, obtained by discharge in gas containing hydrogen isotopes (see refs.
48,49 in [3]). Naturally, both mechanisms may operate simultaneously under LENR conditions, and this synergy
should be reflected in a viable model of DB excitation, the construction of which is attempted in the next section.

3. Rate theory of DB Excitation Under Thermal Equilibrium and External Driving

The rate equation for the concentration of DBs with energy E , CDB (E, t) can be written as follows [17]

∂CDB (E, t)

∂t
= KDB (E)− CDB (E, t)

τDB (E)
, (1)

where KB (E) is the rate of creation of DBs with energyE > Eminand τDB (E) is the DB lifetime. It has an obvious
steady-state solution (∂CDB (E, t)/∂t = 0):

CDB (E) = KDB (E) τDB (E) . (2)

In the following sections we will consider the breather formation by thermal activation, and then extend the model to
non-equilibrium systems with external driving.

3.1. Thermal activation

The exponential dependence of the concentration of high-energy light atoms on temperature in the MD simulations
[11] gives evidence in favor of their thermal activation at a rate given by a typical Arrhenius law [7]

KDB (E, T ) = ωDB exp

(
− E

kBT

)
, (3)

where ωDB is the natural frequency that should be close to the DB frequency. The breather lifetime has been proposed
in [7] to be determined by a phenomenological law based on fairly general principles: (i) DBs in two and three
dimensions have a minimum energyEmin, (ii) The lifetime of a breather grows with its energy as

τDB = τ0DB

(
E

Emin
− 1

)z

with z and τ0B being constants, whence it follows that under thermal equilibrium, the DB energy distribution function
CDB (E, T ) and the mean number of breathers per site nDB (T ) are given by

CDB (E, T ) = ωDBτDB exp

(
− E

kBT

)
, (4)
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nDB (T ) =

Emax∫

Emin

CDB (E, T ) dE = ωDBτ
0
DB

exp
(
−Emin

kBT

)

(Emin/kBT )
z+1

Emax−Emin
kBT∫

0

yz exp (−y) dy. (5)

Noting that

Γ (z + 1, x) =

x∫

0

yz exp (−y) dy

is the second incomplete gamma function, Eq. (5) can be written as [17]

nDB = ωDBτ
0
DB

exp(−Emin/kBT )

(Emin/kBT )
z+1 Γ

(
z + 1,

Emax − Emin

kBT

)
. (6)

It can be seen that the mean DB energy is higher than the averaged energy density (or temperature):

〈EDB〉 =

Emax∫

Emin

CDB (E, T )EdE

Emax∫

Emin

CDB (E, T ) dE
−→

Emax#Emin

(
Emin

kBT
+ z + 1

)
× kBT. (7)

Assuming, according to [11] (Fig. 5), that Emin/kBT ≈ 3 and 〈EB〉 ≈ 5kBT , one obtains an estimate for z ≈ 1,
which corresponds to linear increase of the DB lifetime with energy.

3.2. External driving

The fluctuation activated nature of DB creation can be described in the framework of classical Kramers model, which
is archetypal for investigations in reaction-rate theory [29]. The model considers a Brownian particle moving in a
symmetric double-well potential U(x) (Fig. 8(a)). The particle is subject to fluctuational forces that are, for example,

Figure 8. (a) Sketch of the double-well potential landscape with minima located at ±xm. These are stable states before and after the reaction, sep-
arated by a potential “barrier” with the height changing periodically or stochastically within the V band. (b) Amplification factor, I0 (V/kBT ), for
the average escape rate of a thermalized Brownian particle from a periodically modulated potential barrier at different temperatures and modulation
amplitudes, V [17]. .
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induced by coupling to a heat bath. The fluctuational forces cause transitions between the neighboring potential wells
with a rate given by the famous Kramers rate:

ṘK (E0, T ) = ω0 exp (−E0/kBT ) , (8)

where ω0 is the natural frequency and E0 is the height of the potential barrier separating the two stable states, which, in
the case of fluctuational DB creation, corresponds to the minimum energy that should be transferred to particular atoms
in order to initiate a stable DB. Thus, the DB creation rate (3) is given by the Kramers rate:KDB (E, T ) = ṘK (E, T ).

