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Editorial

Volume 18 of the Journal of Condensed Matter Nuclear Science includes only four papers that I believe are
important. In particular, the theoretical paper by Frederic Henry-Couannier shines a new light on Low Energy Nuclear
Reactions (LENR) theories. So far, most of the well-known theories are based on quantum mechanics, classical physics
or the introduction of new particles. For the first time, Henry-Couannier has developed a theory of Cold Fusion based
on an extension of General Relativity. This is an interesting approach, since it is hard to believe that what aims at
explaining the Universe can also explain what is happening at the nuclear level. The future will confirm or not the
validity of such an approach.

Sincerely,

Jean-Paul Biberian
(Editor-in-Chief )

February 2016
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Research Article

From Dark Gravity to LENR

Frederic Henry-Couannier∗
Université d’Aix-Marseille,163 Avenue De Luminy, 13009 Marseille, France

Abstract

Dark Gravity (DG) theories are extensions of General Relativity having a stable anti-gravitational sector. From the beginning,
the motivation for such an extended framework was not only phenomenological, trying to address several well-known enigmatic
cosmological discoveries in an alternative way: missing mass effects, universe acceleration, ... but also theoretical, and the main
achievement is that indeed, it is possible to avoid most if not all generic instability issues which are well known to prevent the
introduction of negative masses in General Relativity. Moreover it was also shown that such constructions are not arbitrary but can
be entirely derived following the alternative mathematical choice for understanding the Time Reversal Symmetry, that of a Unitary
T operator in QFT, needing a complete rehabilitation of negative energies in theoretical physics. All versions of DG theories studied
so far unsurprisingly share many phenomenological outcomes, but here we shall focus on one which, for the first time, very naturally
leads us to investigate the likely existence of genuine field discontinuities. The resulting phenomenology started to be explored.
The first part of the article is a reminder of the main steps that led us to Dark Gravity. The second part focuses on discontinuities
to show that these are all we need to explain in an unifying and very simple way many if not all of the well known so called
“LENR miracles”: Large eXcess Power (XP) not possibly of chemical origin with extremely low levels of nuclear radiations (alpha,
beta, gamma, neutrons) as compared to what would be expected from nuclear processes producing the same amount of energy,
Transmutations and isotopic anomalies in cold conditions, Incredible properties such as huge inertia anomalies and temperature
discontinuities of a new category of objects produced in association with LENR and behaving as extremely magnetic micro ball
lightnings.
c© 2016 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Anti-gravity, Field discontinuities, Janus field, LENR, Negative energies, Time reversal

1. Introduction

So far, most popular attempts to explain the cold fusion “miracles” have been based on a bet which also corresponds
to a widely accepted view among LENR leader theorists: standard physics alone must be able to explain them. Those
scientists generally agree that it is only the extreme complexity of how the accepted fundamental laws apply to a
variety of condensed matter non trivial structures subjected to unusual treatments that had prevented for decades
the identification of those peculiar configurations and involved combinations of processes allowing these unexpected
phenomena to occur.

∗E-mail: fhenryco@yahoo.fr

c© 2016 ISCMNS. All rights reserved. ISSN 2227-3123
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Given how challenging indeed is a priori the identification of processes based on standard physics alone that would
allow to overcome the Coulomb barrier in usual temperature and pressure conditions (this is the first LENR miracle),
what appeared to me so paradoxical was this extremely conservative principled stand among the same adventurers
who often had sacrificed their own careers relentlessly continuing their efforts down this direction of research. The
more and more absurd this sounded to me when after studying some of the more popular candidates, I realised that the
more involved were the models and complicated the equations, the more incredibly unphysical the hypothesis these
too often tried to hide or minimize. The miracle that needed to be explained was just repeatedly, more or less explicitly,
translated into another hidden miracle which was sooner or later identified by the other LENR theorists and skeptics.
Eventually each such new cross in the cemetery of LENR theories apparently added ever growing confirmation to
the common skeptical view that the effort was doomed to failure. Even worse, many models focusing on the first
“miracle”, were neglecting the growing accumulation of new evidence showing even more challenging other related
“miracles”. These are for instance the transmutations always favouring final stable nuclei in the absence of high energy
particles radiation that were considered to be the unavoidable nuclear products underscoring the occurrence of any kind
of nuclear processes according to the laws of nuclear physics. Last but not least, even the models meeting the challenge
of the first two miracles almost always completely missed another category of observations, pointing the “miracles”
of the third kind that I will try to address in more details in the second part of this article: the existence of extremely
enigmatic objects, genuine micro ball lightnings produced in association with the LENR type of transmutations thus
undoubtedly linked to the first two “miracles”. This convinced me that for a theory to have any chance of successfully
addressing the two other so called LENR miracles, the theory should first take seriously and address in detail not
just some selected properties of these objects but all of them, starting from the most incredible and challenging ones:
temperature discontinuities, huge inertia anomalies, ability to propagate through matter and so on.

This surely would not have been possible if a theoretical framework did not already exist providing the right cards
in hand, my own version [1,2,7] of a Dark Gravity [1–5] theory which I had initially (knowing nothing about LENR)
developed to deal with well known theoretical instability issues of General Relativity in the presence of negative energy
objects. One of the right cards was the new physics of field discontinuities which occurrence is made natural by the
new dynamical status of discrete symmetries in this version of Dark Gravity theory the genesis of which I will outline
the main steps in the first part of the article. As I will try to convince the reader in the second part, these are so perfectly
suited to describe the very peculiar properties of the micro ball lightnings, that these properties can even certainly be
considered to be as many signatures of the physics of field discontinuities.

2. Negative Energies, the Forgotten Solutions; a Scandal at the Root of All Modern Quantum Field
Theories

Just because of the famous formula

E = ±
√
p2 +m2 (1)

negative energy field solutions were expected in any relativistic classical field theory for both massive and massless
(m = 0) particles. For instance the free scalar negative energy field just requires negative kinetic energy terms in its
action and maximization of this action to get its free motion equations and a negative Hamiltonian through the Noether
Theorem [6].

There is however a very widespread belief that eventually, thanks to second quantization, the negative energy states
were completely understood and re-interpreted in terms of antiparticles. In many modern QFT academic courses the
reader is actually faced with an incredible zoo of wrong demonstrations and arguments starting from the Dirac sea
saturated with negative energy states, which holes would have been interpreted as antiparticles (an interpretation given
up a long time ago by theorists because the picture does not work for bosons, not affected by the Pauli exclusion prin-
ciple, and yet also having their antiparticles, see [8] pages 12,13), up to the more stubborn view that in the plane wave
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Fourier expansion of a field, terms such as ei(Et−px) and e−i(Et−px) respectively initially stood for the negative and
positive energy solutions of (1). Then, given that after second quantization the plane wave ei(Et−px) cannot anymore
be interpreted as a negative energy wave but, now being associated with an annihilation operator in a(p,E)ei(Et−px)

rather represents the operation of removing E, p from a given state, provided E is positive, we avoid the creation of
negative energy particles by annihilating instead positive energy particles. Of course in this case the mistake was to
consider that ei(Et−px) a priori had to stand for the negative energy solution in (1). Yet it is well known that in any real
signal Fourier decomposition one can always artificially generate such negative frequency terms by simply rewriting
cosx = (eix + e−ix)/2, a purely mathematical trick which does not at all imply that the negative frequencies or
energies that would appear in this way are physically relevant.

It is only after second quantization that one understands the genuine physical meaning now acquired by such terms
when, being associated with creation and annihilation operators makes clear that the ±i alternative has nothing to do
with the sign of the particle energies involved but rather with the operation of removing or adding quanta to a given
state. Indeed, if a plane wave term is associated to a creator the complex conjugate one must be to an annihilator and
vice versa, see [8] formulas 5.1.15 and 5.1.16. Then because a field is required to mix the creation and annihilation
operators as in formula 5.1.31 of [8], it will involve the creation and annihilation of particles of only one sign of the
energy. Therefore if the positive energy scalar field solution of the Klein–Gordon equation is:

φ(x, t) =

∫
d3p

(2π)3/2(2E)1/2

[
a(p,E) ei(Et−px) + a†(p,E) e−i(Et−px)

]
(2)

with E =
√
p2 +m2, we have no reason at all to discard the negative energy scalar field solution of the same Klein–

Gordon equation:

φ̃(x, t) =

∫
d3p

(2π)3/2(2E)1/2

[
ã†(−p,−E) ei(Et−px) + ã(−p,−E) e−i(Et−px)

]
, (3)

where we just required the field here to create and annihilate negative energy quanta, this field having its own negative
action and Hamiltonian [6]. In other words there are still two possible ways to add (resp remove) a positive energy E
from a given state: either one creates (resp annihilates) a particle of energy E, or one annihilates (resp creates) a particle
of energy −E, the second option being mathematically as valid as the first. Neglecting the second possibility just
amounts to miss half of the solutions of all our equations! Thus, it is certainly correct to argue that QFT convincingly
demonstrated that positive and negative energy states cannot be mixed in a Field, but not to claim that we eventually
understood the negative energy sector.

As for the anti-particles their existence is required for a charged field to have definite charge, i.e., we cannot have
in the same superposition the creator of a charge Q and the annihilator of this charge, rather we need to introduce in
place of a the annihilator usually called ac of the opposite charge. It is this argument, not related at all to the negative
energies issue, that actually implies the existence of anti-particles, see [8] page 199.

At last we also all remember the famous Feynman interpretation of these anti-particles as negative energies propa-
gating backward in time. But this still has nothing to do with the badly discarded negative energy solutions of all our
fundamental field equations which of course should be propagating forward in time.

It is a pity that so many QFT academic courses use kind of magical tricks to try to convince their reader that we
were well in our right to discard the negative energy states from the landscape. Fortunately this is not the case in more
serious courses such as the Weinberg QFT where the author admits honestly that the only reason to put aside these
solutions is that the corresponding particles were never detected in any experiment and also because of the catastrophic
instabilities which are apparently unavoidable whenever we shall let them interact with the positive energy states.

At this stage of our reflexion it remains that, as admitted also by [9,10], one could perfectly imagine a mirror
standard model of negative energy particles, perfectly stable and with the same phenomenology as in the positive
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energy standard model, provided interactions are strictly forbidden between the two standard models; this is of no
physical interest and, as we shall see, this is not the picture required from a deeper investigation.

3. Unitary Time Reversal

Not only are negative energy fields solutions of all our field theory equations but there is a symmetry, time reversal,
believed to be a very fundamental one, that applied to any positive energy state is expected to regenerate the corre-
sponding negative energy state. Indeed, according to special relativity alone, E should flip to −E as t flips to −t
just because these are the fourth component of their respective four vectors. Fortunately for QF theorists this can be
avoided if i also flips to −i at the same time thanks to the mathematical choice of an anti-unitary time reversal operator
in QFT. Let us cite [8] pages 75,76: “If P were anti Unitary . . . for any state Ψ of energy E there would be another state
P−1Ψ of energy −E. There are no states of negative energy . . . so we are forced to choose the other alternative: P
Unitary. On the other hand if we supposed that T is unitary we could simply cancel the is in TiHT−1 = −iH (where
i is nothing but the familiar complex number satisfying i2 = −1) and find THT−1 = −H with the again disastrous
conclusion that for any state Ψ of energy E there would be another state T−1Ψ of energy −E. To avoid this we are
forced to conclude that T is anti-unitary.”

Recalling the story of Dirac equation solutions that were considered unphysical for many years until the discovery
of anti-particles, extreme caution should be the rule before discarding solutions of so fundamental equations. Even
more, we believe that such attitude was a genuine collective fault given that even after second quantization there is still
no convincing theoretical argument to discard them as we explained. Instead, based on the non observation of negative
energy states and the related instability issues, a significant effort was required to better understand how the consistent
rehabilitation of such states could be carried on assuming Unitary time reversal linking naturally positive to negative
energy states is the correct option. The first impediment we encountered on this way and that turned out to be very
instructive is that even though

Tφ(x, t)T−1 = φ̃(x,−t) (4)

and

Ta†(p,E)T−1 = ã†(p,−E). (5)

It seems impossible to transform the “positive” Hamiltonian for our free neutral scalar positive energy field:

H = +
1

2

∫
d3x

[(
∂φ(x, t)

∂t

)2

+

(
∂φ(x, t)

∂x

)2

+m2φ2(x, t)

]
(6)

into the “negative” Hamiltonian for the corresponding negative energy field:

H̃ = −1

2

∫
d3x




(
∂φ̃(x, t)

∂t

)2

+

(
∂φ̃(x, t)

∂x

)2

+m2φ̃2(x, t)



 (7)

through Unitary Time Reversal (see [6]).
The only way out of this dead end was to reconsider the problem in a gravitational context, i.e., after introducing

everywhere as they should be, in the actions and Hamiltonians the order two tensor field of GR provided it should also
transform in a non trivial way under time reversal, i.e., in another order two tensor field, different in the sense that such
a transformation would not merely be a general coordinate transformation but would also involve a non trivial jump
from the initial inertial coordinate system to another inertial coordinate system. Only such an approach would still
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respect and allow it to remain meaningful, even in a gravitational framework, the discrete character of time reversal, a
symmetry linking as we know otherwise disconnected representations of the Lorentz group [2] pages 4,5.

This approach was from the beginning very promising as it would obviously isolate the positive and negative
energy sectors from each other, given that propagating on different sets of geodesics these would never meet (interact
through EM, weak or strong interactions) each other. This would explain why the negative energy particles escaped
observation and at the same time avoid the instability issues at least for all non gravitational interactions.

Before setting out the concrete solution that eventually has emerged, it is worth recalling two other interesting
results collected from our investigation of negative energies in a non gravitational framework [6].

• If we actually allow both positive and negative energy boson propagators to propagate an interaction what
we actually discovered is that the interaction vanishes. This might be interesting to cancel QFT UV loop
divergences by allowing the reconnection between positive and negative energy worlds beyond a given energy
threshold.

• Vacuum divergences for positive and negative energy fields being unsurprisingly found to be exactly opposite,
it is hoped a cancellation of their gravitational effects, solving thereby a very long lasting issue.

It is also worth recalling that any new ingredient manifesting anti gravitational properties is irresistibly attractive for
cosmologists given that the LCDM model of course passes many tests with flying colours but still relies on many
enigmatic components: Dark Energy, Dark Matter, Inflation, still badly understood and introducing very serious is-
sues such as fine tuning and coincidence problems. This was actually the motivation for the first Dark Gravity theory
ever published by [3] which has been followed by his many other publications detailing the very rich expected new
phenomenology and showing for instance how efficiently the negative masses of our twin universe can help our galax-
ies rotate as observed, see [12,11] and references therein. One can convince oneself of the extreme motivation for
anti-gravity among theorists by typing “phantom fields” or “ghost fields” on arXiv: thousand of articles, a huge the-
oretical effort all over the world to try nevertheless to introduce negative energy fields in such a way that Hawking
positive energy conditions would not be violated too seriously. All this waste of time and energies could have been
avoided by recognizing the correct way to reintroduce negative energies in GR while avoiding all instability issues as
S. Hossenfelder states on her famous blog [13], mentioning her Phys Rev D publication [5], strongly convergent to my
previously published works [1,2] (read the next section then look at the Janus relation (47) in her Annex).

It was a pleasant surprise when I learned recently that Milgrom himself, who is very famous for being the father
of MOND theories, has refined his modified gravity theories in such a way that this effort eventually has resulted in a
genuine Dark Gravity theory [4].

4. The Janus Gravitational Field

The previous section led us to the conclusion that we certainly need to introduce another gravitational field which
geodesics the negative energy fields will have to follow. However, this mere idea is strongly conflicting with an almost
religious belief shared by almost all gravity experts: a good theory should be background independent. Before studying
gravity, we thought that we had the right to build theories with as many fields we wanted and of any kind: scalar, vector,
higher order tensors, and Dirac fields upon a flat non dynamical space-time described by the Minkowski metric η. But
according GR experts, the order two tensor field of GR has a very special and privileged status: it is the metric that
describes the geometry of space-time itself! Of course this belief has been supported by the fact that the tensor of
gravity, as any order two tensor field, has the required properties to be a metric and since η is now completely absent
from the fundamental general covariant equations of gravity, g could replace completely η in the role of being the
genuine metric of space-time itself. Anyway, as a consequence of this a priori, one could not consider anymore the
possibility of having two different gravitational fields defining two different incompatible geometries in a theory, given
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that we have only one space-time. By the way, another far reaching consequence is that for both string theorists and
loop quantum gravity theorists, quantizing gravity means quantizing space-time itself.

For us, who need to introduce two different gravitational fields on a single manifold (x, y, z, ct) such fields obvi-
ously cannot describe the geometry of space-time itself. These just describe the two different geometries felt by the
matter and radiation fields propagating along their respective geodesics. Eventually just as light is deflected from air
to water, in the same way light can be deflected by interacting with a gravitational field even though in this latter case
it has been possible to interpret this interaction as mere propagation along deformed geodesics of space-time itself, a
view that we have to give up completely.

However, now the Minkowskian background η describing the still flat and non dynamical background geometry of
space-time itself certainly cannot be neglected as we did in GR: we are not anymore background independent. More
specifically η is now the object we need to rise and lower tensor indices. But then in a theory where we have a priori
both η and the usual gravitational field g we also unavoidably have the other tensor field g̃ obtained by lowering the
indices of the contravariant g−1 with η. This is

g̃µν = ηµρηνσ
[
g−1

]ρσ
= [ηµρηνσgρσ]

−1 . (8)

Thus the Janus gravitational field, like the Janus God, has two faces, gµν and g̃µν linked by the above manifestly
covariant and background dependent relation. The two forms play perfectly equivalent roles relative to the background
metric ηµν so should be treated on the same footing in our actions if we do not want to artificially destroy the basic
symmetry of the picture under their permutation. Symmetrizing the roles of gµν and g̃µν is performed by simply
adding to the usual GR action, the similar action built from g̃µν and its inverse.

∫
d4x(

√
gR+

√
g̃R̃) +

∫
d4x(

√
gL+

√
g̃L̃), (9)

where R and R̃ are the familiar Ricci scalars built from g or g̃ as usual and L and L̃ the Lagrangians for respectively
SM F type fields propagating along gµν geodesics and F̃ fields propagating along g̃µν geodesics. The theory that
follows from just symmetrizing the roles of gµν and g̃µν is DG which turns out to be essentially the other option of a
binary choice that must be done at the level of the conceptual foundations of a covariant theory of a symmetric order
two tensor field: either the space-time is curved with metric gµν and we get GR, or it is flat with background metric
ηµν and we get DG!

Now remember our initial purpose, which was to identify another field which geodesics would welcome the for-
gotten negative energy standard model of QFT. We shall show that the “inverse form” g̃µν is this field (this is not truly
speaking of another field because it is not independent from g) that we get for free from Eq. ( 8), i.e., just from our
understanding that we should not be in a background independent theory anymore. The two faces of the Janus Field
will turn out to be conjugate under the time reversal symmetry, and all energies of field propagating on one face will be
seen opposite from the point of view of the fields living on the other face and feeling their anti-gravitational effect. So
the choice between DG and GR becomes an easy one. The usual extreme action principle must be used by eliminating
the g̃µν degrees of freedom thanks to the Janus relation Eq. (8) to eventually get a single field equation in place of
Einstein equation satisfied by gµν . The solution also allows to get immediately g̃µν .

5. The Static Isotropic Elementary Solution

In [2], we were led to explore many non standard theoretical possibilities because we did not want to miss any pre-
diction that could allow us to decide between GR and DG, one “problem” being that DG, without any free additional
parameter, mimics so perfectly GR. Here we shall take instead the most standard path until we introduce the new
phenomenology relevant for LENR.
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We found a couple of static isotropic conjugate solutions in vacuum of the form gµν = (B,A,A,A) and g̃µν =
(1/B, 1/A, 1/A, 1/A)

A = e
2MG

r ≈ 1 + 2
MG

r
+ 2

M2G2

r2
, (10)

B = − 1

A
= −e

−2MG
r ≈ −1 + 2

MG

r
− 2

M2G2

r2
+

4

3

M3G3

r3
(11)

perfectly suited to represent the field generated outside an elementary source mass M (understood to include all con-
tributions to the total gravific mass including the energy of the gravitational field). This is different from the GR one,
though in good agreement up to post-Newtonian order. It is straightforward to check that this Schwarzschild new so-
lution involves no horizon: no more black hole! Only future precision experiments able to probe the PPN order terms
or strong gravity tests near the Schwarzschild radius will be able to decide between GR and DG.