In the presence of periodic modulation (driving) of the well depth (or the reaction barrier height) such as U (x, t) =
U (x)−V (x/xm) cos (Ωt), the reaction rate ṘK averaged over times exceeding the modulation period has been shown
to increase according to the following equation [17]:

〈
Ṙ
〉

m
= ṘKI0

(
V

kBT

)
, (9)

where the amplification factor I0 (x) is the zero order modified Bessel function of the first kind. Note that the am-
plification factor is determined by the ratio of the modulation amplitude V to temperature, and it does not depend on
the modulation frequency or the mean barrier height. Thus, although the periodic forcing may be too weak to induce
athermal reaction (if V < E0), it can amplify the average reaction rate drastically if the ratio V /kBT is high enough,
as it is demonstrated in Fig. 8(b).

Another mechanism of enhancing the DB creation rate is based on small stochastic modulations of the DB activa-
tion barriers caused by external driving. Stochastic driving has been shown to enhance the reaction rates via effective
reduction of the underlying reaction barriers [18,19] as:

〈
Ṙ
〉
= ω0 exp

(
−EDB

a

/
kBT

)
, EDB

a = E0 −
〈V 〉2SD
2kbT

, (10)

where 〈V 〉SD is the standard deviation of the potential energy of atoms surrounding the activation site.
Consider the periodic driving of the DB creation in more detail. It can be provided, e.g. by focusons or quodons

formed by knocking of surface atoms out of equilibrium position by energetic ions or molecules under non-equilibrium
deposition of deuterium, which may be sufficient to initiate a quodon propagating inside the material along a close-
packed direction up to the depth equal to the quodon propagation range, lq. The amplitude of the quasi-periodic energy
deviation of metal atoms along the quodon pathway can reach almost 1 eV with the excitation time, τex, of about 10
oscillation periods (Fig. 2). In the modified Kramers model (9), this energy deviation corresponds to the modulation
of the DB activation barrier. Then, a macroscopic rate of generation of DBs of energy EDB (per atom per second) may
be written as follows:

〈KDB〉macro = ωDB exp

(
−EDB

kBT

)(
1 +

〈
I0

(
Vex

kbT

)〉
ωexτex

)
, (11)

where Vex is the excitation energy and ωex is the mean number of excitations per atom per second caused by the flux
of quodons, Fq, which is proportional to the electric current density, J , in the case of radiolysis (or to the ion flux, for
the plasma deposition) and is given by

ωex (Fq) = Fqb
2 4πR2

P lq
4πR3

P

/
3

=Fqb
2 3lq
RP

, Fq (J) =
1

2
J, (12)

where b is the atomic spacing, and so the product Fqb2 is the frequency of the excitations per atom within the layer
of the quodon propagation of a thickness lq, while the ratio 3lq/RP is the geometrical factor that corresponds to the
relative number of atoms within the quodon range in a PdD particle of a radius RP . The coefficient of proportionality
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between Fq and the electron flux J/e (where e is the electron charge) assumes that each electrolytic reaction that
involves a pair of electrons, releases a vibrational energy of ∼1 eV, which is sufficient to generate one quodon with
energy Vq ≈ Vex < 1 eV. Multiplying the DB generation rate (11) by their lifetime τDB and the oscillation frequency
ωDB one obtains the mean frequency of D–D “collisions” in DBs (per atom per second) as a function of temperature,
electric current density and material parameters listed in Table 1:

WD–D (T, J) = (ωDB)
2 τDB exp

(
−EDB

kBT

)(
1 +

〈
I0

(
Vex

kBT

)〉
ωex (J) τex

)
, (13)

Figure 9 shows that the DB-induced mean frequency of D–D “collisions” grows linearly with electric current den-
sity and exponentially with temperature, which results in a deviation from the linear dependence of WD–D on J, if
temperature increases with increasing electric current density.