The solution also confirms that a positive mass M in the conjugate metric is seen as negative mass −M from its
gravitational effect felt on our side. Masses on the same side attract each other, masses on different sides repel each
other. There is no longer the runaway instability that was unavoidable when one naively introduced negative energies
on the same side as positive energies. Neither do we find any instability in the gravitational sector.

Indeed, the requirement that the conjugate metrics should satisfy the same isometries is very constraining. This
is easily seen by adding an arbitrary Spherical Harmonic perturbation f(r)Yl,m(θ,φ) to any element of an isotropic
gµν . Then the inverse form g̃µν elements will develop an infinite number of other Spherical Harmonics, meaning that
obviously the two forms do not share the same isometries anymore. So the only acceptable metrics are a priori in the
isotropic form gµν = (B,A,A,A), and g̃µν = (1/B, 1/A, 1/A, 1/A). We also introduced new exchange symmetries
constraining the fields even more to either B = −1/A or B = −A! As a consequence of these fundamental
requirements, our new B = −1/A Schwarzschild solution cannot accept any kind of the non isotropic Spherical
Harmonics perturbations as the ones introduced by [14] to test the stability of the Schwarzschild solution. But then,
the only isotropic non static perturbation solution in vacuum must be in the sector B = −A which stability is granted
(see Section 6).

Moreover the impossibility of any B = −1/A perturbation that would satisfy a wave equation means that there is
no wave at all allowed in this sector of the theory and that our gravitostatic field is un-propagated. It is instantaneous
but may be no more than the electrostatic field according recent impressive experimental results [15] that seriously
call into question the traditional understanding that the static fields in our theories actually result from the exchange
of waves at the speed of light. Alternatively it might soon become common knowledge that a non propagated sector
have always co-existed with a propagated sector in all our most familiar theories. This will probably require that the
EM differential equations no longer be considered valid from t = −∞ to t = +∞ and everywhere but only piecewise
over finite time and space intervals where it will be possible to replace them by timeless differential equations in case
of a static elementary source.

The most natural interpretation of our isotropic B = −1/A field, is that, as we explained above, this is the
elementary field sourced by an elementary mass. Fortunately, it is easy, thanks to the exponential form of the metric
[2] Eq. (14) to combine any elementary metrics of this kind for source points even moving with respect to each other,
after exporting them to a common coordinate system. From this you can get the total gravitational field produced by
any extended distribution of energy and momentum, pressure (from massive relativistic particles only), any potential
energies either gravitational (energy of the gravitational field) or non-gravitational being taken into account in the
same way as in GR up to post-Newtonian order with the same quantitative predictions. Then we can later require
matter and radiation fields to follow, as in GR, the geodesics of the B = −A dynamical field combined with this total
B = −1/A field which is not dynamical anymore (the various elementary fields already played their dynamics in their
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own individual actions where their point mass source was not dynamical). One of course can derive in this way as usual
the covariant conservation equation Tµν

;µ = 0 describing energy exchange between matter and gravitation, keeping in
mind that as far as the B = −1/A total field is concerned this exchange is not the radiation of gravitational waves.
This is just the familiar exchange between kinetic energy and potential energy of a mass throughout its trajectory, the
latter being nothing else but the energy of the total non dynamical B = −1/A gravitational field.

6. B = −A Field: The Global Homogeneous Solution + Perturbations

6.1. The B = −A field and perturbations

The theory at this stage will remain globally static. To get both background expansion and gravitational radiation we
need the B = −A field but with drastically reduced number of degrees of freedom, a metric defined from a scalar field
Φ that we can write gµν = (−A,A,A,A) = Φηµν and g̃µν = (−1/A, 1/A, 1/A, 1/A) = 1

Φηµν . Recall that the forms
taken both by the elementary static isotropic field of the previous section and by this new global homogeneous field
were justified based on discrete space-time symmetry arguments, [2] Section VI.

Reducing the number of degrees of freedom to a single scalar is mandatory to have an energy–momentum tensor
for gravity that does not vanish to second order in perturbation to get binary pulsars decays as observed. As for the
stability in the B = −A sector, it is granted because a mass always couples to the side of the Janus Field which waves
carry the same sign of the energy as itself.

6.2. Cosmology

We immediately noticed that the two conjugate metrics cannot be both homogeneous and isotropic unless the spatial
curvature is zero. Thus the conjugate universe solutions are necessarily flat in DG without needing inflation! Per-
turbations about Minkowski can account for the radiative decay of pulsars as in GR, yet the “gravitational waves” in
this case have spin zero rather than spin 2 though the coupling to matter is still spin 2 like (minimal coupling to an
order two tensor field) and the exchange of such waves between two masses is not expected to generate any additional
gravitostatic interaction after quantization (additional to the one described in Section 6.1).

After requiring the action to be extremum we get a single equation for our background single degree of freedom:
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 = nπG(A2(ρ− 3p)− 1
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(ρ̃− 3p̃)). (12)

The scale factor a(t) definition is as usual A(t) = a2(t). When a(t) = 1, the conjugate metrics identify to each other
and to Minkowski allowing to reconnect the content of the two sides. It is thus natural to assume an almost exact
compensation, i.e., the same initial global density of energy and pressure on our and conjugate side, an easy way to
explain the origin of the matter-antimatter asymmetry, a small initial excess of baryons on our side resulting in the
same relative small excess of anti-baryons on the conjugate side just after their separation.

The initial solution is

A ≈ 1 ⇒ Ä =
Ȧ2

A
⇒ a = e

t−t0
Tini . (13)

We notice that a(t) ≈ 1 implies t ≈ t0, the origin of times.
As long as both sides remain hot, the source terms both vanish and the conjugate worlds have simple evolution

laws in the particular ranges a(t) & 1, a(t) ' 1. Indeed, the scale factor evolution is then driven by the following
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Figure 1. Time reversal in DG vs RG, plotted curves are not realistic.

differential equations:

a & 1 ⇒ ¨(1/a) = 0 ⇒ a(t) =
Thot

t0 − t
, where t < t0, (14)

a ' 1 ⇒ ä = 0 ⇒ a(t) =
t− t0
Thot

, where t > t0. (15)

If one or both are evolving in a cold era, there is a dominant source term determined by the content of the side with
greater scale factor. The differential equations read:

a & 1 ⇒ ¨(1/a) =
−nπGρ0

6
=

2

Tcold
⇒ a =

1
(

t−t0
Tcold

)2
+K

, where t < t0, (16)

a ' 1 ⇒ ä =
−nπGρ0

6
⇒ a =

(
t− t0
Tcold

)2

+K, where t > t0, (17)

where ρ0 is the unknown density at t0. Of course the integration constants t0, Tini, Thot, Tcold and K of the approximate
solutions in the different ranges are a priori not the same but must be non trivially related to each others and to ρ0.
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The harvest is already impressively successful! The first good news is that we can check in a straightforward way
that t − t0 → −(t − t0) implies A → 1/A i.e. remarkably, we have A−1(−t) = A(t) setting t0 = 0. The conjugate
universes are really linked by time reversal, one of our initial goals! One is expanding and the other contracting. But
here time reversal does not mean going backward in time anymore. As shown in Fig. 1, reversing time means jumping
to the time −t of the conjugate universe where one can remain for sometime before jumping back which can never
make you reappear in the past there.

From now on we shall assume that K is negligible in the formula for the scale factor cold evolution. Then the
coordinate transformations to the more familiar standard cosmological time t′ is much simpler. We also set the arbitrary
t0 to 0 and for the sake of simplicity “forget” the other integration constants. We discover that not only our universe
can be accelerated thanks to a t′2 evolution (equivalent to 1

t2 after the coordinate transformation from t to t′ = −1/t)
for the scale factor without any need for a cosmological constant or dark energy component, not only can it also
decelerate thanks to a t′2/3 solution (equivalent to t2 after the coordinate transformation from t to t′ = t3) as in
standard cosmology in the matter dominated era but we also have a standard t′1/2 evolution (equivalent to t after
the coordinate transformation from t to t′ = t2) again as in standard cosmology for the radiative era. However, the
transition between the decelerated expansion to the recent accelerated expansion regime at the so called turnaround
red shift where the universe was between 4 and 7 billion years younger than now requires that coming back to the
conformal time we had a sudden (discontinuous) transition from t2 & 1 to 1/t2 & 1, which implies that time reversal
occurred and the two conjugate metrics exchanged their roles. But t′2 is known to be still expanding so t′ increases

Figure 2. Evolution laws and time reversal of the conjugate universes, our side in blue.
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and consequently −t decreases and returns to zero so 1/t2 must still be expanding (as did t2). All this is summarized
in Fig. 2.

Now one needs to understand why the huge discontinuous transition from t2 ' 1 to 1/t2 & 1 did not have any
observational effect. Indeed the same kind of transition if it had been continuous would have produced huge red shift
anomalies. This is where the new rules describing the effect of genuine gravitational field discontinuities on various
fields minimally coupled to them must be understood. The usual differential equations based on the hypothesis that all
fields are C∞ clearly cannot help us to understand the transition. But the evidence is there that only the red shift derived
as usual from the continuous variation of the cosmological field before and after the discontinuous transition did have
observational effects, not the transition itself. This is as if the effect of the discontinuity was a mere renormalization
of the field rather than a time variation and we know that indeed the renormalization of a gravitational field has no
observational effect. Also notice that the Hubble expansion rate is the same just before, H(t) = 2/t, and just after,
H̃(t) = −H(−t) = −2

−t (since (a(t),dt) ⇒ (a(-t)=1/a(t),-dt)), the transition.
Now, coming back to the standard cosmological time we can require that the total age of the universe must be 1/H0

as in the standard model (beware that we now change our notations: subscript zero refers to the present time, and t to
the standard time). This total age is the sum of the duration ∆t2 of the decelerating regime from the decoupling red
shift ' 1 to the transition redshift ztr, given by ∆t2 = (2/3) 1

Htr
, and the duration ∆t1 of the subsequent accelerated

tα regime given by

α

H0

(
1− 1

(1 + ztr)1/α

)
.

Knowing that Htr is related to H0 by Htr = H0(1 + z)1/α it is straightforward to simplify ∆t1 +∆t2 = 1/H0 to get:

ztr =

(
2/3− α

1− α

)α

− 1. (18)

One checks that our predicted α = 2 gives ztr = 0.78 in perfect agreement with the best current estimation ztr =
0.77 ± 0.18 [17]. This confirms that DG cosmology can perfectly mimic GR cosmology without inflation nor a
cosmological constant as regards the scale factor evolution. The transition redshift is expected not to be everywhere
exactly the same due to local perturbations so that integrated over large regions, the resulting transition is likely to be
observed significantly smoothed by this dispersion of ztr.

Perhaps we can go a little further considering that we have actually obtained a large family of cosmological solu-
tions corresponding to different initial ρ0 and integration constants. All these universes have a cyclic evolution as in
Fig. 2, but some of them will remain in the regime a(t) & 1 where a(t) is exponential and a(t′) ∝ t′ throughout the
cycle. For each such universe, at any time t′ its age is given by exactly 1/H(t′). This is the same formula as the one
satisfied by our universe at the present time only by chance! We are therefore tempted to postulate that all universes
are constrained to satisfy exactly the same formula giving their age as 1/H0 at the end of their completed cycle when
returning to and all crossing each others at t = 0. Then the coincidence that the total age of our universe is exactly
1/H0 at the present time would just be the translation of another amazing coincidence: we are presently almost exactly
at the end of a cosmological cycle! This coincidence might be correlated with another extreme coincidence: the present
time is also the first time in the history of the universe when human kind has reached a degree of development allowing
to understand and may be to take advantage of this! Indeed, being near t = 0 also means that various regions of the
universe are in a kind of metastable state. These have to choose between a(t) and 1/a(t) for the next cosmological
cycle and the discrete jump at the frontier between two such regions can be relatively very small because we are very
close to a(t) = 1. May be this speculation will make more sense later when discussing LENR.
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What remains to be investigated is whether the anti-gravitational effects of the matter from the conjugate side can
do a better job than Dark Matter at all scales and any epoch of the history of our universe. The situation is very
promising from both galaxy simulation studies by JP Petit and my analysis of well known anomalies of Dark Matter
models at the galactic scales see [2] Section XX.e. At larger scales it seems difficult to decide between DM and
conjugate matter given that they tend to perfectly mimic each other in the linear domain.

Of great importance is the fact that the background metric in DG applies to all scales and not only to the largest
scales. For instance the solar system is also expanding (this is not the case in GR [16]) and to avoid conflicts with
precision tests probing effects equivalent to a variation of the gravitational constant G, an extension of DG is required
and was postulated that would result in the electromagnetic field being also affected by the scale factor. A bridge
between gravity and electromagnetism takes shape, this being already favoured by the mere fact that our theory is now
also a theory having a flat space-time background so that gµν does not have anymore the exceptional status it acquired
in GR and that made it very different from usual other fields such as Aµ.

7. Discontinuities of the Background Field

According to Eq. (12), our side of the universe could have evolved in two possible ways, expanding or contracting
in this coordinate system starting from t = t0 where the total source term vanished and the conjugate metrics were
equal. But local initial density fluctuations (net source term slightly positive or negative) might have determined how
the background decided to evolve in different regions of the universe. This is just similar to the situation we encounter
when there is a spontaneous symmetry breaking, a phase transition resulting in different vacuum expectation values for
a field in various regions. In other words, one single solution a(t) for the scale factor might not be at work everywhere
in our side of the universe. Some regions might instead be evolving according to the other solution 1/a(t) implying
that the conjugate background metric exchange their roles from one to the neighbour region but then also a genuine
discontinuity of this background field at their common frontier. Remember that indeed, it is rather the spontaneous
symmetry breaking of a discrete time reversal symmetry that we have to deal with in this case. The background field
is a two valued field that can only jump from one value to the other T-conjugate one.

What kind of new phenomenology could we expect from such discontinuities? This was the subject of our article
[6] where we focused on three main effects. First, if highly relativistic particles take advantage of these discontinuities
which are at the same time metric points and switches to transit from one universe to the conjugate one, these particles
would appear to propagate in the conjugate metric faster than our local speed of light. The second effect appears if we
compare ticks of two identical clocks separated by a discontinuity: in one region times accelerates as a(t) and in the
other region times decelerates as 1/a(t) so from the point of view of one clock the other will be seen to accelerate or
decelerate at a rate equal to twice H0. This is exactly (quantitatively) the so called Pioneer effect! The third kind of
effect is the one we want to investigate in more details now. Discontinuities of our conformal background metric imply
potential barriers able to accelerate massive particles crossing them (the energy gained or lost is proportional to their
mass) so these could be new sources of energy for LENR phenomena. However these should be totally transparent to
light or other massless particles.

8. Summary Statement

Serious experimentalists in Cold Fusion, when they are quite fed up because of the plethora of ad hoc theories flooding
the market, tend to say that to make good physics one should not be imaginative. What one needs is to respect all the
experimental data, which are indeed already very much constraining in the field of LENR given how many variants
of the initial experiments and effects we have to explain at the same time. Of course this is true, but what these
experimentalists do not suspect or tend to neglect is that almost all these models are already born dead by very simple
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purely theoretical arguments. Even in theoretical physics there is actually almost no place for imagination. First the
game is not to reinvent everything but instead we have to stick to the accepted physics until we can point to a hidden
hypothesis that deserves to be put in question or a forgotten solution. Our starting point was that the negative energies
were not understood properly but discarded out of hand. To understand them we need to rehabilitate Unitary Time
reversal in QFT and a complete revolution of our understanding of time reversal in a gravitational framework but a
revolution that unsurprisingly turned out to be so constrained that a single solution were dictated to us by the structure
of the problem. Down the road we find that there is another strong assumption of all field theories that we should
also put in question: the continuity of all fields (even assumed C infinite in Lagrangian theories). But if we allow
ourselves to relax the everywhere continuous hypothesis, it is only because we are strongly justified to do so by the
new symmetry of our DG theory, a time reversal that we are now able to really treat as a discrete fundamental symmetry
even in a gravitational framework. The plan is especially not to brush off all the physics which has proven itself, of
continuous fields that relied on infinitesimal calculus! These laws will still apply almost everywhere i.e. in the bulk
of spatial regions at the frontier of which new complementary supplemented rules will apply for discontinuities (see
Fig. 3).

Anyway, because this new step is an extraordinary one, it needs extraordinary justifications. This is why we think
it is useful to take some time here to explain why we believe discontinuities are one of the missing keys for a better
understanding of our Universe.

9. Theoretical Motivations for Discontinuities

9.1. Classical relativistic field theories in a nutshell: encounter of the fourth kind

Classical Relativistic Field Theories were the triumph of four ideas: first it was possible to reach a mathematical
quantitative and accurate description of almost all known phenomena. Second the whole theoretical construction can
be derived from a very small number of principles: it is extremely economic which also ensures its predictive character.
Third, both the principles and the theoretical construction that follows do not conflict much with common sense, our
familiar conceptions about the real world (it is much easier to learn how to live with SR than with QM). Fourth,

Figure 3. Discrete symmetry domains vs continuous symmetry breaking domains.
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the principles themselves do not appear arbitrary but would seem to be implied by a meta-principle which could be
summarized in the mere sentence: “science must be possible”.

The advent of QM reinforced the two first ideas by extending our understanding to the micro-world with very few
new principles, disproved once and for all the third and left the fourth in a worrying status.

To clarify the last point, let us outrageously summarize our understanding of how classical relativistic field theories
could have been obtained. To describe the container of everything we give ourselves three space coordinates and one
time coordinate. Everything in the content will be described in terms of fields, i.e., just one or several numbers at each
point of space and time. Nothing is more refined than the idea that at the roots of everything you do not have water (as
would have argued Thales), nor fire (à la Heraclitus) nor even atoms (à la Democritus) but just . . . numbers.

But probably because this was not simple (unified) enough we require that the Transformation between two
Galilean frames should be rather of Lorentzian than Galilean type (no other choice according modern axiomatiza-
tions of SR) because this is the only choice that really allows to unify the four space-time coordinates in a single
multi-component object (x, y, z, ct) but this requires the introduction of an invariant universal finite speed c. From this
follows the whole theory of SR. In particular the structure of the container, our now unified space-time, requires the
content, the fields, to belong to well defined representations of the Lorentz group, i.e. our numbers must be arranged
into single or multi-component objects, our now familiar scalar, four-vector and higher order tensors, Dirac fields and
so on. The next step is to ask what are the laws of physics that these fields should obey. Of course such question
presupposes that we believe in a kind of meta-principle: that science is possible. This in turn implies that there must be
universal laws valid everywhere and at any time. Obviously if we had to reestablish the laws at each new location or
each new morning, science would not be possible. The requirement needs to be generalized to any kind of space-time
transformation that should leave the fundamental equations invariant. Science is possible also implies that we are not
in a trivial world: things must occur, fields must be allowed to vary, derivatives are needed. But science is possible
also implies that the laws should not be over-complicated if we want to be given some chance to discover them so let’s
ask no more than two derivatives in all terms of our fundamental equations. Now just knock the door of your favourite
mathematician and ask the generally covariant laws with no more than two derivatives and he will give you all our
familiar laws for a massless or massive four-vector Field, the GR laws for the order two tensor field of gravity and,
he might also give you a very powerful recipe to get the laws, the extreme action principle. Without exaggerating too
much, that is the very impressive feeling that you might be left with after studying Classical Field theories: the mere
requirement that science must be possible could have led pure thought to discover the laws without even performing a
single experiment!

9.2. Two parallel paths: from DG to QM, from DG to LENR

Given how unexpected and weird were the new rules introduced by QM, the Planck Einstein quantization relations and
the non local and non deterministic collapse of the wave function, it was clear from the beginning that considering these
new rules as principles would irremediably and severely maul our fourth idea that the principles of our fundamental
theories should not be completely arbitrary. Yet when theoreticians progressively realized that they will have to give
up forever the idea of a local theory behind QM after many experiments confirmed the reality of the “spooky action at
a distance” in the words of Einstein, they threw the baby out with the bath water, they gave up the fourth idea together
with the third.

Indeed, almost no effort was engaged to explore a deeper world with new discontinuous and non local laws and to
discover less arbitrary principles (themselves almost necessary starting from the meta-principle that science must be
possible) from which the QM rules could have been hopefully derived. Instead the effort was focused on unifying the
interactions and trying to apply quantization as we (do not) understand it to gravity which resisted up to now.