In this way, DBs can provide up to 1025 “collisions” per cubic cm per second, which can be regarded as sufficient
to penetrate the Coulomb barrier and initiate LENR, provided that the minimum D–D spacing attainable within DBs
is sufficiently small. In the next section we estimate the required spacing by evaluating the tunneling coefficient as a
function of the barrier width, with account of electron screening.

4. Tunneling with Account of Electron Screening

The tunneling coefficient (TC) first derived by Gamow (1928) for a pure Coulomb barrier is the Gamow factor, given
by

G ≈ exp




−2

!

r2∫

r1

dr
√
2µ (V (r)− E)




 , (14)

where 2π! is the Plank’s constant, E is the nucleus CM energy, µ is the reduced mass, r1, r2 are the two classical
turning points for the potential barrier, which for the D–D reaction are given simply by µ = mD/2, V (r) = e2

/
r.

Figure 9. Mean frequency of D–D “collisions” in DBs as a function of electric current density, temperature assuming material parameters listed
in Table 1.
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For two D’s at room temperature with thermal energies of E ∼ 0.025 eV, one has G ∼ 10−2760, which explains a
pessimism about LENR and shows a need for possible mechanisms of electron shielding of the barrier in a solid.

We will use a conventional model of a spherical shell of radius R of negative charge surrounding each D, which
results essentially in a shifted Coulomb potential

V (r) = e2
[
1

r
− 1

R

]
, rn ≤ r ≤ R, (15)

where rn * R is the nuclear well radius. In this model, one has a modified TC ([4] p. 620)

G∗ (R) = exp

{
−2πe2

!

√
µ

2
(
E + e2

/
R
)
}
, (16)

which depends crucially on the D ions spacing before the tunneling, as shown in Fig. 10. This model is the simplest
both conceptually and computationally, so it cannot be expected to give an exact value, which can differ from the
model values by many orders of magnitude. But this model demonstrates the most important property of the electron
screening, namely, the equivalence of the deuteron kinetic energy needed for the tunneling and the screening depth, R:
they enter into denominator of Eq. (16) as a sumE + e2

/
R, which means that decreasing screening depth R increases

the tunneling probability as strongly as increasing the deuteron’s energy up to the level of e2
/
R. It can be seen that

in the angstrom range expected in any equilibrium D–D structure, the tunneling probability is too low for practical
applications, but it picks up ∼100 orders of magnitude with R decreasing down to 0.01 Å. This R range is lower by
almost two orders of magnitude than the range of conventional chemical forces, but it is higher by three orders of
magnitude than the range of nuclear forces, and the main hypothesis of the present paper is that it can be attainable
in DBs due to the specific combination of localized (anharmonic) and long-range (harmonic) forces. Based on this
hypothesis, the LENR energy production rate is evaluated in the next section as a function of temperature and electric
current density and compared with experimental data.

It should be noted that the reaction rate per deuteron–deuteron pair evaluated in the next section, based on Eq. (16),
does not take into account many physical effects, such as the volume factor and nuclear potential, which could result
in corrections to the reaction rate of 5–6 orders of magnitude. However, one can see that changing the screening depth

Figure 10. Tunneling coefficient dependence on the tunneling distance R for two deuterons with thermal energies of E ∼ 0.025 eV. The horizontal
lines correspond to R = 0.74 Å (equilibrium D–D spacing in D2 molecule) and to R = 0.012 Å (minimum dynamic spacing required for LENR
by the DB mechanism).
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Figure 11. Comparison between several studies showing the effect of current density on power density [3].

by only 0.01 Å results in the change of the tunneling probability by 5 orders of magnitude, and so making the model
more complex does not seem to make it more accurate.

5. LENR Energy Production Rate Under Heavy Water Electrolysis

We consider the following reaction [2]

D + D → 4He + 23.8 MeVlattice, (17)

which is based on experimentally observed production of excess heat correlated with production of a “nuclear ash”, i.e.
4He [2,3]. Multiplying the DB-induced mean frequency of D–D “collisions” (13) by the tunneling probability in each
collision (16) and the energy ED–D = 23.8 MeV, produced in D–D fusion one obtains the LENR power production
rate per atom, PD–D:

PD–D (T, J) = WD–D (T, J)G∗ (RDB)ED–D. (18)

Usually, experimentalists measure the output power density per unit surface of a macroscopic cell, PS
D–D, as a function

of the electric current density, as demonstrated by many researchers (see e.g. [3] p. 77) and illustrated in Fig. 11. This
is given by the product of PD–D, the number of atoms per unite volume, 1/ωPdD(ωPdD being the atomic volume of PdD)
and the ratio of the cell volume to the cell surface:

PS
D–D (T, J) =

PD–D (T, J)

ωPdD

L3
S

L2
S

= PD–D (T, J)
LS

ωPdD
, (19)

where LS is the cell size, if cubic, or thickness, in case of a plate.
Figure 12 shows the LENR output power density DBs as a function of electric current density and temperature

evaluated by Eq. (19) assuming material parameters listed in Table 1. Comparison of Fig. 12 (a) with experimental
data (Fig. 11) shows that the present model describes quantitatively the observed linear dependence of PS

D–D on the
current density at a constant temperature as well as the deviation from the linear dependence, if temperature increases
with increasing electric current density. Thermally activated nature of the reactions leading to LENR has been noted
for quite a long time (see e.g. [3] p. 76: In general, the larger the temperature, the more excess energy is reported),
and the activation energy was estimated in some cases to be ∼15 kcal/mol ≈0.65 eV. The present model not only
explains these observations, but reveals that the underlying physics is a consequence of the synergy between thermally
activated and externally driven mechanisms of the DB excitation in deuterated palladium, which results in a violation
of the classical Arrhenius law and in the renormalization of the underlying activation energies [17].
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Figure 12. LENR output power density as a function of electric current density and temperature evaluated by Eq. (19) assuming material param-
eters listed in Table 1.

It should be noted that among the material parameters listed in Table 1 the most important is the minimum attainable
D–D spacing in DBs, RDB, since its increase from the fitted value of 0.012 Å by one order of magnitude, to 0.1 Å
suppresses the LENR rate by 23 orders of magnitude (Fig. 13) which could not be compensated by any choice of other
material parameters within the framework of the present model.

Figure 13. LENR output power density as a function of D–D minimum spacing in DBs evaluated by Eq. (19) at J = 1 A/cm2, T = 300 K
assuming material parameters listed in Table 1.

6. Discussion

In the introduction we cited the problem formulated by McKubre et al. [2] concerning the coupling of the adsorp-
tion/desorption reaction energy into modes of lattice vibration appropriate to stimulate D + D interaction. Indeed, in
spite of a number of models trying to take into account the phonons, i.e. packets of wave-energy present in a lattice, as
the LENR drivers (see e.g. refs to Hagelstein, Swartz, and F. S. Liu in [3]), one could not help feeling that something
important was missing in the theory. Phonons were expected to move energy between nuclei, thereby creating enough
localized energy to overcome the Coulomb barrier. But phonons are plane harmonic waves, essentially delocalized
in the crystal, and the amplitude of atomic vibrations in the harmonic range does not exceed ∼0.1 Å, which is abso-



102 V.I. Dubinko / Journal of Condensed Matter Nuclear Science 14 (2014) 87–107

Table 1. Material and DB parameters used in calculations

Parameter Value
D–D equilibrium spacing in PdD, b (Å) 0.29
D–D minimal dynamic spacing in DB, RDB (Å) 0.012
DB minimal activation energy, Emin (eV) 0.1
Mean DB energy, EDB (eV) 1
DB oscillation frequency, ωDB (THz) 10
Mean DB lifetime, τDB = 100/ωDB(s) 10−11

Quodon excitation energy Vq ≈ Vex (eV) 0.8
Quodon excitation time, τex = 10/ωDB(s) 10−12