In DG the context is the best one could imagine to start such exploration:
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Figure 4. Synopsis.
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• Discontinuities and our non propagated gravity have all to be the missing keys to understand where discon-
tinuous and non local rules of QM come from and to hopefully predict the value of the Planck constant, in
other words, compute the fine structure constant α.

• Rehabilitation of negative masses allows us for the first time to imagine a stable structured vacuum based on
alternating positive and negative masses, a new actor hopefully responsible for the non local QM collapse,
and standing for the creation and annihilation operators of QFT.

• LENR phenomena could be the direct consequences of the physics of discontinuities allowing to probe a
deeper level of reality without conflicting with the accepted physics that results from the quantization of our
classical field theories, QM being the other indirect parallel consequence of the physics of discontinuities.

Moreover let us stress again that being a theory with a flat space-time background and with a not so exceptional field
(apart its Janus Character), DG gravity might be much better positioned than GR gravity to be quantized if necessary
or unified with other interactions. Figure 4 is a synopsis of the ideas developed in the previous sections.

10. LENR, the Whole Experimental Evidence

None of the following LENR main signatures, the so called miracles, should be ignored or neglected.

(A) Large excess Power (XP) not possibly of chemical origin with very low levels of nuclear radiations (alpha,
beta, gamma, neutrons) as compared to what would be expected from nuclear processes producing the same
amount of energy.

(B) Transmutations and isotopic anomalies in cold conditions.
(C) Observation of a new category of incredible objects which behaviour seems almost impossible to understand

without postulating new physics (for instance caterpillar traces left by micron sized magnetic and radiating
objects able to fly meters away from their source, to go through dense materials, to explode and release much
energy in them, and so on ) objects which were discovered by many scientists independently (Matsumoto, Dash
et al., Shoulders, Lewis, Savvatimova, Urutskoev et al. , Ivoilov and other groups ) in many kind of experiments
involving macro or micro electric discharges and independently named Evos, EVs, Ectons, Plasmoids, Ufos,
Leptonic Monopoles, Charged Clusters, Nucleon Clusters, Micro Ball Lightning, . . . [18] and all references
therein.

Any idea proposed to explain (A) or (B) but neglecting (C) is almost certainly wrong because it is unlikely that two
kinds of very different new theoretical ingredients are needed, one to explain (C) and another to explain (A) and (B),
while the detections of the two kind of effects are clearly related. Indeed, typical transmutations of LENR (without
high energy radiation and leading to stable nuclei only) have often been reported in association with the observation
of strange tracks, and often in the tracks themselves. There is even an annual conference called Russian Conference
on Cold Nuclear Transmutation and Ball-Lightning (RCCNT and BL) and regularly there also have been presentations
on Ball Lightning and strange tracks at the ICCFs. The properties of these objects are so unimaginable that even if we
could produce a theory to address (A) or (A) and (B) pushing standard physics to its limits to get unusual screening
effects or energy concentrations in condensed matter, it seems extremely unlikely that it will explain at the same time
observations of the third kind (C). On the other hand if you are able to provide an explanation for (C), you might be
more lucky to elucidate (A) and (B) at the same time. Clear sightedness thus recommends that we should first gather the
detailed evidence about the strange objects that we shall call micro ball lightnings (mbl) following the interpretation
of [18], that though much smaller than their sisters produced in lightning storms, these are probably of the same
nature given that in both cases we have to explain the long term stability of an object concentrating electromagnetic
energy, luminous and charged appearing as the result of a more or less powerful electrical discharge. Apparently the
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more powerful the discharge, the greater and longer lived the ball lightnings. We include micro-discharges near metal
surfaces in simple electrolysis experiments or inside metal cracks (Ni, Pd) in experiments where these discharges
can result from either the metal surface being submitted to mechanical, thermal or EM pulse shocks or the cracks to
successive loading and de-loading of H or D or to a current flow that these cracks block, triggering micro-discharges.
We also leave open the possibility that the universal trigger might just be a concentration of charges implying a local
increase of the electrostatic energy since such conditions can both lead to discharges or be created by them.

11. From Field to Temperature Discontinuities

The challenge is thus the same as it is for macroscopic ball lightning; it is to find a mechanism able to confine a
significant amount of energy in the form of heat (the temperature inside is at least of 1000◦) and resist the pressure
during the whole lifetime of for instance a 6 µm sized mbl (between 10 and 0.01 µs, [21]) and to explain how such

Figure 5. Boreholes left by mbls.
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a macroscopic collection of a huge number of particles can behave as a single object leaving a well defined track in
nuclear emulsions or boreholes in matter. The stability problem is even worse if you take seriously the results from
various researchers [20,21] strongly suggesting that the mbls also carry a huge electric charge, because you then have
to explain how these can resist the corresponding electrostatic repulsion between an incredible concentration of charges
of the same sign.

Let us cite the ground breaking result obtained by Shoulders after analysing boreholes left by mbls: “The borehole
is fairly clean for a process that is capable of fluidizing a material with a melting point of 2600◦C and projecting it to
an unholy velocity. In fact, when a special test is set up to determine the thermal gradient at the edge of the borehole,
one comes to an astounding conclusion: either a gradient of over 26,000◦C/µm exists here, or this is a non-thermal
process!”. Can we imagine a better signature for a field discontinuity than this evidence for a temperature discontinuity
(Fig. 5)?

We are led to understand the mbl as a macroscopic object, i.e. a huge collection of particles with an initial den-
sity determined by the medium where it formed (gas, liquid, and solid) surrounded by a discontinuous gravitational
potential which can accelerate in a centripetal way all massive particles encountered up to an energy proportional to
their mass and then trap them inside, resisting both pressure and electrostatic repulsion between particles of the same
charge trapped in the volume delimited by the discontinuity. The discontinuity is of course one possible source of the
particles kinetic energies and hence temperature inside the mbl. But how could the energy escape out of the mbl and
be measured as heat (XP) outside if the energetic particles are all trapped inside? Again the answer is simple. The kind
of gravitational potential barrier implied by a discontinuity of the background field has no effect on massless particles
(conformal metric), so any photon can cross it and escape (hence the name Ball Lightning). Thus the radiative cooling
of the mbls can take place efficiently, implying that these are able to heat their environment but only radiatively.

The mbl is also charged and it is actually the electrostatic density of energy implied by this charge that reached the
threshold that triggered the apparition of the discontinuity. For instance, an electrical discharge impact might generate
a very short-lived concentration of charges of the same sign which is of course electrically very unstable and should
disperse very fast if a discontinuous potential suddenly appearing did not trap them, stabilizing the object for a much
longer time. The mbl would therefore be stabilized as long as it is able to keep the charge that gave birth to it.

Let us specify our understanding of the most likely origin of this electrostatic energy threshold. The source term
in Eq. (12) determines whether the background will choose the a(t) evolution or the 1/a(t) evolution. It just depends
on which contribution is the greater, our side positive or the conjugate side negative. If we are in a vast region
dominated by the conjugate side source term then a local concentration of energy on our side, an energy that fills the
available space as is the energy of the electromagnetic field rather than concentrated in points (as is the energy of
massive particles), as soon as this new contribution locally exceeds the conjugate side one, the background will flip in
this region to the other regime, producing a discontinuity with amplitude a(t) − 1/a(t) sitting exactly at the surface
frontier between the external area where the conjugate side still dominates and the internal one which is enclosed by
the discontinuity. Of course this surface is defined by the vanishing of the total source due to the exactly compensating
terms from our and conjugate side. As we explained earlier the dynamical background components a(t) and 1/a(t)
are expected to be rather close to each other in our cosmological epoch. If the difference is of the order of 10−9 the
potential barrier implied is 20 eVs for nucleons and of the order of 10 meVs for electrons.

Since the probability of reaching the crucial threshold is determined by the local density of energy on the conjugate
side on which we have no control and no knowledge, but also on potential gravitational energies implied by the
position of massive local objects (planets, sun), and since these are expected to fluctuate in time, it is not surprising
that eventually, cold fusion COPs are so erratic and unpredictable.
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12. Fate of mbls: the Fast Case

Because the discontinuous potential barrier is two thousand times more effective for the more massive nucleons than it
is for electrons, it turns out that it is much easier to keep alive positively charged mbl than negative ones. Indeed inside
the mbl any interaction between the cold electrons (accelerated to 10 meV) and much hotter nuclei (accelerated to
20 eV) will likely boost the electrons to an energy much above the 10 meV mbl barrier for them. Thus eventually the
electrons tend to be ejected out of the mbl while the nucleons are trapped much more efficiently because the potential
barrier is much higher for them. This would result in a very unstable initially negatively charged mbl (remember an
mbl must keep its charge to stay alive) unless the radiative cooling of the nucleons is much faster than the rate at which
the hot nucleons interact with the cold electrons (the crucial physical parameter here is probably the plasma density).
On the other hand stability should be granted for the positively charged mbls in vacuum. Indeed, in this case, the
electrostatic attraction by the protons prevents the electrons to escape too far from the mbl even if they have sufficient
energy to overcome their discontinuous potential barrier.

But of course, in real life conditions, mbls can only rarely be considered isolated from surrounding matter of their
environment, as if they were in vacuum. As a consequence of their charge the mbls will be attracted and will attract any
opposite available charges around and absorbing them will tend to recover neutrality. Losing its net charge in this way
any mbl is expected to soon collapse and “evaporate” as it recovers neutrality. Eventually, any mbl, either positively or
negatively charged is unstable if it is not strictly isolated.

Two fate scenarios are possible, a fast and slow one. Let us list the steps involved in the most common fast collapse:

• As the mbl neutralizes, at any place where the density of electrostatic energy has decreased below the threshold
defined by the conjugate density of energy the background has returned to its exterior value which therefore
gains ground on the volume of the mbl. In other words, the mbl collapses.

• For a fast input of opposite charges and hence fast neutralization, because of the mechanical work that the
discontinuity gives to the mbl interior plasma during the collapse, the heat accumulates too fast in the mbl to
allow it to radiatively dissipate this heat.

• The kinetic energies of the particles inside the mbl increase up to the point where these can overcome the
discontinuous barrier and escape. The lost of its charge as it seems to “evaporate” in this way also accelerates
the collapse of the mbl up to total disappearance.

• In such process it is still only the radiative losses that are responsible for heating the environment and the XP
because the particles escaping the barrier are instantaneously cooled to the exterior temperature. The very
origin of this excess energy is neither directly chemical nor nuclear so far. It is rather the potential energy
implied by the discontinuity, and the mechanical compressional work performed by this discontinuity both
turned into radiation (light). Because the Noether theorem does not apply any more for discontinuous fields,
the energy is a priori not locally conserved in such process but still might be globally conserved.

13. Fate of mbls: the Slow Case

13.1. The slow collapse

The slow collapse is probably exceptional but much more energetic as it triggers nuclear reactions. If the collapse
is sufficiently slow, such a small object as is the mbl can radiatively dissipate its heat faster than it is produced so
that the mbl can remain cold during the collapse. The particles kinetic energies now remain insufficient to escape
the potential well. Thus the mbl keeps its content and compresses it up to huge densities. For this to be possible
a first necessary condition is probably that the positively charged mbl is magnetically trapped in a metal crack or
trapped in an insulating material or any area where it is slowly fed with electrons and recovers neutrality extremely
progressively. A magnetic trap may rely on the extremely magnetic properties of the mbl that we shall investigate
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in the next section. What also makes it possible to reach huge densities is that the effect on a given test nucleus of
even a small amplitude discontinuity always overcomes the repelling potential of another neighbour nuclei whatever
its amplitude which indeed becomes huge when the other nucleus gets closer and closer [22]. Actually it is only by
reaching enough kinetic energy that a nucleus can overcome a discontinuous barrier, but for this to be possible, this
nucleus needs its huge repelling potential energy implied by the compression, to be converted into enough kinetic
energy. This is not the case because the nuclei do not have enough place to move and their thermal vibrations are
efficiently dissipated by the mbl as we already explained in this slow scenario.

As the nuclei get closer and closer the electron wave packets tend to more and more overlap each others and must
shrink to respect Pauli exclusion principle so we are approaching the picture of the black dwarf: nuclei very close to
each other in a cloud of electrons with much higher “Heisenberg kinetic energies”. In this case an electronic screening
effect can take place because the electronic density of the sea of electrons also increases in between any two nuclei as
these approach each other. At this level the degeneracy pressure of the electrons is not yet beaten by the discontinuity
but the proximity of the nuclei and the electronic screening makes possible a variety of nuclear multi-body reactions
between all the trapped nuclei that will eventually lead to the more stable reachable states. As in a white dwarf
everything might eventually be turned into Ni62. Reaching higher mass nuclei thanks to an mbl increased density is
not insured because again if the release of energy is too sudden the mbl will heat too fast and lose its content as in the
fast collapse scenario which anyway is expected to occur sooner or later.

13.2. Clean nuclear energy

Mbls are actually very common objects expected in any kind of electrical discharges or any phenomena producing local
concentrations of charges having the same sign, such as for instance capacitors, point effects, biological membranes,
the impact of a target by a narrow beam if the charges are not cleared out efficiently. It is the very revolutionary nature
of these objects that escaped the attention of mainstream physicists for decades mainly because it is so unexpected.
One of the most impressive kind of observations are those revealing many types of transmutation or nuclear fusion
products clearly associated with these objects and their various traces and pitches these left in the materials met on
their path. We explained in the previous section that the mbl understood as a kind of micro black dwarf, the fate of a
slowly collapsing gravitational discontinuity, is the ideal candidate to trigger the chain of multi-body reactions that will
lead to the most stable and more easily reachable nuclei: He4, Ni62 and so on. Stable means that we already understand
why eventually the residuals of CF reactions are not radioactive. What would seem to be a priori more challenging is
to explain why the nuclear reactions inside the mbl themselves do not produce large fluxes of high energy particles:
α, β, γ, neutrons in the MeV range for which the discontinuity potential barrier is negligible. We already discussed
this problem in [6] and concluded that most highly energetic particles produced in the mbl, included neutrons, should
be thermalized well before they are able to reach the surface of the object. For instance a 10-micron mbl with the
density d = 1 of condensed matter at birth, once compressed to a nanometer size, will have a density d over 1012 and
neutron mean free path of the order of 10 fm, hence so much smaller than the mbl, that only very exceptional neutrons
produced near the surface of the mbl can be radiated at high energies. The conclusion a fortiori also applies to all other
nuclear radiations with even smaller mean free paths. Eventually most of the energy produced in the mbl should be
radiated electromagnetically by at most soft X-rays (10 eV) except there may ultimately be more or less explosive fast
dispersion of the mbl if a chain of nuclear reactions is triggered.

14. Other Extreme Properties of mbls

Traces of mbls have been reported revealing objects of various sizes [19] as they propagate through various materials.
This, along with the specific properties of these traces confirms that we are seeing a macroscopic object, not any kind of



F. Henry-Couannier / Journal of Condensed Matter Nuclear Science 18 (2016) 1–23 21

elementary particle, and yet an extremely penetrating one able for instance to pass through two meters of atmospheric
air and two layers of black paper. This would be very hard to explain if we did not understand that a mbl is not
merely a micropiece of hot matter which would be arrested immediately by any dense obstacle. Of course its surface
discontinuity can fuse, evaporate or even turn all the material encountered into a plasma which might help penetrating
a solid for instance. But this is not enough! The question is how is an mbl able to propagate such a long distance in a
dense medium and interacting so much with it without apparently slowing down, as if its motion was not resisted at all.
We already have the answer. The whole material content of the mbl is actually enclosed by the discontinuity, which
itself is completely driven by its minority of charged particles in excess that defines the distribution of the electrostatic
energy that gave birth to the mbl. If some of these charges during a small time interval interact and are deviated or
slowed down, the majority of the other charged particles do not interact (being elementary particles these are much less
likely to interact than a macroscopic object) still carrying the discontinuity at almost uniform speed, discontinuity that
is able to permanently refocus, gather and re accelerate the latecomers and dispersing ones. Moreover these charged
particles being elementary are individually extremely sensitive to any external electromagnetic field because of their
huge charge over mass ratio q/m and so is the cluster of these charged particles, thus the mbl as a whole even though
it has a much smaller Q/M being essentially neutral as any macroscopic quantity of matter.

We are indeed faced with an extraordinary macroscopic object able to react to external EM fields or propagate
through matter almost the way elementary particles do. Many searchers reported those incredible tracks left by mbls
showing sharp angle turns manifesting huge accelerations as if the mbl as a whole did not have any inertia and could be
accelerated as efficiently as each single electron in the electrical field (inside a mbl plasma the much greater mobility of
the electrons relative to the ions suggests that the electrons are the main drivers of the mbl)! Phenomenal accelerations
of a macroscopic object is made possible by mbls but these can also describe circles at high cyclotron frequencies in a

Figure 6. Inertia anomalies and strange traces.
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Figure 7. Caterpillar and dotted line traces.

magnetic field as was also observed [18]. Various strange traces can be seen in Fig. 6.
Such kind of observations might have created the illusion that the mbls manifesting so huge Q/M ratios were

clusters of an incredible number of electrons, though this interpretation is hardly tenable.
For all the previous reasons, the mbls are obviously extremely effective charge carriers in a wire submitted to

a voltage and therefore able to produce dramatic falls in wire resistivity as is also regularly reported in cold fusion
experiments even up to the destruction of the wire.

At last, the mbls being very charged and, due to the conservation of angular momentum during their collapse, also
rotating at high angular velocity, these are expected to be extremely magnetic. So it is not so surprising that such
objects can be trapped in ferromagnetic materials [19].

Eventually let us not forget that discontinuities in DG are connecting the two sides of the universe. This is why
the material content of the mbl might oscillate between our side of the universe and the conjugate side (the antimatter
universe) via the peripheral surface discontinuity of the mbl so that the mbl may have an alternating luminosity from
one side (the observer side, i.e. our side) point of view, hence leave those strange caterpillar or dotted line traces in
emulsions as described in [19] for instance (see Fig. 7).

15. Conclusion

The review on Dark Gravity given in the first part of the article was necessary to clarify and present in the most intuitive
way, avoiding the mathematical formalism already developed elsewhere, the main steps toward an anti-gravitationally
stable extension of General Relativity with Time Reversal treated as a fundamental discrete symmetry even in a grav-
itational context, and its naturally expected associated field discontinuities. Having established this stable extension
of General Relativity, we can then list many key observations of LENR and show that each one is an almost perfect
signature of the physics of these discontinuities. By the way we were also able to derive a correct transition red shift
from deceleration to acceleration of our Universe, showing thereby that our DG cosmology can perfectly mimic the
LCDM one as for the scale factor evolution without the free parameters associated to DM, DE, Inflation.

References
[1] F. Henry-Couannier, Int. J. Mod.Phys. A 20(NN) (2004) 2341–2346.



F. Henry-Couannier / Journal of Condensed Matter Nuclear Science 18 (2016) 1–23 23

[2] F. Henry-Couannier, Global J. Sci. Frontier Res. A 13(3) (2013) 1–53.
[3] J.P. Petit, Astr. and Sp. Sci. 226 (1995) 273.
[4] M. Milgrom, Monthly Notices Roy. Astronomical Soc. 405 (2) (2010) 1129–1139.
[5] S. Hossenfelder, Phys. Rev. D 78 (2008) 044015.
[6] F. Henry-Couannier, J. Nucl. Phys. 2014. http://www.journal-of-nuclear-physics.com/?p=838.
[7] F. Henry-Couannier„ Dark Gravity, Global J. Sci. Frontier Res. F 12(13) (2012) 39–58.
[8] S. Weinberg, Quantum Field Theory, Vol. 1, Cambridge University Press, New York, 1995.
[9] A.D. Linde, Rep. Prog. Phys. 47 (1984) 925.
[10] A.D. Linde, Phys. Lett. B 200 (1988) 272.
[11] J.P. Petit, C.R. Acad. Sci. t.285 (1977) 1217–1221.
[12] J.P. Petit and G. D́Agostini, Astr. and Sp. Sci. 354 (2014) 611–615.
[13] S. Hossenfelder, 2014, Advertisement break in

http://backreaction.blogspot.fr/2014/11/negative-mass-in-general-relativity.html.
[14] R.J. Gleiser and G. Dotti, Classical Quantum Gravity 23 (2006) 5063–5078.
[15] R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo and G. Pizzella, Eur. Phys. J.C 75 (2015) 137.
[16] M. Carrera and D. Giulini, European Space Agency, the Advanced Concepts Team, Ariadna Final Report 04-1302, 2005.
[17] S. Cappozziello et al., Phy. Rev. D 90 (2014) 044016.
[18] E. Lewis, J. Condensed Matter Nucl. Sci. 2 (2009) 13.
[19] L.I. Urutskoev and V.I.Liksonov, Ann. Fond. Louis de Broglie 27(4) (2002) 701.
[20] K. Shoulders and S. Shoulders, Charge Clusters in Action, 1999.
[21] M. Rambaut, J. Condensed Matter Nucl. Sci. (2006) 798–805.
[22] F. Henry-Couannier, 2015, Geogebra Animation Online

https://tube.geogebra.org/student/m1236323.