Quodon propagation range, lq = 10b (nm) 2.9
Cathod size/thickness (mm) 5

lutely insufficient for bringing atoms closely enough for any significant tunneling (Fig. 13), whatever the underlying
mathematics is. In contrast to phonons, DBs, also known as intrinsic localized modes, are essentially localized atomic
vibrations that have large amplitudes of ∼ 1 Å, which, at least in principle, can bring atoms very close to each other in
the anti-phase oscillation mode. DBs can be excited ether thermally at sufficiently high temperatures (which are above
the temperature range of typical radiolysis) or by external triggering producing atomic displacements in the subsurface
layer, which facilitate the DB creation.

In this view, the first two LENR requirements: (i, ii) high loading of D within the Pd lattice and long initiation time,
can be understood as preconditioning needed to prepare PdD particles of small sizes out of initially bulk Pd crystal,
in which DBs can be excited, and the requirements (iii, iv) on the D flux and electric current density, are natural
prerequisites for the DB creation by the input energy transformed into the lattice vibrations.

The importance of the Fermi-Pasta-Ulam type of energy localization in nano-PdD particles was stressed also by
Ahern [30]: Energy localized vibrational modes are so large that they can break and reform bonds. Locally, the
vibrations act like very hot regions with active chemistry. Ahern sustained that the phenomenon of localization of
energy could even explain the triggering of LENR in nanostructures saturated with hydrogen/deuterium, which is
confirmed by the present model. In this connection, it should be noted that for the first time to our knowledge, the
idea to link the nonlinear mechanisms of energy localization in the forms of quodons with the Lattice Assisted Nuclear
Fusion (LANF), was expressed by Russell and Eilbeck at the LENCOS-09 conference in 2009, which proceedings
were published in 2011 [31]. It was suggested that once a quodon is created then atoms of high speed are repeatedly
brought close together in head-on collisions without expenditure of energy. If this happened in a crystal containing
deuterium, then there would be an enhanced finite probability for fusion to occur, no matter how small the fusion
cross-section might be. The proposed LANF mechanism was based on rather high quodon energies (up to ∼ 300 eV)
with essentially unlimited lifetimes (and propagation ranges) that could be excited in a LiD crystal ring by external
driving. Although estimates [31] lead the authors to conclude that the contribution of quodons to additional fusion
was negligible, the expressed ideas gave a strong motivation for further research in this direction to the present author.
While more recent MD modeling of DBs in real crystals demonstrated the importance of low-energy atomic collisions
(∼ eV) as drivers of LENR via the DB excitation.

An important implication of the present theory is that it may be helpful in selecting a frequency interval for the
terahertz stimulation of DBs in deuterated palladium, similar to the method by Letts and Hagelstein [32] of stimula-
tion of optical phonons by a laser. The stimulation was provided by tuning dual lasers to one of three specific beat
frequencies, which were believed to correspond to the frequencies of optical phonons of deuterated palladium. Indeed,
the excess power has been produced peaking at frequencies of 8, 15 and 20 THz. However, the comparison of these
frequencies with experimentally verified DOS for PdD crystals [27,28], shows that the first frequency corresponded to
the gap in the phonon spectrum of PdD while the last two frequencies were above the phonon band, as demonstrated in
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Fig. 5(f). So the results [32] give some evidence in favor of the laser-induced stimulation of the “soft” gap DBs as well
as of the “hard” high-frequency ones. It should be noted here that the position of the phonon gap may be questioned
due to the uncertainty connected with the extent of D loading in the experiment [32], but the existence of the highest
resonance peak at ∼20 THz present a puzzle for the phonon mechanism of LENR. On the other hand, the appearance
of high-frequency (hard-type) breathers in NaCl type crystals at elevated temperatures was discussed and demonstrated
recently in [11] (see Fig. 5 (d)). This problem clearly needs further investigations as well as the perspective way of the
laser-induced stimulation of DB creation in nuclear (i.e. breather) active environment.