J. Condensed Matter Nucl. Sci. 18 (2016) 24–35

Research Article

Study on the Phenomenon Reported “Neutron Generation at Room
Temperature in a Cylinder Packed with Titanium Shavings and

Pressurized Deuterium Gas” (3)

Takayoshi Asami∗ ,†
Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan

Giacomo Giorgi and Koichi Yamashita
Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Paola Belanzoni
Dipartimento di Chimica, e Biologia e Biotecnologie & Istituto di Scienze e Technologie Molecolari del, CNR c/o Dipartmento di Chimica,

Biologia e Biotecnologie Università di Perugia 06123, Italy

Abstract

In this paper, the authors have intended to ascertain the driving force for an adsorbed deuterium atom or a deuteron to collide in
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1. Introduction

In the previous paper [1], we analyzed the state of deuterium atoms in the tetrahedral cage of titanium crystal using the
first principle molecular orbital calculation and proposed a method to promote the neutron generation.

Recently, Giorgi et al. [5,6] have given a theoretical explanation for the formation of a combination in an electron
deficient metallic system with a hydrogen (or deuterium) atom in ligancy 2, that is to say, a 3-center-2-electrons,
(3c-2e) bond in the collisional mechanism which has lead to the reported neutron generation.

Furthermore, Giorgi et al. have found a metastable model including (3c-2e) bonds with respect to the structure of
one octahedral subcell belonging to the hexagonal close-packed (hcp) titanium lattice. As a result of this research, we
can recognize that the adsorbed deuterium atoms form a compound of deuterium atoms in ligancy 2, in many locations
of titanium crystal.

In this paper, we intend to ascertain what the driving force for a deuterium atom and a deuteron to collide with one
another is and what the driving force for nuclear fusion to occur is, comparing it with Coulomb force and the nuclear
force working between d–d particles.

2. The Behavior of Deuterium Atoms Adsorbed in Ti Shavings

The only energy change in the process of neutron generation in the previous experiments [2–4] has been the temperature
rise under a pressurized or evacuation condition. The kinetic energy change of the adsorbed deuterium atom from liquid
nitrogen temperature to room temperature is ca. 26 meV.

We doubt that such a small amount of energy can make deuterium atoms overcome their repulsive force, collide
with one another and then create nuclear fusion. We expect the energy of the temperature rise will only open a door
to a collisional space by means of a chemical bonding environment in which a deuterium atom and/or a deuteron can
collide.

To explain this concept, we think that quantitative evaluations of charge value per each deuterium atom and the
working energy between deuterium atoms are necessary.

In the recent theoretical analysis, Giorgi et al. [5] have reported the impact of the deuterium adsorption on the
final stress of the cell. They calculated the stress impact given by the formation of the titanium atoms combined with a
deuterium atom in ligancy 2 ((3c-2e) bond) to the titanium supercells (16 and 54 atoms, respectively) and analyzed the
bond formation of an electron deficient titanium matrix. Difference between the full (ions + lattice) and partial (ions)
optimization [5]. Td: tetrahedral cage, Oh: octahedral cage.

The calculated result referred to in Table 1 [5] indicates that the energy variation in the tetrahedral cage (in the
matrix composed of 54 titanium atoms) is 0.028 eV. A matrix; the size of 54 titanium atoms is large enough not to give
a sizable effect to the ∆E value evaluation. So, even if we calculate the ∆E value in a larger matrix, it seems that its
∆E value will not be much different as compared to 0.028 eV.

On the other hand, Ti shavings used in the previous experiments [2–4] seem to compose of a far larger size than that
of 54 titanium atoms. This calculated ∆E value, 0.028 eV, is very close to the value of the input energy, ca. 0.026 eV,
caused by the temperature rise under the pressurized or evacuation condition. It appears that this energy generated by
the temperature rise under the pressurized or evacuation condition is used by a deuterium atom to enter into or leave the
titanium crystal lattice. Therefore, when it intends to vacate the cage or a deuterium atom in another location intends
to move from its location to go to the gaseous region, its electron is taken by the titanium atom and/or surrounding
titanium atoms and it will become a deuteron. After that, a collision is likely to occur between a deuteron and a
deuterium atom in ligancy 2, by means of a small amount of kinetic energy, for example, alternative electromagnetic
energy, and by the medium of its negative charge.

If the specified condition regarding temperature, pressure and titanium metal adsorbed deuterium gas are prepared
suitably, neutron generation automatically proceeds without any additional energy required except for a temperature



26 T. Asami et al. / Journal of Condensed Matter Nuclear Science 18 (2016) 24–35

Figure 1. Set up of the trajectory of D atom entering the tetrahedral cage: the two steps approach showing the two different reaction coordinates
[6].

rise under a pressurized or evacuation condition, as witnessed in past experimental reports.
Giorgi et al. performed the Density Functional Theory (DFT) study of deuterium entering a titanium tetrahedral

cage [6]. In this study, the geometry of the initial Ti4D+ system, with the D+ atom outside the cage, in this case a
quintet spin state, and they calculated the deuteron charge from outside of the cage to the inside of the cage. Concerning
the tetrahedral cage they indicated the outside–inside trajectory of the D+ atom, provided a two step set up as indicated
in Fig. 1.

In Fig. 1, Giorgi et al. have calculated the energy vs. the D+–Ti(1–2) distance for the first step of the D+ approach
to the Ti4 cage (from structure I to II) and calculated the energy vs. the D+–Ti–Ti–Ti (1–2–3–4) dihedral angle for the
second step of the approach to the Ti4 cage (from structure II to III in Fig. 1).

The second step results are reported in Table 2 and show that if there is a deuterium atom in the cage, a deuterium
atom in ligancy 2 outside the cage cannot enter into the cage without providing necessary energy, because they both
have the same charge sign and therefore will not collide. Accordingly, we conclude that nuclear fusion will not occur
inside the cage.

Table 1. Energy variation as function of ad-
sorbed deuterium atoms. ∆E represents the
difference between the full (ions + lattice) and
partial (ions) optimization [5].

∆E (eV )
2×2×2(16 atoms)
Ti 0.05
Ti+2D 2( 3c-2e )Td 0.12
Ti+2D 2( 3c-2e )Oh 0.07

3×3×3( 54 atoms )
Ti –
Ti+2D 2( 3c-2e )Td 0.028
Ti+2D 2( 3c-2e )Oh 0.013

Td: Tetrahedral cage, Oh: Octahedral cage.
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Table 2. Calculated the Voronoi deformation density
(VDD) atomic charges on D during the second step of the
trajectory from outside to inside the cage (from structure
II to III in Fig. 1) [6].

1–2–3–4 dihedral
angle (degree)

VDD atomic charge
on D (e)

50 −0.149
40 −0.29
30 −0.439
20 −0.554
10 −0.630
0 −0.693
−10 −0.744
−20 −0.760
−30 −0.781

To clarify the mechanism of the neutron generation here, we assume that there are three regions in the system of
deuterium gas and Ti shavings packed in the cylinder (here after referred to as “titanium-deuterium system”, or “Ti–d
system”), as indicated in Fig. 2.

• Region I: The part of Ti shavings excluding their surface part. Presumedly there are deuterium atoms in the
stable location here.

• Region II: Surface part of Ti shavings, the region presumed to be where almost all the adsorbed deuterium
atoms in ligancy 2 are.

• Region III: Gaseous phase region of deuterium between Region II and the inside of the cylinder wall.

We studied two cases of neutron generation based on the experimental results.

Case 1
This case inspects the neutron generation in the pressurizing condition [2–4], it pays attention to the pressure and

temperature condition in the cylinder in the experiment.
Referring to a pressure-composition isotherm adsorption diagram for Ti–H2 (assuming that this diagram is almost

equivalent to the Ti–D2 diagram) with the parameter temperature in Fig. 3 [7], we assume that the location when the

Figure 2. Spatial partition for the analysis of the neutron generation mechanism in the Ti–d system (Region I, Region II, Region III).
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Figure 3. Pressure-composition isotherm adsorption diagram for Ti–H2 with the parameter temperature in the adsorption diagram [7]. Where
Pi(i = 1, 2, 3), Ti(i = 1, 2, 3), Pc(ad) and Tc(ad) denote pressure, temperature, critical pressure and critical temperature, respectively.

experiment starts is at point “C”, as indicated on the curve, and the temperature is T1 and after that, the temperature
rise is from T1 to T2. At that time, the location of the saturation point moves from point “C” to “G”.

As a result, the length of the plateau region shortens. This means that the saturation region of adsorption will
shorten and the deuterium gas in the shortened portion, CF , is equivalent to the deuterium gas desorbed from Ti
shavings. When deuterium atoms in ligancy 2 desorb from the Ti shavings, it appears that some portion of their
electrons must be taken by the titanium atoms which have adsorbed D atoms and/or the surrounding titanium atoms
and become deuterons. They leave from Region I and/or Region II and enter Region III. When deuterons leave Region
I and/or Region II, there is the possibility of collision with a deuterium atoms in ligancy 2 and a desorbed deuteron
through the medium of their negative charges.

Case 2
Referring to the curve indicated in Fig. 3 and assuming that the experiment starts from point “G”, and we change

the pressure condition from P2 to P1 providing that the temperature T2 is kept or only risen by a suitable temperature,
theoretically; all the portions of adsorbed and saturated deuterium gas must be desorbed in accordance with the char-
acteristics of the curve. It seems that at that time at least, the electrons of some of the desorbed portion of deuterium
atoms must be taken by the titanium atoms, as in Case 1.

The working condition in the cylinder in this experiment is the evacuation condition as in neutron generation [4].
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Figure 4. Atomic charge value (bold) in the cluster model 3, in the previous paper [1], a deuterium atom and a deuteron are located inside and
outside the cage, respectively.

3. Working Force and Potential Barrier between Two Particles (d–d)

3.1. Working force

Providing that the condition indicated in Fig. 4 is assumed, we think that it is important to consider how strong or
large the estimated force (or potential barrier) is between a deuterium atom outside the cage and a negatively charged
deuteron inside the cage. We should therefore try to evaluate the numerical value.

Providing that a deuterium atom in ligancy 2 and a deuteron with a negative charge are located at the inlet and
inside the cage as in Fig. 4, we can evaluate the working force between them applying Coulomb formula.

F = (1/4πε0)(qq
′/r

2
), (1)

where F, ε0, q, q′ and r denote Coulomb force, vacuum dielectric constant, charge (q, q′) and the distance between the
two charges, respectively.

Providing that d31 is detected only in the inlet of the cage in Fig. 4; the distance r, between q30 and q31 would
be ca. 0.604 Å in a tetrahedral cage without distortion and the charge of d30, q30 would be −0.142 eV (q30 =
− 0.142 × 1.602 × 10−19 C ). If we assume that the charge value does not change at the inlet of the cage, then the
charge of a deuterium atom in the front of the inlet of the cage, with a charge of d31, q31 would be −0.157eV ( q31
= −0.157 × 1.602 × 10−19 C) [1], Coulomb repulsive force between them at the inlet should be about 1.41 × 10−9

N ( 1.44× 10−10 kg force).
The minimum necessary energy for two deuterons to collide should be greater than that of the potential barrier.

When we make d31 collide with d30 by accessing the distance between them from l to Dd, where l and Dd denote
the optional distance and a pion-range or shorter distance than l between them, respectively; and if we substitute the
value of each charge q30 and q31 to Eq. (2), respectively, then the energy necessary to make d31 collide with d30 is
calculated from
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W =

∫ l

Dd

(1/4πε0)(q30q31/r2) dr = (1/4πε0)(q30q31)[−1/r]lDd
. (2)

3.2. The potential barrier for two particles to overcome based on Coulomb formula in order to collide

The potential barrier in each condition is calculated in the following.
(1) The potential barrier between two deuterons with the same charge sign and 1 eV each, stems from the following

conditions.
The evaluated energy is the worked energy Wd-d (1), that two deuterons each accessed from infinite to the distance,

Dd(Dd ∼ 5.4 fm ).
If two deuterons approach 1.4 fm, the gap between them, is a pion-range, and these two particles will collide

with subsequent nuclear fusion. Providing that the radius of a deuteron is 2 fm and the pion-range is 1.4 fm, and we
substitute Dd = 5.4 fm and l = ∞ to Eq. (2), the calculation result is as follows:

Wd-d(1) = (1/4πε0) (1.0)(1.602× 10−19)(1.0)(1.602× 10−19)× [−1/r]lDd
= 267 keV. (3)

This value is equivalent to the potential barrier in this condition and coincides fairly with the value in Tanimoto’s paper
[8].

(2) The potential barrier for two deuterium atoms to overcome in order to collide is associated with the following
conditions.

We must assume that each charge value of q and q′ is 1.0 and −0.157 eV, respectively, and each charge value does
not change while two particles have access to the distance, 25 fm.

(As the distance between two deuterons is ca. 25 fm, the nuclear force between them is nearly equal to zero, we
therefore selected this value.)

(a) When one particle is a deuterium atom in ligancy 2 and another particle is a deuteron

We assume that each charge value of q and q′ is 1.0 and −0.157 eV, respectively. The worked Wd-d(2), accessed
from l = ∞ to Dd = 25 fm is calculated below. It is likely that this energy can be accessed as long as a deuterium
atom in ligancy 2 does not change its negative charge before a collision.

Wd-d(2) = (1/4πε0)(−0.157)(1.602× 10−19)(1.0)(1.602× 10−19)× [−1/r]lDd
= −41.92 keV. (4)

(b) When two particles are deuterons

The potential barrier between two deuterons at a distance ca. 25 fm is calculated in the following.

(I = ∞, Dd = 25 fm)

Wd-d(3) = (1/4πε0)(1.0)(1.602× 10−19)(1.0)(1.602× 10−19)× [−1/r]lDd
= 57.7 keV. (5)

These calculation results indicate that the difference in the combination condition between a titanium atom and a
deuterium atom makes the superficial charge value of a deuterium atom change. As a result, the potential barrier also
greatly changes.

However, the evaluation of the force between two particles in the region where the nuclear force influences them,
is not included in the previous calculations and neither is the possibility of the access to the distance, (25 fm) between
two particles.
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Figure 5. Comparison of repulsive force by Coulomb force and attractive force (“Yukawa force attraction” or “Strong F” in Fig. 5) by nuclear
force between two deuterons. Attractive force is calculated by an improved Yukawa formula [9].

4. Coulomb Force and Nuclear Force between d–d Particles

According to the reports of Takahashi [9,10], the comparison of the nuclear force (Yukawa force) and Coulomb force
in the near nucleus surface is indicated in the graph, in Fig. 5.

In previous reports [9,10], the nuclear force between d–d results attractive. Figure 5 indicates that Coulomb force
(repulsive force) is stronger than the nuclear force between d–d until the distance is nearly equal to ca. 17 fm. The
attractive nuclear force works for two deuterons so as to be inversely proportional to the distance between them. On
the other hand, nuclear force only works a bit until two deuterons access to ca. 25 fm. When the two deuterons access
to ca. 17 fm, the absolute values of repulsive and the attractive forces are nearly the same and after closer access, the
attractive force exceeds the repulsive force.

Two curves indicate that if we can add a suitable amount of energy at a specified distance between two deuterons
when the nuclear force exceeds the repulsive Coulomb force to an accessing deuteron, then they will be able to collide
each other, even if each of the two particles have the same charge, 1 eV.

Using the original Yukawa formula regarding nuclear potential, the formula of nuclear force between each nucleus
is introduced in the following:

Fn = −geκr(1/r2 + κ/r), (6)

where g and κ are constants. (Constants g and κ are produced by fitting them to the improved Yukawa formula,
g = −8.501 × 104,κ =0.804.) r is the distance between two nuclei (fm) and Fn is the nuclear force (MeV/fm). The
results of the calculations regarding Fn, Flig2 and Fc are indicated in Fig. 6. Where Fn, Flig2 and Fc denote nuclear
force and Coulomb forces between d-d including a deuterium atom in ligancy 2 and pair charge values of each force
are Fn: (1 eV, 1 eV), Flig2: (1 eV, −0.157 eV) and Fc: (1 eV, 1 eV), respectively.
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Figure 6. Comparison of Coulomb forces and attractive nuclear force. All the forces are indicated in their absolute values. Fn: nuclear force
(attraction), Fc: Coulomb force (repulsion), Flig2: Coulomb force (attraction).

In the Ti shavings adsorbed deuterium atoms, there are deuterium atoms in ligancy 2 in a Ti–d system which locally
forms polar compounds. So if the suitable alternative electromagnetic wave is irradiated to a Ti–d system, desorbed
deuterons and deuterium atoms in ligancy 2 must periodically move changing in opposite directions of each other with
a positive and negative charge respectively in accordance with the frequency change.

It appears that the electron deficient titanium atoms constrain the electrons of deuterium atoms or take them. As
a result, it means that the potential barrier will change. It seems that the absolute value of energy to add may only
be a little bit or it may not be necessary at all by the tunnel effect, if the nuclear force is equal to or greater than the
repulsive Coulomb force at ca. 17 fm. Even if two particles each have the same charge, 1 eV, the nuclear force will
dramatically increase in inverse proportion to the distance between two nuclei.

For two particles to collide, we think that it is preferable to add additional energy to an accessing deuteron. How-
ever, it is most important to note how a deuteron will be able to access distance < 17 fm from a deuterium atom in
ligancy 2, without changing either charge.

5. The Presumed Nuclear Fusion Process in the Titanium Crystal Adsorbed Deuterium Atoms

When deuterium gas and titanium crystal adsorbed deuterium atoms are in an equilibrium state under a suitable
pressure and temperature, even a slight temperature rise will break this equilibrium state and they will proceed to
a new equilibrium state. As a result, it seems that the electrons of some portion of the desorbed deuterium atoms in
Regions I and II (Fig. 2) are then taken by the titanium atoms or by the surrounding titanium atoms at desorption
and proceed to Region III via Region II, where there should be a large quantity of deuterium atoms in ligancy 2 at
saturation.

The authors envision that if the charge sign of the deuterium atom becomes positive and Coulomb force, based
on the above mentioned concept, works between the deuterium atom in ligancy 2 outside the cage and the deuterons
which move from Regions I and II, and the suitable amount of energy by alternative electromagnetic wave is irradiated,
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Figure 7. NFP model 1 in the titanium crystal adsorbed deuterium atoms.

there is a high possibility of a collision.
If the additional energy to overcome the repulsive force by Coulomb force before entering into the superior field of

the attractive nuclear force in the near surface of the nucleus is added at the distance l for example, 17 < l < 25 fm, to
such a non-equilibrium condition in the Ti–d system, especially to free deuterons, it appears that there will be a higher
probability of nuclear fusion being achieved because the nuclear force in d–d is attractive.

Nevertheless, it seems that if the deuterium atom in ligancy 2 with the charge −0.157 eV, does not lose its negative
charge until the distance between it and the accessing free deuteron is less than ca. 17 fm, then the two particles will
be able to collide with each other. After these particles access a distance closer than ca. 17 fm, the attractive nuclear
force will begin to work, even if the charge of the deuterium atom in ligancy 2 changes from −0.157 to 1 eV.

Evidently, it is unconceivable for a free deuteron to directly enter into the plane within the orbit, including the
nucleus and its related electron, without being given suitable kinetic energy, because each particle may change its
charge and the power balance between them at that time would be unstable.

Presumed nuclear fusion process (here after referred to as “NFP”) models in the titanium crystal adsorbed deu-
terium atoms are indicated in Fig. 7 (NFP model 1) and Fig. 8 (NFP model 2).

To accurately evaluate the energy required to increase the probability of nuclear fusion, we think that the informa-
tion of the electron orbit and each charge of atoms relating to the deuterium atom in ligancy 2 are necessary, especially,
the orbit form and each radius length in periapsis and apoapsis. Based on these information, the energy needed for
nuclear fusion to occur will be calculated.

In NPF model 2, we think there may be a possibility of double or triple collision of deuterons.
The most important matter is how accessible the minimum distance between two particles is, after the collision

with a negative charged deuterium atom in ligancy 2. Then, if the distance of two particles is within the attractive
region that is stronger than that of the repulsive region, there will be chance of nuclear fusion.

6. Conclusion

Based on computational results and published reports, we have investigated the possibility of the nuclear fusion in
titanium crystal.
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Figure 8. NFP model 2 in the titanium crystal adsorbed deuterium atoms.

We thought that the temperature at which a non-equilibrium state occurs was not at one single specific value, but
that there were several temperatures which are lower than the temperature Tc(ad) indicated in Fig. 3. This presumption
confirms the past experimental results [3,4]. That is, that there are several conditions in which a non-equilibrium state
occurs in both pressurization and evacuation conditions.

Regarding a non-equilibrium state, firstly, deuterium atoms locally form a polar compound in ligancy 2 with ti-
tanium atoms in titanium crystal and each deuterium atom in ligancy 2 has a negative charge. Under the pressurized
or evacuation condition and with an additional suitable temperature rise, it appears that some portions of adsorbed
deuterium atoms desorb from the titanium atoms and they become deuterons with a positive charge.

Secondly, as there are some particles (deuterons) which have a positive charge within them and others (deuterium
atoms in ligancy 2) that have a negative charge inside, and providing that these charges do not change, they are then
able to access one another within the working region of Coulomb force.

According to Takahashi’s report, the nuclear force between d–d is attractive and it is nearly equal to the repulsive
Coulomb force at the distance of ca. 17 fm at the dividing distance of ca. 17 fm when they have the same charge, +1
eV. For larger distances (> 17 fm), the repulsive Coulomb force is stronger than the attractive nuclear one [9,10].

We think that even if the charge sign of a deuterium atom in ligancy 2 is changed during the accessing process of
a deuteron, the added suitable amount of energy and the nuclear force will be able to overcome the repulsive Coulomb
force and the two particles will be able to access each other, therefore colliding and nuclear fusion will be achieved.

To promote the nuclear fusion effectively, a necessary amount of energy needs to be added to the desorbed
deuterons to overcome the Coulomb force and it needs to be determined by means of a more detailed theoretical
and experimental setup.

To increase the probability of nuclear fusion in a Ti–d system, we now believe that it is necessary to add a suitable
amount of energy. As a possible means to provide energy, the irradiation of an alternative electromagnetic wave energy
is a possibility we would like to confirm in a future experiment.
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Addendum

The authors had the information of a case study which was to reserve the hydrogen in a cylinder for the use of a fuel
tank of an automobile.

At that time, we intended to similarly apply the example of a reservation cylinder of acetylene. In the cylinder, we
packed Ti–Fe alloy grain with 5–10 mm equivalent diameter size to adsorb hydrogen gas instead of diatom earth and
acetone.

When we reserved the hydrogen gas, we found that at first the adsorption quantity of the hydrogen was smaller
than after conducting the adsorption and desorption operation several times. Therefore, it is recommendable that
preliminary adsorption-desorption operations are executed before starting the adsorption operation. For example, the
pressurizing and depressurizing of hydrogen in the cylinder can be repeated between ambient pressure and 2.5 MPa.
After this operation, the adsorption quantity of hydrogen will increase greatly.

The authors think that this tendency is also the same in Ti shavings as that of the Ti–Fe alloy grain. In the
experimental operation, caution is necessary as repeatedly pressurizing and depressurizing will cause the pulverizing
of the Ti–Fe grain. This pulverized Ti–Fe powder sticks inside the piping. So, it is recommendable to equip a filter at
both the inlet and the outlet of the cylinder packed with Ti shavings.
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A Technique for Making Nuclear Fusion in Solids

R. Wayte∗
29 Audley Way, Ascot, Berkshire, SL5 8EE, England, UK

Abstract

A technique is described for making nuclear fusion at room temperature by compressing a powder mixture comprising a deuteride
and catalytic material. The result is explosive beyond known chemical reaction for the materials.
c© 2016 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Nuclear fusion, Solid state

1. Introduction

It is understood worldwide that efforts must continue to develop nuclear fusion as an energy source. One process
involves inertial confinement fusion wherein a pellet of deuterium and tritium fuel is compressed strongly by lasers,
see https://lasers.llnl.gov/science/icf, http://www-lmj.cea.fr/en/experimental/index.htm. This and other techniques are
being pursued in order to prevent a global warming catastrophe and the riotous consumption of the remaining oil.

A significant number of established trustworthy scientists have pursued cold fusion [1], and published papers in the
proceedings of 18 International Conferences on Condensed Matter Nuclear Science and elsewhere [2–4]. However, a
problem of reproducibility remains, and the absence of expected fusion products like neutrons and γ-rays is puzzling.
Experiments point to some obscure new phenomenon involving serendipitous trace catalysts.

In this paper it will be claimed that by strongly compressing a deuteride and catalyst mixture, one type of nuclear
fusion has been induced (E.B., private communication). Repeatability is no longer a problem, and there should be a
way of making this process commercially viable using inertial confinement in particular.

Section 2 describes current experimental techniques to produce nuclear reactions. Section 3 covers experiments
with hydride in place of deuteride. Section 4 describes different mechanical designs. Section 5 offers explanations
for the chemical processes involved. Section 6 proposes ways to develop a commercial energy generator. Section 7
summarises the work, and ends with a note of caution.

∗E-mail: rwayte@googlemail.com; Tel.: +44-1344883352.

c© 2016 ISCMNS. All rights reserved. ISSN 2227-3123
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Figure 1. Apparatus for preparation of calcium deuteride from calcium turnings and deuterium gas.

Figure 2. Original compression cell design consisting of two chrome steel roller bearings in a steel sleeve with solder seal to contain the fuel
powder and gases.
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2. Experimental Methods

The techniques developed for demonstrating the claimed nuclear fusion are on a small scale, but generate strong
explosions. Many varied experiments have been performed in order to understand the effect and gain reproducibility.

2.1. Fuel preparation

First of all, a quantity of calcium deuteride was produced by heating calcium turnings in a flushed-out closed silica tube
containing deuterium gas supplied by a manometer assembly, see Fig. 1. The used volume of deuterium was measured
in order to estimate the final purity of the calcium deuteride at around CaD1.75 as if some CaD was also produced.
The lumps of CaD1.75 were then ground to a fine powder with mortar and pestle, and thoroughly mixed with similar
weights of red phosphorus and manganese powders, to yield the “primary fusion fuel”. Typical particle sizes of the
powders have been in the range 20–75 µm, while the weight proportions of the ingredients have been varied around
1:1:1.

Subsequent experiments using the deuteride of magnesium, strontium, barium, lithium and sodium in place of
calcium deuteride have also provided results, suggesting that efficient deuterium fixation is the key necessity. Likewise,
other transition metals have been found to work in place of manganese to some degree; as was confirmed by mixing
the calcium deuteride and red phosphorus with each one of the following powders: scandium, titanium, vanadium,
chromium, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum and cadmium. By inference,
a metallic particle surface is required, with its high electron density and ionic lattice.

Figure 3. Two typical results of fusion ignition, wherein the local gas pressure has forced a wedge of steel downwards through the lower bearing,
splitting it apart. One of the wedges is shown at top left, and sitting on the appropriate bearing in the lower views. It is triangular in cross-section,
roughly 4 mm × 1 mm × 2 mm deep.
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Figure 4. Oscilloscope traces for one very strong explosion, shown at 50 and 5 µs/division temporal resolution (use zoom 200% to view details).
Blue trace is the load-cell output showing how the press applied load at 20 tons is increased above 40 tons by the explosion lasting only for 8 µs,
followed by total fall-off and strong mechanical ringing. Turquoise trace is the output from the piezo-accelerometer, which was attached to the side
of the cell until it burst. Yellow trace illustrates the response of the direct view photodiode to the debris ignition, and red trace the output from
the photodiodes with UV scintillators. There is some cross-talk between the four channels because of amplifier overload. The over-exposed video
camera recording of the bright explosion flash was viewed through a 12 mm thick shatterproof polycarbonate window; see Fig. 9 for mechanical
layout details. The photodiodes, shown with wires attached mounted in the centre of the polycarbonate window, view through a hole but are
protected from flying debris by a stainless steel mesh. Picture width corresponds to 200 mm × 120 mm high.
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Figure 5. Four examples of explosions at medium (left) and high (right, 10 µs/division) resolution showing random variability in their character-
istics. Experiments Nos. 244, 246, 248 and 273.
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Figure 6. Fusion cell on canister load-cell assembly

Figure 7. Circuit diagram for Canister load-cell bridge, Piezo-accelerometer (ex-gas igniter), and Silicon detectors (one direct view, two with
scintillators).
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Figure 8. Left: photograph of bottle-jack press assembly. Right: close-up view of fusion cell standing on load-cell assembly (Fig. 6), which is
securely clamped to the movable work plate (Fig. 9).

2.2. Early experiments

In the first experiments, about 200 mg of the primary fuel powder was put in a compression cell which consisted of
two EN31 chrome steel roller bearings (12 mm × 12 mm) as anvils in a mild steel sleeve, sealed with a lead/tin solder

Figure 9. General assembly.
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Figure 10. Calcium hydride in place of calcium deuteride: Oscilloscope traces for one strong explosion at low (2 ms/division), medium (50
µs/division), and high (10 µs/division) temporal resolution. Blue trace is the load-cell output showing how the applied load at 20 tons increases
rapidly to more than 40 tons during the explosion, which lasts only for 10 µs, followed by load fall-off and mechanical ringing as the cell disinte-
grates. Turquoise is the output from the piezo-accelerometer attached to the side of the cell until it burst. The blast propagates for 200 µs before
the hot ejected debris can ignite in the air, as detected by the photodiodes: yellow trace illustrates the direct view photodiode output, and red the
photodiodes with UV scintillators. The video snapshot includes burning tracers which reveal shaking of the assembly. The photodiode detector
assembly with wires attached is mounted in the centre of the polycarbonate window as usual, see Fig. 9. Experiment No.196.

ring to contain generated gases, see Fig. 2. When this cell was subjected to a vertical force of 30 tons in a press, the
powder was formed into a hard solid disc, but no ignition occurred. The force was then removed so that a thin steel
wedge could be placed underneath, before re-applying the force gradually. As a high force level was approached this
time, it appeared that some shear occurred within the fuel pellet such that localised hot-spots [5–7] in the shear-plane
ignited a chemical exothermic reaction which enabled the fusion process within the enclosed pressurised environment,
causing an explosion in the cell.

Figure 3 illustrates two examples wherein the generated gas pressure (ionised deuterium and phosphorus) was
great enough over a 1 mm × 4 mm surface area to create a cutting wedge of steel which immediately cleaved the roller
bearing anvil into pieces. As soon as the bearings were cracked enough within the cell, the process ceased because
the gases were able to escape through the cracks. This means that the process is not susceptible to run-away in this
configuration.
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Figure 11. Four more experiments with weaker explosions, using calcium hydride in place of calcium deuteride. Oscilloscope traces shown on
the left at 50 µs/division and on the right at 10 µs/division temporal resolution. Experiments Nos.282, 284, 285 and 288.
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Figure 12. Debris from four strong explosions using calcium deuteride and calcium hydride, which shattered the anvil bearings in three cases and
the upper HSS spacer in two cases.

2.3. Current experiments

The latest experiments have employed smaller roller bearings as anvils within a bronze sleeve such that near axial
compression is adequate without the tilting wedge, see Section 2.5 and Fig. 6. Typically, 40 mg of fuel is now used
per cell. The compression and explosion reaction force have also been monitored by means of a canister load-cell
placed beneath the fusion cell and a piezo-accelerometer clipped to the side. When the reaction is great enough, the
local pressure may dent and fracture or cleave the bearing surface. Sometimes the bearings are noisily shattered by
the shock-wave. Extracted bearings show blast marks radiating from the hot-spot position. One good example given
in Fig. 4 shows these forces and also the explosion flash monitored by UV-enhanced silicon photodiodes (Centronic
OSD35-7XCQ). The actual fusion may only last for 8 µs before it breaks the anvils or cell wall enough for gases to
escape. The relatively long interval of 400 µs before the flash begins indicates that the flash is due to combustion of
hot expelled fuel debris (phosphorus, deuterium) in atmospheric oxygen, after the blast wave has subsided. That is,
the fuel debris does not by itself burn exothermically. This delay interval is found to be shorter when the cell sleeve
and corresponding blast are less strong. Thus the actual ignition of fusion, lasting only 8µs, is not detected by the
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Figure 13. Long shear cell consisting of a case-hardened steel piston with shoulder in a shaped steel sleeve to contain the fuel powder.

photodiodes. An over-exposed video camera snapshot of the very bright flash is shown. When a sleeve is able to
resist bursting, there may be no flash at all because the expelled debris is cooled by the inner surface of the sleeve as it
squeezes past.

Four more experimental results are presented in Fig. 5 showing that the strength of explosion is variable, although
it tends to increase with applied force. In each case, the explosions occur at pressures greater than 15 tons/cm2 but
unpredictably as the pressure is further increased towards 30 tons/cm2. The hotspot parameters must govern this
process. Sometimes there is no immediate explosion, and then the applied force is held at 30 tons for 2 min before
releasing and re-applying.

Figure 14. Enlarged view of two typical results of fusion ignition wherein the explosion gas pressure has broken pieces off the piston shoulders,
in order to escape upwards.
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2.4. Search for nuclear debris

An extensive effort has been put into the search for any nuclear particles emitted by the explosion, but none has been
found for sure. Detectors with stainless steel mesh screening were located at 10 cm from the fusion cell and repeatedly
subjected to the blast which ultimately ruined a BP4 beta-probe, a ZP1401 GM tube and a ZP1610 proportional counter.
In addition, neutron activation was sought many times using indium, lithium, copper, niobium, titanium, aluminium,
and vanadium. These materials were placed inside the cell with the fuel then collected with the debris and tested for
radioactivity, but none was detected.

2.5. Detailed design features

For other investigators to confirm this work, some detailed practical design information is included in Figs. 6–9.
Many configurations have been tried but currently the fusion-cell shown in Fig. 6 is good for ignition under near axial
compression up to 30 tons force. The cell consists of two hardened (60–67 Rockwell Scale) chromium AISI 52100
steel roller bearing anvils inside a sintered bronze sleeve. The bearing ends are pre-roughened with coarse sandpaper
in order to grip the fuel powder to cause shear within the bulk fuel. It is understood that during initial compression,
the malleable solder ring (pre-formed from 1.6 mm diameter solder wire) is squeezed inwards so as to compress the
fuel powder. Then as the compression force is increased, the sleeve bulges due to outward pressure from the solder,
while the fuel is crushed generating internal shear friction hot-spots wherein the fusion occurs. The cell lower anvil
sits upon a canister load-cell (a 16 mm × 16 mm steel roller bearing with 4 strain-gauges wired in series) to measure
the applied axial compression and explosion reaction force. This load-cell is held in place by the pre-formed square
stainless steel tube housing. Figure 7 shows circuitry for the strain-gauges, the piezo-accelerometer, and silicon diodes,
coupled directly to the oscilloscope. A general side view photograph of the press with its bottle-jack and strong location
clamps for the fusion-cell assembly is shown in Figs. 8(a,b). The corresponding plan view schematic, with overall
safety enclosure and detectors is shown in Fig. 9.

3. Experiments with Calcium Hydride

Experiments have also been done using calcium hydride in place of calcium deuteride, and unexpectedly found to
produce good explosions, see Figs. 10 and 11. Can it be possible that the Coulomb force between the freed hydrogen
protons is screened within the hot-spots, leading to deuterium production and energy release?

For both hydride and deuteride, many experiments have emitted weak ignition reports as the applied load is in-
creased above 15 tons, but the strong explosions occur over 25 tons such that the anvil bearings are dented, cracked or
well shattered. Sometimes a small wedge is found in the debris, which was the root cause of an anvil splitting in half
directly under the source of ignition. Figure 12 illustrates four extreme cases of explosion debris in which the anvil
bearings and/or HSS spacer happened to shatter. On average, a 32 ton bottle-jack only survives for 15 experiments
because the fast explosion shock-wave damages its input valve before the internal overload valve can operate.

4. Other Cell Designs

Another type of cell design which easily produced the required shearing action is shown in Fig. 13. The fuel powder
was put around a case-hardened steel piston rod with a shoulder that compressed the powder as it was pushed through a
shaped mild steel sleeve. Upon applying several tons of force, shear in the powder produced hot-spots wherein ignition
of fusion broke many pieces off the rod shoulder, see Fig. 14. This allowed the local gas pressure to subside and
prevented the fusion from progressing. Clearly, extreme pressure pulses must have been generated to do this amount
of damage on hardened steel. Inspection of the steel sleeve adjacent to the hot-spots revealed a melted appearance.
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Other methods of inducing fusion with this fuel have been tried, and need further experimentation. For example,
externally heating the pressurised cell sleeve caused it to split open and show the burnt interior as a sign of fusion.
Therefore, heating the fuel in a container pressurised with deuterium may be one way of producing controlled fusion
for energy generation.

5. Proposed Chemical Processes

First of all, phosphorus, calcium and manganese compounds have catalytic properties [8–10]. For example, some
primary fusion fuel (CaD1.75+ P + Mn) was heated in a test tube and found to decompose readily yielding deuterium
gas.

It is hypothesized that chemical and nuclear processes occur within the compressed fuel shear-plane hot-spots
[5–7], which are high pressure plasma regions up to 1000 K. Here, ionised manganese and phosphorus may combine
exothermically, yielding 104 kJ/mol of MnP [11]. Nearby calcium deuteride, bound by 180 kJ/mol during its produc-
tion [12], may now be dissociated by energetic phosphorus ions. Deuterium is thereby freed and calcium phosphide
formed exothermically at 543 kJ/mol [12], adding further energy to the hot pressurised plasma. Under pressure, freed
deuterium atoms will occupy interstitial positions between surface atoms of manganese grains [13] where they are dy-
namically constrained while being bombarded by energetic deuterons in the plasma. At the same time, bombardment
by energetic free electrons adds to the environment of manganese conduction/valence electrons and results in enough
screening of the Coulomb force to enable fusion of the free and constrained deuterons.

To support this theory, the transition metal powders listed earlier in Section 2.1 were found to behave like man-
ganese in producing explosions; and deuterides other than calcium were also successful. However, no activity could
be induced when pre-formed manganese phosphide was substituted for the elemental manganese and red phosphorus
powders. As might be expected, there was no activity in control experiments employing a (Ca + P + Mn) mixture, or
dry Ca(OH)2 powder.

This has proved to be a self-restricting technique and there is a residue of unconsumed fuel around the cell after the
explosion because the fuel confined alone does not burn easily. A sharp smell of impure phosphine is always apparent.

6. Further Developments

The experiments described above are clearly limited to fusion demonstration only, to prove it is possible in the solid
state. For commercial energy generation we need a continuous high energy process, as already tried by various groups
[14]. A pellet of fusion fuel would be compressed and heated by powerful laser beams, or heavy-ion beams, or electron
beams, or a Z-pinch cell. An alternative process for continuous energy generation may be to heat the source compound
in a controlled manner.

When trying these different techniques, the fuel compound could be varied by substituting other chemical elements
in part, to get a controllable reaction. For example, calcium hydride has already been substituted for the deuteride and
produced explosions.

7. Conclusion

A large number of experiments have been conducted with powdered material comprising a deuteride and catalyst.
The technique is understood in terms of pressurised shearing hot-spots within which exothermic chemical reactions
facilitate enough Coulombic screening for nuclear fusion of deuterons. Even a mixture of hydride and catalyst produces
explosions, so this is a noteworthy phenomenon. In a separate paper, theoretical models will propose how soft X-rays
are generated and convert to heat in the material. From an engineering point of view, this discovery may be developed
immediately using inertial confinement or other techniques [15].