Probably the most serious criticism of the present theory may be due to the extremely small D–D separation
RDB ≈ 0.012 Å that should be attainable within DBs in order to provide the tunneling probability required to fit the
experimental data. Such distances are larger than those, at which nuclear forces operate, by three orders of magnitude,
but they are considerably smaller than the range of conventional chemical forces based on electronic properties. So the
question arises whether electrons can be effective in screening the Coulomb barrier at distances small enough in order
to significantly facilitate the nuclear tunneling? Recent experiments on fusion of elements in accelerators, analyzed in
[33], give a positive answer to this question. The analysis is based on corrections to the cross section of fusion due to
the screening effect of atomic electrons, obtained in so called Born-Oppenheimer static approximation by Assenbaum
et al. [34]. Using this approach, it was shown that the so-called “screening potential” acts as additional energy of
collision at the center of mass. Apparently, this approach is equivalent to taking into account the reduced thickness of
the potential barrier in the calculation of the tunneling probability adopted in the present paper (Eq. (16)). However,
other models for the fusion reaction rate should be considered in future, where the tunneling rate could be determined
more adequately from the time average deuteron-deuteron overlap.

The screening potential for D–D fusion in platinum for deuterons with kinetic energy ranging from 4 to 23 keV
was found to be 675 ± 50 eV, which is 25 times larger than for free atoms of deuterium. This may mean that in
a crystal of platinum, deuterons of such energies do not feel the Coulomb repulsion up to distances of 25 times
smaller than the size of the deuterium atoms. The screening potential for palladium was reported to be ∼300 eV.
These results provide experimental evidence in favor of the electron screening as such, but it should be stressed that
they do not represent the complicated cooperative dynamics of ions and electrons in a DB. Indeed, the velocity of a
deuteron accelerated up to 4 keV is about108 cm/s, which exceeds the atomic velocities in DBs almost by three orders
of magnitude. Such deuteron movement is too fast for effective electron screening, since Fermi electrons move at
comparable speed, in contrast to the slow D movement in a DB, which allows electrons to follow ions adiabatically.
Thus we may conclude that screening distances under DB conditions may be significantly smaller than those obtained
under accelerator conditions, due to specific combination of localized (anharmonic) and long-range (harmonic) forces
acting on deuterons under dynamic oscillation within a discrete breather. In a crude analogy, one can imagine a
DB as a nano-collider of deuterons, which operates with energies within the electron-volt range rather than the kilo-
electron volt range examined in the ‘low energy’ beam experiments. There is no analytical theory developed for these
conditions, and the only data available so far could be obtained from the MD or ab initio modeling. So the minimal
D–D dynamic spacing attainable in DBs should be regarded as an adjustable parameter of the model (all of which are
listed in Table 1).

In the existing electrochemical loading models (see e.g. [35]), three reactions are used: the Volmer reaction, the
Tafel reaction and the Heyrovsky reaction, which complicate a quantitative analysis of the vibrational energy produced
during the loading. But it should be emphasized that only a fraction of an electron volt may be sufficient for the DB
creation, and the experimentally confirmed presence of vacancies in PdD during electrolysis [34] gives evidence of
that such energy is indeed deposited, since vacancies require ∼1 eV to form in Pd. What is more, vacancies do not
diffuse near room temperature by thermal activation; so the only way they can be formed in the Fleischmann–Pons
experiments was thought to be through inadvertent codeposition of Pd at high loading [34]. The present concept
offers an alternative explanation of the accelerated formation and diffusion of vacancies in crystals via DB-induced
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acceleration of chemical reactions, as have been argued in [18]. So the present model simply assumes that each
electrolytic reaction that involves a pair of electrons, releases a vibrational energy of ∼1 eV, which is sufficient for the
generation of one quodon, and the quodon flux accelerates thermally activated DB creation in sub-surface layers.