R. Wayte / Journal of Condensed Matter Nuclear Science 18 (2016) 36–49 49

Safety shielding has been necessary in all experiments with pressurised solid state compounds. The manual com-
pression technique used here is slow enough to allow time for the fusion gases to escape. Impact techniques might
strongly confine the gases, resulting in a dangerous fusion avalanche [5].
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Abstract

In this paper, we look into the difficult question of electron deep levels in the hydrogen atom. An introduction shows some general
considerations on these orbits as “anomalous” (and usually rejected) solutions of relativistic quantum equations. The first part of
our study is devoted to a discussion of the arguments against the deep orbits and for them, as exemplified in published solutions.
We examine each of the principal negative arguments found in the literature and show how it is possible to resolve the questions
raised. In fact, most of the problems are related to the singularity of the Coulomb potential when considering the nucleus as a point
charge, and so they can be easily resolved when considering a more realistic potential with finite value inside the nucleus. In the
second part, we consider specific works on deep orbits as solutions of the relativistic Schrödinger and of the Dirac equations, named
Dirac Deep Levels (DDLs). The latter presents the most complete solution and development for spin 1/2 particles, and includes an
infinite family of DDL solutions. We examine particularities of these DDL solutions and more generally of the anomalous solutions.
We next analyze the methods for, and the properties of, the solutions that include a corrected potential inside the nucleus, and we
examine the questions raised by this new element. Finally, we indicate, in the conclusion, open questions such as the physical
meaning of the relation between quantum numbers determining the deep levels and the fact that the angular momentum seems two
orders-of-magnitude lower than the values associated with the Planck constant. As a prerequisite to a deep comprehension of the
resolution methods, we recall in the appendices some essential elements of the Dirac theory.
© 2016 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

For many decades, the question of the existence of electron deep orbits (EDLs) for the hydrogen atom led to numerous
works and debates. Why once more a study on this subject? For several reasons:
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• the arguments in favor of the deep orbits have become progressively more mature by the use of relativistic
quantum tools for a full three-dimensional description of the system;

• by accepting the reality of a non-singular central potential within a nuclear region, many mathematical argu-
ments against anomalous solutions of the relativistic equations no longer pertain;

• numerical evaluation of the relativistic equations are now detailed and available for interpretation of the models,
their implications, and their predictions;

• and, above all, recognition of these levels opens up a whole new realm of atomic, nuclear, and subatomic-
particle physics as well as nuclear chemistry.

There are various theoretical ways to define a state of the hydrogen atom with electron deep level (EDL) or deep
Dirac level (DDL) orbits. In the following, we denote H# as any state of hydrogen atom with EDL orbits. Some authors
use the term hydrino for denoting the H#states owing to the work of [1] on the hypothetical existence of H atoms with
orbit levels under the Bohr ground level and where the values of orbit radii are fractional values of the Bohr radius.
Here we do not use this term, a physical concept specifically attached to the cited work, because it is not deduced from
quantum equations, while we essentially consider the states H# obtained by the methods of relativistic quantum physics.

With the quantum equations habitually used in the literature for computing the bound states of the H atom, we can
note that there is in general a crossroad with a choice of value or a choice of sign for a square root in a parameter.
According to which path is chosen, the resolution process leads either to the usual solution or to one called “anomalous”
solution, rejected in the Quantum Mechanics textbooks.

In our present study, we note that a H# solution is always an anomalous solution but every anomalous solution is not
a H#solution. For example, the anomalous solution also contains the regular energy levels of anti-hydrogen. We will
see below that it is easy to recognize H# solutions, if we have an expression of the anomalous solutions obtained by an
analytic method. A solution provides the eigenvalues of the Hamiltonian, representing the total energy of the electron,
in the form of a family of quantized energy levels depending on quantum numbers. We consider only relativistic
equations because, in the deep level orbits considered here, the electrons are relativistic. Indeed, we can make a quick
computation:

In [2], the authors plot the curve of the normalized electron density of the deep orbit wave function corresponding
to the ground-state DDL orbit (−2s), and this curve has a peak for a radius equal to ∼1.3 fm. By using the
formula of the Coulomb energy potential CP = −αch̄/r , we can deduce |CP| ∼ 1.09 MeV for this deep orbit.
On the other hand, we can deduce from the fundamental dynamics principle in the relativistic framework, that
an electron on this deep orbit has a potential energy equal, in absolute value, to γmv2 = |CP| ∼ 1.09 MeV,
where v is the electron velocity. The relativistic coefficient γ is equal to (1− ν2/c2)−1/2. By simple algebraic
transformations, we can deduce a quadratic equation on an unknown parameter V = v2. From the positive root
of this equation, we obtain v = 2.75× 108 m/s, β ∼ 0.91 and γ ∼ 2.5. These results confirm that the electron
is actually relativistic.

Of course, it is possible to obtain anomalous solutions by means of a non-relativistic equation, such as the Schrödinger
equation. But in this case the energy levels are the same as the regular ones even if the wave functions are different from
the regular solutions. This corresponds to a class of solutions we name “pseudo-regular”, obtained also by relativistic
equations. This class of solutions is described in Section 3.3.2.

The total energy E corresponding to a regular solution in a non-relativistic form for a bound state electron is
expressed in negative value and |E| % mc2. In relativistic form, the rest mass of the electron is included and, for
atomic electrons, E ∼ mc2(1 − ε), where ε % 1 and depends on the coupling constant α and on quantum numbers.
For a H# solution, the relativistic total energy is of the form E ∼ mc2ε
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As the movement of the electron is in a central field, its eigen state equation is usually written in spherical coordinates
and it can be decomposed into a part depending on angular parameters θ,ϕ, and another part, the radial equation. The
equation on angular parameters has for solutions the spherical harmonics Y (θ,ϕ) and the wavefunctions ψ(r, θ,ϕ)
verify ψ(r, θ,ϕ) = R(r)Y (θ,ϕ), where R(r) is the solution of the radial equation (here we omitted the quantum
numbers indexes). The wavefunction can take a more complex form, for example when using the Dirac equation,
but in any case only the radial part can raise questions. Thus, we consider the reasoning on the radial equations and
wavefunctions.

2. Discussion on the Arguments Against the H# States

Here we classify our reflections according to the arguments found in the literature against the existence of these special
states of the hydrogen atom and we discuss these arguments.

2.1. The wave function can have a singular point at the origin

This argument is rising in all known cases of H# states with a 1/r Coulomb potential. The spatial part of the solutions
of the radial equation, in the most general form, has several factors:

– one factor is a decreasing exponential exp(r) such that exp(r)→ 0, when r → +∞,
– another one is ∝ 1/rs with s a real number, due to the form of the Coulomb potential, and
– there can be a further one in polynomial form.

In the case of the “anomalous” solutions, the exponent s of the factor in 1/rs is s > 0, then the radial function
R(r) → ∞ when r → 0 and the wavefunction ψ(r, θ,ϕ) does not obey a boundary condition. This problem comes
from the expression of the Coulomb potential in 1/r .

Some authors of H# solutions remove this trouble by saying that the classical expression of the central potential
is a good approximation for the bound state of a single electron atom, but considering the nucleus as a mathematical
point is an unphysical abstraction. In fact, the Coulomb approximation in 1/r of the central potential generated by the
nucleus is suitable if the electron is not too near the nucleus.

At this point, many authors do not consider a non-singular potential and stop without further development of the
anomalous solution; but others work on this subject in expressing corrected potentials in the close vicinity of the nucleus.

That is an actual enhancement of the theory, but it unfortunately entails extra difficulties. Indeed, there are no
serious difficulties for defining the weakening of the electrical potential near the charge radius of the proton and inside
it, by approximating the nucleus as a uniformly charged sphere. But problems rise when wanting to find solutions of
the equations by taking into account the chosen potential for the neighborhood of the nucleus. Let Pn be this potential,
then there are two possible procedures to use Pn :

(1) To solve (analytically if possible) the equation with the Coulomb potential and to find a first solution S1, then
to solve the equation with Pn and find a second solution S2 near and inside the nucleus, and finally connect
S1 and S2 in suitable way, i.e. by taking in account continuity conditions and even conditions on derivatives
of both solutions at the interface of both potentials. Moreover, we note it would be preferable to beforehand
connect carefully the potentials themselves. This procedure of connection has been used in several works, as,
e.g., in [2].

(2) In the case where the solution S1 implies the bound electron is almost at the contact of the proton or deeper,
i.e. beyond the chosen radius for the potential interface, then we can think S1 is rather erroneous. In this case,
the best procedure would be to solve the equation with the whole rectified potential from 0 to the infinity. Of
course such a solution would use numerical tools. Note in the case of a complex equation as the Dirac one,
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the potential is taken into account only when arriving at the couple of differential equations on the component
functions classically denoted as f and g. Nevertheless, at this point, there was not yet a choice between the
regular and the anomalous solutions.

2.2. The wave function can be ‘not square integrable’

In this case, the wave function cannot be normalized in the entire space and it does not obey a boundary condition for
the bound states. This case results essentially from the behavior of the wavefunction ψ at the origin and not for r →∞

To be normalized, the wavefunction must satisfy ||ψ(r, θ,ϕ)|| < +∞. As the Jacobian of the transformation from
Cartesian to spherical coordinates is J = r2sin θ we have ||ψ(r,θ ,ϕ)|| = ∫|ψ |2 sin θ r2dθ dϕ dr = ∫ |Y (θ , ϕ)|2d)
∫ |R(r)|2r2 dr, where ) is the solid angle. Since the spherical harmonics are normalized, we have only to verify
∫ |R(r)|2r2dr < +∞. In fact the behavior of |R(r)|2r2at infinity does not make any difficulty, because the leading
factor which induces ψ to vanish is a decreasing exponential factor. Thus, only the behavior of |R(r)|2r2at the origin
can be a problem.

Here we can cite the work of Jan Naudts [3], where a H# state is found by using the Klein–Gordon (K–G) equation
and the corresponding solution is square integrable. The author derives in one step the K–G equation for the bound
electron of the hydrogen atom from the time-dependent Schrödinger equation by introducing the relativistic formulation
of the energy. We recall this process in a more explicit way in order to more clearly see what are the implications of
the K–G equation and what are its limitations.

– The relativistic total energy of a free particle of mass m is given by the following equation:

E2 = p2c2 + m2c4.

– If we consider an electron of charge e, submitted to an exterior electromagnetic field defined by a scalar electric
potentialϕ and a vector potentialA in covariant form, then the momentum vector p becomes p - eA and the energy
E becomes E - eϕ. By substituting in the previous energy equation we obtain (E−eϕ)2 = (p−eA)2c2 +m2c4.

But, if the electron is in a central Coulomb potential generated by a proton, we have A =0 and eϕ is equal to
V = −e2/r = −αch̄/r, where α is the coupling constant.

– Finally, by expressing E and p by differential operators, i.e. E → ih̄∂t p → −ih̄∇, the energy equation
becomes the K–G equation for the electron in the hydrogen atom, as written in the cited paper:

(ih̄∂t − V )2ψ(r, t) + h̄2c2+ψ(r, t) = m2c4ψ(r, t),

where ψ(r, t) is a time-dependent radial wavefunction and m the rest mass of the electron. Historically this
equation was called the relativistic Schrödinger equation.

– Then the author tries an ansatz with a function

ψ(t, r) = e
i
h̄ Et r−le−r/r0

with the hypothesis l < 3/2 and r0 > 0 (do not confuse l with the usual notation for the angular moment).
The condition on the exponent l guarantees the behavior of |ψ(r, t)|2 r2 at the origin and r0 > 0 its behavior
at the infinity. So the wavefunction solution is square integrable. The resolution by leads to an equation to be
satisfied by the parameter l: l2 − l − α2 = 0, with solutions l = 1

2

(
1 ±

√
1− 4α2

)
.

We can see a possible choice of sign ±. In both cases, the constraint on l is satisfied: l < 3/2. The choice
of the negative sign leads to a regular solution that corresponds to the ground energy level associated with the
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usual quantum number n = 1. Indeed the value of the total energy is E ∼ mc2
(

1− α2

2

)
, thus the binding

energy is equal to BE ∼ −mc2 α2

2 = −13.6 eV and the orbit radius r0 is equal to 53 pm.
If the positive sign is chosen, the obtained solution is a H# state, with total energy very low, E ∼ mc2 ∼

3.73 keV. That means a high value for the binding energy, since BE ∼ mc2(α − 1) = −507.3 keV.
Naudts calculates excited states by using an analogous ansatz, but they correspond to regular states. The

only H# state obtained is the above one, as he considers only spherically symmetric states, i.e. the zero angular
moment states. As the exponent l > 0, the origin is a singular point for the wavefunction. Naudts argues against
this singularity by saying that the nucleus is not a point, but its charge is “smeared” over a distance of about
1fm. Solving the equation with a smeared out Coulomb potential would produce a solution not diverging at the
origin, but with certain minor changes on the H# state.

Some criticism can be raised about the application of the K–G equation for a question concerning the bound
electron of the hydrogen atom.

– The most classical criticism concerns the fact that the electron is a fermion, spin ±1/2, whereas this equation
does not take into account the spin and there is no way to introduce the Pauli spin matrices without destroying
the Lorentz invariance. On one hand, this trouble is slight in comparison with the benefit of finding a square
integrable H# solution. On the other hand, it’s the same problem for the classical Schrödinger equation and its
use is well accepted for finding the energy levels for the light atoms. Moreover, it is not yet time to worry about
fine structure for the H# states.

– A more subtle criticism concerns the conservation equation ∂tρ+∇ · J = 0, where

J = h̄

2im
(ψ∗∇ψ − ψ∇ψ∗).

For the Schrödinger equation, ρ = |ψ |2, it represents a probability density and satisfies the conservation
equation. So its space-integral is time-independent and J represents a probability current density. But from the
solutions of the K–G equation, the only possibility is that ρ be proportional to h̄

2imc2 (ψ∗∂tψ − ψ∂tψ
∗). The

occurrences of time derivatives are due to the presence of a second time-derivative in the K–G equation. This
expression can be reduced to ρ = |ψ |2 in the non-relativistic limit. But the previous expressions including
time derivatives, is not necessarily positive and it cannot be considered as a probability density. In fact, it can
be interpreted as a charge density in inserting eϕ (and eA for J) as indicated in [4,5], because a charge can be
positive or negative. Note that this problem does not exist for the Dirac equation, because it contains only first
time-derivatives. Regardless, this question does not remove the interest in the H# solution found by [3].

Finally we note that, if the singular point at the origin can be suppressed (e.g. by means of a corrected potential near
the origin), the wavefunction is automatically square integrable.

2.3. The orthogonality criterion can be not satisfied

The Hamiltonian, which represents the total energy, has to be a Hermitian operator in the standard quantum mechanics in
order for its eigenvalues to have real values. This leads to the following needed condition: eigenfunctions corresponding
to distinct values have to be orthogonal. In [6], de Castro examines the asymptotical behavior of the solutions of the
non-relativistic Schrödinger, of the Klein-Gordon and of the Dirac equations by using the Frobenius series method
and by considering the variations of this behavior as a function of formal variations of the coupling constant α. Then
from the orthogonality condition, he indicates deduced conditions under two different forms for the radial solutions,
according to which equation is used:



J.-L. Paillet and A. Meulenberg / Journal of Condensed Matter Nuclear Science 18 (2016) 50–75 55

For the case of the Schrödinger/Klein–Gordon equation,
(

u∗k
duk1

dr
− du∗k

dr
uk1

)
→ 0, when r → 0, where uk(r) = rR(r),

where uk and uk1 are two different eigenfunctions, and the same thing for fk‚ fk1 and gk‚ gk1.
For the case of the Dirac equation, we have a condition on the upper and lower components denoted f, g in usual

notation [4]:
(
f ∗k gk1 − fk1g

∗
k

)
→ 0, when r → 0,

where uk and uk1 are two different eigenfunctions, and the same thing for fk ,= fk1 and gk ,= gk1.
Next he indicates that for the Klein–Gordon case, only the solution such that u is “less singular” than

√
r can satisfy

the orthogonality criterion. That implies R(r) ∝ r−l with l < 1/2. And, for the Dirac solution, he finds that only the
regular solutions for the components f, g can satisfy the orthogonality, because the condition is R(r) ∝ r−l with l < 1.
So, the problem of the orthogonality is closely related to the behavior of the radial function at the origin, itself related
to the singularity of the Coulomb potential at r = 0. Therefore, this problem can be resolved by a corrected potential,
without singular point at r = 0, that corresponds in fact to the physical reality.

We also note several works [7,8] on self-adjoint extension of operators for potentials with singularity. In particular,
Nadareishvili and Khelashvili [7] explicitly show that, in the case of the Klein–Gordon equation with a Coulomb
potential, the “singular” (anomalous) solutions satisfy the orthogonality condition and satisfy also directly the boundary
condition, i.e. when r > 0, lim u(r) = u(0) = 0.

For the Dirac equation with a Coulomb field, it is more complex. In [9], Thaller uses the notion of essentially
self-adjoint operator ([10], p. 256) for potentials with singularity: an operator is essentially self-adjoint if it has an
unique extension to a larger domain, where it is self-adjoint. But to satisfy the orthogonality condition and the boundary
condition, it is necessary to consider a corrected potential near the nucleus. This point is addressed in Section 3.4.2.

2.4. The strength of the binding seems to increase when the coupling strength decreases

It can seem absurd to make changes of a physical constant whose value is in principle given by ‘Dame Nature’. But,
it can be very instructive to make this “thought experiment”: to imagine variations of the coupling constant α and to
examine the consequence of such variations on the energy parameters of the hydrogen atom.

In [11], Dombey points to a very strange phenomenon concerning the H# solutions of the relativistic equations:
when α decreases and tends towards 0, the binding energy of the electron increases and tends towards its maximum.
The author solves the Klein–Gordon equation in an analytic way leading to a Whittaker’s (second-order differential)
equation [12] on the radial function and the solution is classically achieved by transformation into a Kummer’s equation
[13]. So the radial function has the general form with three factors as we noted in Section 2, where polynomials are
obtained by fixing some parameters of the confluent hypergeometric series solution of the Kummer’s equation. As in
the analytic resolution of the Schrödinger equation, there is a choice of sign for a parameter occurring in the expression
of the energy levels. One choice leads to the regular energy levels, while the other sign leads to anomalous ones, EN ,
where N is a positive quantum number. Here is the expression of total energy at the level N :

EN = mc2




1 + α2

[
N + 1

2 −
√( 1

4 − α2
)]2





−1/2

. (1)
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The only difference between the anomalous and the regular solution is the presence of a minus sign before the square
root in the denominator of the fraction . . . 1

2 −
√

. . . instead of a plus sign. For the anomalous ground level E0, the
author obtains the same expression as the H# state energy found by Naudts [3], i.e. E0 ∼ mc2α = 3.73 keV. Now we
can trivially see the total energy E0 of the electron decreases when α decreases, which means its binding energy |BE|
increases in absolute value. And finally |BE|→ mc2, the whole rest mass energy, when α→ 0.

This very strange phenomenon seems to concern only the ground state E0 because, for N ,= 0, we have

EN ≈ mc2
(

1− α2

2N2

)
for α % 1,

thus EN increases when α decreases, i.e. the usual behavior. Of course, we have the same result as the ones obtained in
[3], but now we have an algebraic expression resulting from an analytic process, so we can see at least a mathematical
reason for discriminating the H# solution among the set of the anomalous solutions. Indeed, the explanation lies in the
expression + in the denominator, + = N + 1

2 −
( 1

4 − α2)1/2
: if N = 0, + can be reduced to α2 for α % 1, leading

to the expression for E0 above. Nevertheless, we see in some cases there is an infinite family of H# states and all these
states have the strange behavior w.r.t. the coupling constant. It is the case for example in [14], where the relativistic
Schrödinger/Klein–Gordon equation is solved by using a more direct method as in [4] providing an infinity of H# states.
An analogous result is obtained by means of the Dirac equation.

Note in the paper cited above [11] the author examines the solutions given by the Dirac equation in two-space-
dimensions and finds the same strange behavior of the ground state, which is a H# state, with respect to the coupling
constant.

In fact, we think this result is obtained in a context of an ill-defined system, uniquely on a pure mathematical basis.
From a physical point of view, we can see the coupling constant α is actually entangled with several fundamental
constants, in particular the Planck constant, the velocity of the light and the elementary electric charge. So, modifying
α without much precaution can certainly lead to paradoxical physical results.

Another example, extracted from [9], of this kind of problem concerning a physical constant, in a case where the
constraints are simpler: the non-relativistic limit of a relativistic theory can be obtained if one lets c tend to infinity,
and thus the relativistic coefficient γ becomes 1 for any speed v. But if doing this on the Dirac operator in an electro-
magnetic field, one has to proceed carefully because of terms as such as mc2 which would tend to infinity, and as the
term (e/c)A that would turn off the vector potential A if c tends to infinity. Then the author is led to develop specific
techniques and to define some concepts needed on account of the nature of the so-called c-dependence of the Dirac
operators.

3. DDL (Deep Dirac Levels). The Deep Orbits Obtained as Solutions of the Relativistic Quantum
Equations

In [14], Maly and Va’vra publish their first article where they define the concept of Deep Dirac Levels (DDL) for the
electronic orbits of the Hydrogen-like atoms. Here we consider only hydrogen atoms.

In fact, they use two methods for obtaining these deep orbit levels: the former by means of the relativistic Schrödinger
equation, and the latter by the Dirac equation. For both equations, they follow the solution method indicated in [4].
We give a quick outline of the solution process, explicitly handled in the appendices, and we discuss the solutions. We
emphasize the use of the Dirac equation.

3.1. Solutions obtained by [14] with the relativistic Schrödinger equation

This equation has been written in Section 2.2. After separation of the radial equation, one introduces an ansatz
R(ρ) = ρse−ρ/2L(ρ) into the radial equation, where R represents the radial wavefunction, L(ρ) is a series of powers
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of ρ; s is a real parameter and ρ is a real numerical parameter, without physical dimension but proportional to the radius
r in spherical coordinates. As usual, new parameters are defined by combining the initial physical parameters of the
radial equation, in order to obtain a pure numerical second order differential equation in L(ρ).

One shows that the eigenvalue energyE of the Hamiltonian is defined by the following expression: E =
mc2 [

1 + (γ 2/λ2)
]−1/2 where λ is a numerical parameter of the equation and γ = Zα, α being the coupling con-

stant. It is in fact the Sommerfeld relation. From the differential equation in ρ, we have two conditions to satisfy:

(1) s(s + 1)+ γ 2− l(l + 1) = 0, when introducing ρ = 0 in the equation, where l is the angular moment quantum
number,

(2) λ = n′ + s + 1, to obtain the convergence of the series L(ρ), where n′is an integer ≥ 0.

The first condition, a quadratic equation, has two roots:

s = −1
2

±
[(

l + 1
2

)2

− γ 2

]1/2

.

It is the “crossroad” condition indicated at the beginning of this paper. Indeed, when taking the positive sign in the
expression of s, we obtain the usual solution for the electronic energy levels. This choice is taken because with the
negative sign we have s < 0 for any l > 0 and thus the radial wavefunction R tends to infinity when ρ tends to 0
because of the exponential term ρs . Note that for l = 0, we also have s < 0, even when taking the positive sign. But in
this case, for small Z and as γ 0 Z/137, γ 2 % 1 and s is close to zero. Moreover, considering that the nucleus has a
size a ,= 0, the potential has no singular point near 0 and is finite everywhere. Then, one can show [4] that the solution
R is finite at r = ρ = 0 and approaches that solution with a singular-point-Coulomb potential when a tends to 0.

Nevertheless, as noted in [14] for heavy atoms, the value of γ 2 becomes great enough that s (< 0) has a non-
negligible absolute value for l = 0. For example, in the Cs atom, Z = 55 and then s ≈ −0.2. One can observe that
for a higher-Z hydrogen-like atom, i.e. Fr with Z = 87, we have s with an imaginary part; but this fact goes beyond
the subject of our paper. As we consider only the H atom, it is sufficient to let Z = 1. Anyway, at this point we can
consider there is no serious reason for systematically eliminating the so-called “anomalous” solutions obtained with a
negative sign in the root s. The argument concerning the physical reality of the finite ( ,= 0) size of the nucleus can be
applied in this case too.

The energy levels corresponding to the “anomalous” solutions are provided by the following expression:

E = mc2



1 + α2

(
n′ + 1/2−

[
(l + 1/2)2 − α2

]1/2
)2





−1/2

, (2)

where n′ is the radial quantum number and l is the angular momentum quantum number. For hydrogen-like atoms, α2

is simply replaced by Z2α2. As for the usual solutions, the authors define the total quantum number n = n′ + l + 1.
Then they compute the new energy levels E (by using the formula in γ and λ) for all the possible combinations of the
quantum numbers n = 1, 2, . . . ; n′ = 0, . . . , n− 1; and l = n− n′ − 1. Of course, the values represented by E are the
total energy of the electronic orbitals.

The corresponding binding energies, i.e. the values BE = E−mc2 are quoted in several tables (Table 1), together
with the energies of the regular solutions (positive sign in the expression of s) and with the non-relativistic Schrödinger
levels for comparison. The results for Z = 1 are reproduced in Appendix A.8.

Each table is built-up for a different hydrogen-like atom of the class of the alkali metals. In fact, every anomalous
solution is not a deep orbit: such a deep orbit appears only for n′ = l, as emphasized by the authors and as we can see
in Tables 1 and 2 (where n = N, n′ = M, l = L).
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As we have an analytic expression of E, it is possible to find the “secret” of this discrimination.
For doing this, we start from the formula

E = mc2
[

1 +
(
γ 2

λ2

)]−1/2

, where λ = n′ + s + 1 and s = −1
2
−

[(
l + 1

2

)2

− α2

]1/2

.

For small Z (here Z = 1), we can first show that λ ∼ n′ − l + α2/(2l + 1). Then we can see that the condition n′ = l

drastically reduces the expression of λ: λ ∼ α2/(2l + 1), and so λ% 1. Carrying this into the expression of E, we can
next show that the total energy E ∼ mc2α/(2l + 1). As the fraction α/(2l + 1)% 1, the binding energy |BE| is very
high and that means the orbit is very deep. So for every l, |BE| > 507 keV, which gives an orbit radius of order fm.
There is an infinite series of these very deep energy levels.

Concerning the energy levels corresponding to other combinations of the quantum numbers, the tables gives two
kinds of results: values similar to the usual energy levels, and values annotated by the authors as “negative energy
states, not observable”, appearing for n′ > l. Finally, we can note that for n′ = l = 0, for the relativistic Schrodinger
case, the binding energy BE = −507 keV, in agreement with the result found in [3] for the energy of the anomalous
solution. Moreover the necessary condition, n′ = l for the EDL orbits, explains the negative result of the same author
concerning the “excited” states, because he considered only the case of null angular momentum.

3.2. Solutions obtained by means of the Dirac equation

3.2.1. Determining the DDL solutions

The authors refer to and use the method developed in [4] that we indicate in Appendix A.6. Here is the expression of
the anomalous solutions obtained from the regular solutions by changing the sign “plus” by a sign “minus” between n′

and the square root, at the denominator of the internal fraction:

E = mc2



1 + α2

(
n′ −

√
(k2 − α2)

)2





−1/2

, (3)

E depends on two quantum numbers n′ and k. The radial quantum number n′ can take any positive values 0, 1, 2 …
and k is related to the total angular momentum (now including the electron spin). It can take values ±1, ±2, . . . but not
the value 0. Indeed, from the relation h̄2K2 = J2 + 1

4 h̄2 given in Appendix A.4, we can see that k cannot be null, but
we can give also a more “physical” argument to understand this fact. In the radial equation, Appendix A.6, the term in
k/r plays the role of a repulsive angular momentum barrier that prevents the “fall to the center.” It is like the “effective
potential” l(l+1)/r2 appearing in the well-known non-relativistic radial Schrödinger equation. One also defines the
main quantum number to be n = n′ + |k|.

As was done for the relativistic Schrödinger equation, the authors built tables of the binding energies for combinations
of the specific Dirac quantum numbers n′ and k appearing in the expression of E, plus the main (or total) quantum
number n and the orbital quantum number l. This latter is connected to k by the relation l = k − 1, if k > 0, else
l = −k. This Table 2 also concerns the hydrogen-like atoms of the alkali class. Here we consider only the hydrogen
tables and k > 0.

[
n = N, n′ = M, k = K, and l = L2 = −k (used with k < 0) for the Dirac levels

]
.

Here again, every energy level is not a DDL, but only those computed for n′(= M) = k. The mathematical
explanation is similar as the case of the Schrödinger equation: we can show that the energy values ED of the DDL
orbit satisfy ED ∼ mc2α/2k. So, we can see that there is an infinite series of DDL solutions. Now we consider the
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expression ES ∼ mc2α/(2l +1) obtained in the Schrödinger case. Here, the indices D and S refer to the Dirac equation
and Schrödinger equation, respectively. While comparing the expressions ofED and ES, we can verify the slight shift
between the values of ED and ES, i.e. ED > ES and thus |BED| < |BES|, for the equivalent levels determined by
n′ and thus by k = l. For example, for n′ = 1, the tables displays BES − 509.8 keV while BED − 509.1 keV. Note
that the first deep orbit energy BES ∼ −507 keV, for n′ = 0, has no equivalent in the “Dirac table” of the same atom,
because the Dirac number k cannot be null.

It is quite normal to have differences between these values, because the Dirac Hamiltonian includes the additional
corrective term of spin-orbit energy (Appendix A. 5), associated with the spin precession, and corresponds, for the
regular solutions, to a smaller total spread in energy of fine structure levels [4] than for the Schrödinger solutions. In
fact this corresponds to a slightly bigger |TE| and thus implies a slightly smaller |BE|. Moreover we think this energy
shift is much more appreciable at the deep level.

3.2.2. Some particularities of the DDL solutions

In considering the approximate expression, ED ∼ mc2α/2|k| for the total DDL energy deduced from the special
condition n′ = k, we can see that ED decreases when k increases. Since the total quantum number is defined by
n = n′ + |k|, and k > 0, we can write ED ∼ mc2α/n. Thus when n increases, the binding energy mc2 [1− α/n]
increases. So, the variation of the binding energy as a function of the principal quantum number n is the inverse of the
case for the regular solutions. This fact raises a question: what is the variation of the mean orbit radius as a function
of the quantum number n (or k)? It seems this question has never been mentioned, much less addressed. We think
the most logical answer, based on the results of [14], should be the following: when n increases, the binding energy
increases. That is possible only if the electron moves nearer to the nucleus, so the mean orbit radius decreases. A
coarse computation seems to lead to the same hypothesis and a remark in ([2], p.61), the next paper of the authors
cited here, corroborates this hypothesis. Under these conditions, we assume that the mean radius corresponds to a
charge-accumulation area in orbitals close-about the charge volume of the nucleus. Of course, only a computation
based on the variations of the quantum electron density could determine the correct result. This can be the object of a
further paper.

Another question leading to further study is: how to physically interpret the fact that DDL orbits appear only when
the quantum number n′ and k are equal?

3.3. The other energy values provided by the algebraic Expression E

Now we look at the energy values that do not define DDL orbits. To simplify, we consider k > 0.

3.3.1. Negative energies and masses

Maly and Va’vra [14] indicate that some results in the tables (see also Appendix A. 8) cannot be observed as energy
levels in atoms with electrons, because they correspond to “negative energy” states. This situation happens with k > n′

for the Dirac case, and for l > n′ for the Schrödinger case. We can easily deduce this condition from the expression of
E.

Consider only the Dirac case and the process used to obtain the energy expression, as indicated in Appendix A.7.
By the end of the process, we have the relation (A.21):

2β(s + n′) = γ (β1 − β2) = 2Eγ

h̄c
, where β > 0 and s = −

√
k2 − γ 2 = −

√
k2 − α2,
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since here (H atom) we have Z = 1. Therefore

√(
k2 − α2

)
= k

√(
1− α2

k2

)
and as α2 % 1, k

√(
1− α2

k2

)
∼ k

(
1− α2

2k2

)
, thus s + n′ ∼ n′ − k +

(
α2

2k

)
.

From (A.21), we can see that E has the sign of the expression s + n′. If k > n′, then s + n′ ≤ −1 + (α2/2k),
and as the additive term at right is % 1, we have effectivelyE < 0. There is a similar verification for the similar
relativistic-Schrödinger case.

3.3.2. Pseudo-regular energy levels

Here again, we consider only the Dirac case, the Schrödinger case being similar. We can show that, for any couple (n′, k)

such that k ≤ n′ and n′ ,= k, E is not a DDL energy. E is almost equal to the energy of a regular level corresponding
to the principal quantum number N = n′ − k. Moreover, for any N given, there is only a very slight value shift that
depends on the chosen couple (n′, k) verifying n′ − k = N. This can be observed on the values displayed on the tables
of [14]. More precisely, we consider the denominator D of the fraction inside the expression E(n′, k). By using the
same approximation as above in Section 3.3.1, we can write

D =
[
n′ −

√(
k2 − α2

)]2

∼
[
n′ − k +

(
α2

2k

)]2

.

If we consider the expression ER(n′R, kR) of a “regular” solution, its inside denominator DR is very similar to D, with
only a changing of sign, i.e.

DR =
[
n′R +

√(
k2

R − α2
)]2

∼
[
n′R + kR −

(
α2

2kR

)]2

.

Now we can see that the value of the energy level E(n′, k) is very near any regular level with principal quantum number
N = n′R + kR = n′ − k.

Moreover, on account of the term α2/2k inside D, we can see that for the same value of N = n′ − k, when k

increases then |E(n′, k)| decreases and thus the corresponding binding energy |BE′(N, k)| increases. But the variation
of E as function of the principal quantum number N = n′ − k follows the classical behavior of the regular solutions,
i.e. when N increases, then the total energy E(N, k) increases and the shifts induced by k are very small in comparison
with the “principal” variation with N . Under these conditions, we can think the mean orbit radius increases with N ,
as for the “standard” regular solutions. Nevertheless, a question remains: the wavefunctions of the solutions E(n′, k)

being determined from a parameter s of negative sign, are not the same as the ones of the “normal” regular solutions,
especially near the origin. So, we have yet to physically interpret the existence of these pseudo-regular solutions of the
Dirac equation. This question could be another object of further study.

3.4. The deep orbits obtained by considering a corrected potential near the nucleus

3.4.1. DDL orbits with a finite potential inside the nucleus

After their work [14], where the authors defined the DDLs, they continued their study with a second paper [2] where,
in particular, they estimate the size of the DDL atoms. For doing this, they start with another method ([15],Vol. II,
p.195) for the Dirac equation solution. This method, using similar ansätze, transforms the system of coupled first
order differential equations on the radial functions into a second order differential equation, a Kummer’s equation. The
general solutions of this equation take the form of confluent hyper-geometrical series, requiring suitable convergence
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conditions. Of course, there is always the same “crossroad” parameter s that determines the DDL solutions when s < 0.
In order to make accurate calculations of the size of the DDL atoms, the authors consider that the nucleus has finite
dimension, taking into account a finite specific potential inside the nucleus, and they look for the wavefunctions inside
the nucleus. For doing this, they choose a potential derived (by adding a constant) from the Smith–Johnson potential,
corresponding to a uniformly distributed spherical charge:

V (r) = −
[

3
2
− 1

2

(
r2

R2
0

)]
Ze2

R0
. (4)

The radial equations with this potential are solved with a couple of functions gi and fi in the following form: gi =
ArSi−1G2(r), fi = iBrSi−1F2(r), where F2(r) and G2(r) have the form of power series

G2 = a1r + a2r
2 + · · · and F2 = b1r + b2r

2 + · · ·
Recurrent formulas lead to some coefficients. For example, for k > 0, k being the Dirac angular quantum number, one
has b1 ,= 0, Si = k − 1 ≥ 0, al = 0. Only the terms of degrees n ≤ 5 are kept in G2 and F2. Then they show that it
is possible to numerically normalize and to “connect” both solutions (outside and inside the nucleus) at a conventional
value R0 of the nucleus, not indicated in the paper.

Now, if we considerer a solution (gi ,fi) “inside the nucleus”, the term of minimal degree of the polynomial gi is k

and the one of fi is k−1. So, in the formula used to verify the orthogonality criterion (Section 2.3),
(
f ∗k gk1 − fk1g

∗
k

)
→

0 when r → 0, the expression to be considered is a polynomial P having a term of minimal degree 2k − 1 and thus,
for any k > 0, P does not contain a constant term. We can deduce that the corresponding global solution satisfies the
orthogonality condition. Next, if we look at the boundary condition, expressed by gi → 0 and fi → 0 when r → 0,
we can see this property is verified for any k > 1.

From the couple of radial functions f and g found outside the nucleus, Maly and Va’vra [2] compute the electron
density (Eld) outside the nucleus by the formula Eld = 4πr2 (

|f |2 + |g|2
)

and they deduce the mean orbit radius

〈r〉 = A0

∫ +∞

0
rEld dr,

where A0 is a normalization constant. They plot curves of Eld for various atoms, for regular and for DDL orbits. In
particular, in their reference to ([2], p.63, Fig. 2), they give the curves of Eld for DDL orbits corresponding to the
quantum number k = +1 for H and Li (as hydrogen-like) atoms.

For H, the energy level is∼ −509.1 keV, while for Li (with one electron on DDL) it is∼ −505.4 keV. The authors
say that the peak of Eld corresponds to the radius of the nucleus, that seems rather logical. By looking at the curve, we
can see that the peak occurs for r ∼ 1.3 fm. After this, the authors propose mechanisms of atomic transitions to the
DDLs and they suggest chemical behaviors of the DDL atoms that, in fact, could behave almost as neutral particles.
This would explain the difficulty in detecting them. Finally they report experimental results such as calorimetry and
radiation detection. This is beyond of the scope of our present paper.

3.4.2. Techniques used when considering a finite potential inside the nucleus and criticism

When considering a finite potential inside the nucleus, there are three stages for finding the solution. First the solution
is computed outside the nucleus, i.e. for the Coulomb potential, but with considering the radius r > R0, where R0
is near the “charge radius” of the nucleus. For example, if we consider only the hydrogen atom, the charge radius is
∼ 0.87 fm, and in [16] R0 is computed for a nucleus of mass number A by means of the empirical formula R0 = r0A

1/3

where r0 = 1.2 fm.
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Next, the solution is computed inside the nucleus, with a chosen potential what is an approximation physically
suitable for the problem. For example, one can use, as in [16,2], the Smith–Johnson potential, or simply a constant
potential, or more complex ones.

Finally, let gi(r) be the inside solution and go(r) be the outside one, both have to be correctly “connected” at r = R0.
More precisely, if the initial equation(s) is (are) of differential order 2 as the Schrödinger equation, we have to satisfy the
continuity condition for the functions gi(R0) = go(R0), and also for their first order derivative, i.e. g′i(R0) = g′o(R0).
In fact both conditions can be combined into a “matching” equation of the form g′i(R0)/gi(R0) = g′o(R0)/go(R0).
But for a first-order differential equation such as the Dirac equation that leads to a combined system of two first order
equations on two radial functions f (r) and g(r), we have only to satisfy the continuity condition. However, this involves
four functions, i.e. gi(R0) = go(R0) and fi(R0) = fo(R0) that can be combined into a simple matching condition
gi(R0)/fi(R0) = go(R0)/fo(R0). Of course, the normalization of the whole wavefunctions defined for r ∈ [0, +∞) has
to be carried out after matching.

Some purist criticisms concern the fact that, for some chosen nuclear potential inside, the whole potential V (r) as a
function on [0, +∞) cannot have a defined derivative at r = R0 but has different left- and right-derivatives. That could
entail a problem for the wavefunction at r= R0. Nevertheless, we can suppose that the wavefunction is in fact defined
with an infinitesimal smoothing centered at R0. This introduces a negligible perturbation, but restores the derivative at
R0.

An interesting criticism is found in [16] where the Dirac “anomalous” solution is not rejected, but is in a way
combined with the regular one in a linear combination with coefficients to be computed to satisfy the continuity
conditions at the matching radius. It seems from the result, that the anomalous solution is involved with a very small
ratio, as a little perturbation. We observe that the authors use a solution method based on transforming the coupled Dirac
radial equations into a Whittaker’s differential equation. This method and the similar one using Kummer’s equation (see
Refs. cited in Appendix A.7), although rather technical, are often used since they correspond to a “standard” process
leading to the solutions. These are confluent hypergeometric series (Appendix A.7) as factors of the same exponential
functions corresponding to the ansätze taken in the solution indicated in Appendix A.7, in particular the function ρs . Of
course, with the finite size of the nucleus, there is no longer any divergence at ρ = 0 for this exponential. Nevertheless,
if considering both the regular and the anomalous solutions at the same time, a complication appears for the convergence
of the series when ρ → +∞: the convergence condition depends on the sign of the crossroad parameter s. To resolve
this difficulty, the authors have to combine both kinds of series in order for the divergences be exactly balanced, when
using asymptotic forms of the series. We have to note that the computed coefficients contain the energy parameter E,
because of the initial dimensionless transformation of the Dirac radial equations. With these conditions, the authors
have to unify the parameter E when they verify the continuity conditions at r = R0. This leads [19, p.2180] to an
equation with a single unknown E (in fact they use a dimensionless unknown E′ = E/mc2). Here we can see that,
if using the solution method proposed in [4] or in [21], then the convergence of the series involved by the ansätze is
independent of the crossroad parameter s and that greatly simplifies the problem.