At first glance, the DB persistence and robustness even at high temperatures may seem astonishing. However,
DBs do not radiate their energy in the form of small-amplitude waves because they vibrate at frequencies outside the
phonon spectrum of crystal. DB frequency can leave the phonon spectrum when its amplitude is sufficiently large
because the frequency of a nonlinear oscillator is amplitude-dependent. There are two types of nonlinearity, the hard-
type and the soft-type. In the former case the DB frequency increases with increase in its amplitude, and in the latter
case it decreases. In the case of the hard-type nonlinearity the DB frequency can be above the phonon spectrum. For
the soft-type nonlinearity DBs can exist only if the phonon spectrum possesses a gap, which is the case e.g. in the
crystals with the NaCl structure with large mass difference of atoms, which is the case for the PdD crystal. Numerical
results on the gap DB in NaI and KI crystals has shown that DB amplitudes along 〈111〉 directions can be as high
as 1 Å, and the lifetimes can be as long as 10−8 s (more than 20 000 oscillations) [6]. So the mean DB lifetime
(100 oscillations) and the excitation time (10 oscillations) assumed in the present model for a quantitative comparison
with experiment are rather modest estimates based upon recent MD modeling of DBs using large scale classical MD
simulations in 3D periodic bcc Fe [20]. Two well spread interatomic potentials (IAPs) have been checked, derived to
account for the electronic charge distribution depending on the local atomic arrangement which are known to provide
a good compromise between computationally expensive ab initio calculations and over-simplified pairwise potentials.
What is more, the latest DFT (ab initio) calculations, which are independent from the choice of IAP, have shown that
a standing DB in Fe can be stable up to 160 oscillations [36].

One of the fundamental questions concerning the robustness of DBs in metals is connected with phonon–electron
relaxation in metals, which is one of the reasons behind the fast optical phonon relaxation in metals. In fact, the
electron–phonon coupling is a basic mechanism of the DB creation in thermal spikes in metals produced by fast
electrons and especially by fast heavy ions (with energy exceeding 1 MeV/amu) that lose their energy via the excitation
of electron system rather than via collisions with crystal atoms [17]. Although DBs (similar to lattice phonons) may
lose part of their energy to free electrons, they can also gain energy from the phonons. So a DB should be regarded
as an open dissipative system rather than an isolated one, which provides a natural explanation of thermally activated
creation of DBs at elevated and high temperatures demonstrated in recent works [11,23,26]. Besides, the realistic
MD and especially DFT calculations take into account the electronic charge distribution adjusting adiabatically to the
local atomic arrangement under DB conditions. Note, however, that in typical DFT simulations, the core electrons are
kept frozen, which is fine for large atomic separations, as the interaction with neighbors is almost fully determined
by the higher-energy, outer-lying electrons. However, in the case under consideration, one should use the Linearized
Augmented Plane Wave Method (LAPW), which is an all electron DFT method.

A small size of PdD particles is required since the triggering of DB creation occurs due to the propagation of the
vibrational energy from the surface (by quodons, focusons, etc.) down to some depth, and the smaller the particles, the
more atoms can be involved in the DB creation, i.e. become “nuclear active”. This is manifested in the model by the
inversely proportional dependence of the power output on the particle size (see expression (12) for excitation frequency
ωex and Fig. 12 (a)). Storms [3] emphasizes that “not all small particles are nuclear-active, other factors must play a
role as well". From the point of view of the present model, this can be explained by two factors: (i) impurity atoms and
(ii) crystal disorder. Impurity atoms can strongly affect the phonon spectrum of PdD. Although impurity atoms are
localized and their concentration may be low, they may change the phonon spectrum of the whole crystal and extend it
into the DB range, which would suppress the DB formation and make the particle “nuclear inactive” (or vice versa!).
This consideration may be a useful tool in the search for the “nuclear active environment” (NAE), by the way of doping
the Metal-D or Metal-H crystals with elements changing the phonon spectrum to mediate DB creation.

Another factor concerns the role of crystal disorder in LENR, which typically start after prolonged loading resulting
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in formation of numerous defects, or occurs in specially prepared fine powders consisting of nanosized particles [2,3].
As noted by Storms [3], p. 123: “Cracks and small particles are the Yin and Yang of the cold fusion environment.
Small particles are created between cracks and crack-like gaps are formed in the near-contact regions between small
particles. The greater the numbers of cracks, the smaller are the isolated regions (particles) between cracks.” The
present model offers the following hypothesis for the importance of the crystal disorder caused by structural defects
and nano-dimensions of the particles.

Piazza and Sanejouand [37] reported a striking site selectiveness of energy localization in the presence of spatial
disorder. In particular, while studying thermal excitation of DBs in protein clusters, they found that, as a sheer con-
sequence of disorder, a non-zero energy gap for exciting a DB at a given site either exists or not.b Remarkably, in
the former case, the gaps arise as a result of the impossibility of exciting small-amplitude modes in the first place.
In contrast, in the latter case, a small subset of linear edge modes acts as accumulation points, whereby DBs can
be continued to arbitrary small energies, while unavoidably approaching one of such normal modes. Concerning the
structure–dynamics relationship, the authors [37] found that the regions of protein structures where DBs form easily
(zero or small gaps) were unfailingly the most highly connected ones, also characterized by weak local clustering. This
result means that the process of loading or special “nano-treatment” creates the disordered cluster structures, which
may be enriched with sites of zero or small gaps for the DB excitation. Such sites are expected to become the nuclear
active sites, according to the present model. The most important consequence of this hypothesis is that it may offers
the ways of engineering the nuclear active environment based on the MD modeling of DB creation in nanoparticles
and disordered structures.

Finally, it is known that LENR have been shown to produce excess heat and 4He as the only significant “nuclear
ash”, which is hard to explain in the framework of conventional nuclear physics. It has been argued that if a mechanism
to overcome the Coulomb barrier is proposed, a mechanism to release the energy must be proposed at the same time,
and these two mechanisms must be able to work together. The second mechanism may require modification of the
known nuclear reactions, which is beyond the scope of the present paper, and has been discussed extensively, e.g.
in a recent review [38]. However, the author believes that the method to overcome the Coulomb barrier proposed in
the present paper is more important from a practical point of view, since it may suggest new ways of engineering the
NAE by preparing relevant cluster structures so that to facilitate in them creation of discrete breathers as the most
constitutive catalyzer of LENR.

7. Summary

A new mechanism of LENR in solids is proposed, in which DBs play the role of a catalyzer via extreme dynamic
closing of adjacent H/D atoms required for the tunneling through the Coulomb barrier. DBs have been shown to
arise either via thermal activation at elevated temperatures or via knocking atoms out of equilibrium positions under
non-equilibrium gas loading conditions, employed under radiolysis or plasma deposition methods.

The present mechanism explains all the salient LENR requirements: (i, ii) long initiation time and high loading of
D within the Pd lattice as preconditioning needed to prepare small PdD crystals, in which DBs can be excited more
easily, and (iii, iv) the triggering by D flux or electric current, which facilitates the DB creation by the input energy
transformed into the lattice vibrations.

An attempt is made to quantify part of the vibrational problem in terms of electrochemical current or ion flux and to
connect it with external triggering of the DB creation subsequently leading to the triggering of LENR. Simple analytical
expressions for the cold fusion energy production rate are derived as the functions of temperature, ion (electric) current

bFor a long time it was known that in two-dimensional and three-dimensional perfect lattices there is always a non-zero energy gap for exciting a
DB [7].
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and material parameters. These expressions (under a selected set of material parameters) describe quantitatively the
observed exponential dependence on temperature and linear dependence on the electric (or ion) current.

The present results are based only on the known physical principles and on independent atomistic simulations of
DBs in metals and ion crystals using realistic many-body interatomic potentials. Further research in this direction is
needed and planned in order to verify the proposed mechanism by atomistic simulations of DBs in Metal-D and Metal-
H systems. An outstanding goal of this research is to suggest new ways of engineering the nuclear active environment
by preparing relevant cluster structures (by special doping and mechanical treatment) so as to facilitate in them creation
of discrete breathers as the most constitutive catalyzer of LENR.
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