The criticism of the authors [16], about the method used in [2], concerns the lack of dependence on the potential
inside the nucleus and on the boundary conditions at the nuclear radius. We can understand this criticism insofar as
the method of the authors has for a goal to increase the precision of the atomic electron energy levels values. In fact,
matching in a simple way the wavefunction outside the nucleus with a solution inside the nucleus is an approximation
that only allows removal of the singularity of the wavefunction at the origin. We think that the form of the nuclear
potential can have a significant effect on the energy levels, particularly for deep orbits near the nucleus. So, in order to
improve the precision of the DDL levels, we suggest the following method: to start from a corrected global potential
built by connecting in a smooth way the Coulomb potential outside the nucleus with a chosen nuclear potential [17], then
to numerically solve the radial equations with this global potential and to compute the corresponding DDL energies.
This could be the object of further work.
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Note finally a method indicated in [9,18], which allows one to “regularize” the Coulomb potential without the
arbitrariness of the cut-off near the nucleus (in particular with the choice of a radius R0). This method consists of
taking into account the “anomalous” magnetic moment of the electron in the unmodified Coulomb potential, and it can
be generalized to other potentials with singularity at the origin. The author shows that, doing this, the modified radial
Dirac operator written in matrix form has an additional term not diagonal µa

α
r2 in natural units, where µa = 0.00058

determines the anomalous magnetic moment of the electron. This matrix of the modified radial Dirac operator is the
following:

Dr =




mc2 + V (r) h̄c

(
− d

dr
+ k

r

)
− µaV

′(r)

h̄c
(

d
dr

+ k
r

)
− µaV

′(r) −mc2 + V (r)



 . (5)

We cite the author: “ this term acts as a repulsive interaction that forces the wavefunction away from the singularity ”.
In fact, the factor is extremely small, but it becomes dominant against the attractive diagonal Coulomb term α/r for
an electron near the origin. Here, the term “regularize” means that the modified Dirac operator has all the “good”
properties for providing counter arguments to the criticism analyzed in Sections 2.1–2.3 and also to the criticism of
[16].

4. Conclusion, Open Questions, and Future Work

In the first part of this paper, we discussed the principal arguments against the deep orbits (DDL) for H atom and we
showed how it is possible to resolve the questions raised. Next we analyzed the computational results of [2,14] that
produced an infinite set of the anomalous solutions, usually rejected, of the relativistic Schrödinger equation and the
Dirac equations. We observed that only a subset of these solutions, but an infinite one, corresponds to deep orbits: the
ones satisfying the equality between the quantum numbers that determine the values of energy levels, i.e. the radial
number n′ and the angular number (l for the Schrödinger equation and k for the Dirac equation). We saw that the
electron binding energy on these DDL orbits, of order 509–511 keV, increases when the angular quantum number (or
the radial number, since it has the same value) increases. This result seems to indicate that the mean radius of the DDL
orbits decreases when n′ increases. Though it is not explicitly said by the authors, some remarks in their second paper
clearly corroborates this hypothesis, and it seems there is an accumulation zone of the orbits in the neighborhood of
the nucleus, near a radius of order 1 fm. Of course only a precise quantum computation of the mean radius as function
of n′ could confirm this hypothesis.

We also noted that another infinite subset of solutions, what we call “pseudo-regular” energy levels, give energy
values very near the regular atomic-electron levels, while the corresponding wavefunctions are not the ones of the regular
solutions. This result and the previous one about the quantum numbers, raise questions about their possible physical
interpretation. Moreover, we think that the situation of the DDL orbits in an extreme field implies a big strengthening
of the several “special” known effects that affect the regular orbits, such as the spin-orbit and spin-spin interactions,
the zitterbewegung, and the Lamb shift. For example, the spin-spin interaction, responsible for the hyperfine structure,
and the corresponding quantum number associated could play an important role in the determination of energy shifts.
However, the deep levels are also predicted by the relativistic-Schrödinger (Klein–Gordon) equation, which does
not include spin effects; therefore, this contribution must be limited to the Dirac equations. While the relativistic-
Schrödinger equation does not include spin effects and the predicted ‘angular momentum’ quantum numbers are for
quantities that are two orders-of-magnitude lower than the values associated with the Planck constant, we might suggest
that there is a ‘hidden’ variable within quantum mechanics that may be associated with relativity. Perhaps there are
possible new quantum numbers associated with known physical effects, such as relativistic and field-induced precession
and nutation of the electron-spin vector.
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Finally, from the analysis of the work [2] on the DDL orbits obtained with a corrected potential near the nucleus
and the questions raised about these solutions, we think that a more accurate estimation of the DDL orbit energies and
radius should result from a numerical “direct” computation of the radial wavefunction with an improved potential from
r = 0 to ∞. An alternative to this computation could be to take into account the anomalous magnetic moment of the
electron with unmodified Coulomb potential, as mentioned just above. These questions will be the object of further
work.

Appendix A. Some Important Points about the Dirac Equation

The Dirac equation is certainly a cornerstone of modern physics: reconciling quantum physics and special relativity
with success, accounting for spin of particles, and having the historical source of the concept of anti-particle even before
their actual discovery. As it is copiously handled in the literature, we only recall some essential features. We use a
minimal formalism, so we do not use tensor notation that would require explanations not useful for the subject of this
paper. Likewise we do not call for advanced algebraic knowledge, such as the Clifford Algebra [19] often used in this
field. Among the documents that we used, we can cite, in a non-exhaustive way: [4,18,20–24].

A.1. Elements of Genesis of the Dirac Equation

In order to obtain a quantum evolution equation of first order time derivative, and as quantization requires to replace
the energy by the time derivative, Dirac first linearized the classical relativistic energy–momentum relation. So,
E2 = p2c2 + m2c4 was replaced by E = cα · p + βmc2, where α denotes a formal vector constituted from three
parameters α1,α2,α3 and β is a fourth parameter sometimes denoted by α0. For the quadratic expression of E be
fulfilled, αi and β must verify algebraic relations, in particular {αµ,αν} = αµαν + αναµ = 2δµν for µ, ν = 0, 1, 2, 3.

One shows that αi and β must be at least 4 × 4 matrices and this dimension is sufficient; but several solutions are
possible. In standard representation, the Dirac matrices, which are Hermitian operators, are defined by:

αi =
(

0 σi

σi 0

)
for i = 1, 2, 3, and β =

(
1 0
0 −1

)
,

where the four components are 2× 2 matrices, the σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

Other representations [18,20] can be used, such as the Majorana or the Weyl (or chiral) matrices.
Next, the linear energy equation was quantized into the “free” Dirac equation in usual way:

ih̄∂tψ(t, x) = H0ψ(t, x), (A.1)

where the free Hamiltonian H0, representing the energy of a free particle including the rest-mass energy mc2 (the right
side of the linear energy equation), is the following matrix-valued differential expression:

H0 = −ih̄c α · ∇ + βmc2. (A.2)

So, the Dirac equation can be written in the form of the following wave equation:

(ih̄∂t + ih̄c α · ∇ − βmc2) ψ(t, x) = 0. (A.3)
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By multiplying this equation on the left by ψ† and its Hermitian adjoint equation on the right by ψ , then subtracting,
one obtain [4] a conservation equation ∂tρ + ∇.J = 0, where ρ = ψ†ψ and J = cψ†αψ are real quantities and ρ,
being non-negative, can be interpreted as a position density probability. This is due to the fact that the Dirac equation
contains only a first order derivative in time.

In order to match the dimension of the Dirac matrices, the wavefunction ψ has to be a vector-valued function having
four complex components. It is called a spinor as it can describe the state of a particle with spin 1/2. One usually
regroups the four components of ψ into two 2-vectors: ψa with components ψ1,ψ2 and ψb with components ψ3,ψ4.

A.2. Free-particle Solution

Solving the Dirac equation for a free particle highlights very particular features of the solutions, leading to a historical
prediction, before the actual discovery, about the existence of “anti-particles”. The Dirac equation is equivalent to
four simultaneous first-order partial differential equations. They are linear and homogeneous in the components of the
spinor ψ formed by the two vectors ψa and ψb. It is natural to try solutions in the forms of plane waves, i.e.

ψj (r, t) = uj ei(k·r−ωt) for j = a, b,

where the uj are two vectors of dimension two. These are eigenfunctions of the energy operator ih̄∂t and of the
momentum operator−ih̄∇, whose respective eigenvalues are E = h̄ω and the vector p = h̄k. By developing the Dirac
equation, we obtain the following coupled linear equations on the vectors uj

(E −mc2)ua − c(σ · p)ub = 0,

(E + mc2)ub − c(σ · p)ua = 0, (A.4)

where σ denotes the formal vector of the three Pauli matrices and σ · p = σ1p1 + σ2p2 + σ3p3. From the coupled
equations, we can deduce the relation

ua = c2p2

E2 −
(
mc2

)2 ua, (A.5)

thus the values of the energy E and the momentum p satisfy the relativistic relation E2 = p2c2 + m2c4. But for E,we
have the choice between the positive square root E+ and the negative one E− .

While solving the system of linear equations for the positive energy, we obtain two linear independent solutions by
setting a vector ξ with two possibilities

ξ1 =
(

1
0

)
and ξ2 =

(
0
1

)
.

Then, for each value of p, we have two positive energy solutions that are orthogonal and can be normalized:

u = N+




ξ

c(σ ·p)

E++mc2 ξ



 , (A.6)

where N+ is a normalizing factor depending on E+. We follow the same process for the “negative” energy E− by
taking the previous ansatz with the opposite sign for the exponent, i.e. i(−k.r + ωt), and we can obtain two negative
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energy solutions, orthogonal and normalized by a similar factor N−, obtained by replacing E+ byE− in N+:

v = N−





c(σ ·p)

E−−mc2 ξ

ξ



 (A.7)

For both solutions u, the upper components dominate in the non-relativistic case, i.e. if |p| % mc so one names
these components the “great components.” For the solutions v, it is the opposite situation, i.e. the lower components
dominate.

So, the spectrum of the free Dirac operator H0 is composed of two infinite intervals separated by a gap:
(−∞ − mc2] ∪ [mc2 + ∞). Now the existence of negative energies has to be interpreted. Paul Dirac suggested a
“negative-energy sea” filled with electrons, the “Dirac sea”, and it would be possible for high-energy photons to pro-
mote electrons out of the sea into positive energies where it would be observable; the “hole” left in the sea would be an
observable, as a electron but with a positive charge. So he predicted the existence of the positron, the “anti-particle” of
the electron, which was discovered later by Carl Anderson [25]. The concept of Dirac sea is no longer used, particularly
in the context of the “single particle” interpretation of the Dirac equation, where it entails some difficulties. Instead
and as the relativistic context needs to consider states with unspecified number of particles, QFT [5,20] uses Fock
spaces with “2d quantization”, i.e. creation/annihilation operators, particles number operator, etc… But one can see a
reminiscence of the Dirac sea in the QED concept of “vacuum polarization.”

A.3. Covariance of the Dirac Equation, Spin 1/2

As the Dirac equation was built for being compatible with relativistic effects, it has to be invariant under changes of
Lorentz frames. First one can give the Dirac equation a more relativistic form, by multiplying the initial Dirac matrices
by the matrix β becoming γ0, and defining γi = βαi for i = 1, 2, 3. To avoid tensor notation, we use as in [18]
the formal notation for bilinear form such as 〈γ , x〉 := cγ0t − γ · x for any four-vector x in Minkowski space. This
form gives a 4 × 4 matrix and γ .x is the formal scalar product of the spatial vector x with the vector γ of matrix
components γi for i = 1, 2, 3. Doing this, one can write the Dirac equation in a more symmetric form in space-time
variables: (ih̄c < γ , ∂ > −mc2)ψ = 0, where ∂ denotes the four-dimensional gradient operator, i.e. a four-vector
of differential operators ∂0 = 1/

c∂t , ∂1 = −∂x, ∂2 = −∂y, ∂3 = −∂z. But beyond the notation, the more important
point is that the Dirac equation for a free particle is invariant under the proper orthochronous Poincaré transformations
of the space-time coordinates and so it is Lorentz-invariant. Note that the group of general Poincaré transformations is
extended to translations in space-time.

We only summarize the relativistic invariance for changes of inertial frames. The corresponding transformations
are implemented as unitary operators in the Dirac Hilbert space and they have the following general structure: ψ(x)→
φ(x) = Mψ(3−1(x−a)), where3 is the well-known matrix associated with Lorentz transformations, and M is a linear
operator depending on 3. Here x is a 4-point in Minkowski space, x = (ct, x) and a is associated with a space-time
translation. One can show that, when ψ(x) is a solution of the free Dirac equation, φ(x) is also a solution.

As (Det 3)2 = 1, we can have Det(3) = ±1. A transformation is proper when Det(3) = +1, i.e. it conserves the
direction of the three-space axis of the frame. Moreover the “pure temporal” component30

0 always satisfies (30
0)

2 ≥ 1,
but the transformation is orthochronous only for 30

0 ≥ 1 and, in this case, it conserves the direction of the time axis.
For example, the mirror inversion P is improper, but orthochronous, while the time reversal T is also improper, but it is
not orthochronous. One can show any proper orthochronous (p.o.) Lorentz transformation is continuously connected
to the Identity transformation (which is of course p.o.). This means it can be formed by consecutive infinitesimal
transformations starting from the Identity. Moreover, there are two particular classes of p.o. transformations, boosts
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and rotations, and any Lorentz transformation can be written in a unique way as the composition of a boost and a
rotation.

Now we note an interesting result justifying the name “spinor”: Consider a rotation of angle ϕ about e.g. the axis
of the coordinate x3. One can show, from the corresponding Lorentz transformation 3 and the operator-associated M,
that such a rotation corresponds to application of the matrix

M [ϕ] =
(

eiϕσ3/2 0
0 eiϕσ3/2

)

to the spinor ψ . As eiϕσ3/2 = I2 cos(ϕ/2) + σ3i sin(ϕ/2), a rotation of angle ϕ = 2π gives M [2π ] = −I4 so ψ is
transformed into −ψ and we need a rotation of ϕ = 4π to obtain the identity transformation. We recognize that a
rotation acts on the spinor like it does on a particle of spin 1/2. So one can see the explanation of spin as a consequence
of the union of special relativity and quantum mechanics.

One can find explicit and concise algebraic computations concerning these questions in [20], where the author starts
from the matrices γ in the Weyl representation, uses tensor representations and elements of Clifford Algebra [26]. Here
is a very elegant tensor form of the free Dirac equation with the matrices γ :

(iγ µ∂µ −m)ψ = 0 where
(
γ 0

)2
= 1,

(
γ i

)2
= −1 for i ,= 0 and γ µγ υ = −γ υγ µ if µ ,= υ.

Finally, concerning discrete transformations, we can note that the CPT transformation, a combination of the Charge
Conjugation, Parity and Time Reversal transformations has for net effect on a free electron wavefunction to convert
it into the positron wavefunction. This CPT transformation is of a capital importance in Quantum Field Theory [5]
because it reverses the up and down two-component spinors in the Dirac wavefunction in the same way as the matrix
γ 5 = iγ 0γ 1γ 2γ 3

A.4. The Dirac Equation for an Electron in a Coulomb Central Field. The Spin-orbit Operator K
Associated with Spin Precession

We consider an electron subjected to an external electromagnetic field, in the form of the static Coulomb potential
generated by a proton. Then the vector potential A can be set to 0, and the scalar potential ϕ is spherically symmetric.
So we have to add the potential energy

V = −e2

r
= −α ch̄

r

to the free Hamiltonian H0, to obtain the “total” Hamiltonian H = H0 + V I4, where I4 is the 4D identity matrix.
In principle, the orbital angular momentum L = x × p commutes with any spherically symmetric function, but it

is not a constant of motion in the Coulomb central field as it does not commute with H. One has to add the operator
S = 1

4 h̄α×α where “×“ is the formal cross product applied, and α the formal 3-vector of the Dirac matrices α1,α2,α3.

Then the total angular moment J = L + S is a constant of motion. S is the spin operator of the electron. It is a 3-vector
of and its components Si , for i = 1,2,3, are 4× 4 matrices. In the standard representation we have

Si = 1
2
h̄

(
σi 02
02 σi

)
.

We can see that S is a straightforward extension of the usual spin operator s = 1
2 h̄σ of the non-relativistic quantum

mechanics.
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On account of the spherical symmetry of the Coulomb field, one usually uses spherical coordinates to represent the
Dirac operator H . So, one can show that the spatial term α · p of H0 is transformed into

α · p = 1
r
(α · x)

(
pr + ih̄

r
βK

)
, (A.8)

where pr is the “radial” momentum given by

pr = 1
r
(x.p− ih̄) = −ih̄

(
∂r + 1

r

)
(A.9)

and K is the operator defined by the formula

h̄K = β(σ ′ · L + h̄), where σ ′ = 1
h̄

2S =
(
σ 02
02 σ

)
. (A.10)

Here x represents the vector of the Cartesian coordinates and r = |x| its norm. The second expression of the radial
momentum is its formulation as differential operator in spherical coordinates. Moreover, by substituting the expression
of α · p in H, the “spherical” Hamiltonian now reads:

Hsph = ih̄

r
(α · X)

(
∂r + 1

r
− ih̄

r
βK

)
+ βmc2 + V. (A.11)

We can see that K is related to the spin-orbit term (see Appendix A.5 the relativistic-correction terms).
Moreover one can show that K commutes with the Hamiltonian and it is related to the total angular momentum J

by the relation h̄2K2 = J2 + 1
4 h̄2. This expression is obtained by starting from the square of the definition of K. As J2

has eigenvalues j (j + 1)h̄2, where j can take values 1/2, 3/2, 5/2, . . . the Dirac operator defines a specific quantum
number k for the eigenvalues of the operator K, taking values ±1, ±2, . . . In fact k = ∓

(
j ± 1

2

)
, but it cannot be equal

to 0 (see the relation on the square of K). If the quantum number l of L is j-1/2, then the spin (of magnitude 1/2) and the
orbital angular momentum are parallel, else they are anti-parallel. We can say the quantum number k is associated with
the spin-orbit interaction. The physical effect of this interaction is the precession of the electron spin ([4, p.433,27]).

A.5. The Relativistic Correction Terms Involved by the Dirac Operator. Fine Structure

It is interesting to see what terms are added by the Dirac equation to a non-relativistic Hamiltonian for the electron in a
central potential, such as the classical Schrödinger Hamiltonian. For doing this, one can look for a non-relativistic limit
of the Dirac equation and then deduce the relativistic perturbations involved in the Dirac operator. This leads first, for
the first order correction in v/c, to the 2-components Pauli equation. Next, various and complex methods can be used,
such as the Foldy–Wouthyusen transformation [28], to obtain relativistic corrective terms of higher orders in powers of
v/c. Supersymmetry techniques can also be used [9,18]. Then one obtains a Hamiltonian H’ with corrections at order
(v/c)2 having the following form:

H′ = mc2 + p2

2m
+ V − p4

8m3c2 + h̄

4m2c2

1
r

dV

dr
σ · L + h̄2

8m2c2 +V. (A.12)

– In this expression, we first recognize the rest mass energy added to the non-relativistic Hamiltonian, i.e. the
non-relativistic kinetic energy plus the potential energy.

– The next (second) term corresponds to a relativistic kinetic energy correction. It can be obtained by expanding
E −mc2, where E is the relativistic energy defined by E2 = p2c2 + m2c4.
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– The third term corresponds to the spin-orbit energy, interaction energy between the spin σ and the orbital
movement L of the electron. One can physically explain this interaction by the fact that, even in a “pure”
electrostatic field, the electron moving in this electric field can also “see” a magnetic field. As the electron has a
magnetic moment due to its spin, the magnetic field causes a spin precession (Larmor precession), but this would
give twice the spin-orbit term. In fact it is half compensated by an extra relativistic effect on the accelerated
frame of the electron, causing an additional spin precession with opposite sign, the Thomas precession (for
a simple derivation, see [29]). We note that the electron is assumed to be slightly relativistic, so the angular
velocity ωT of the Thomas precession is computed by making a first-order approximation to the coefficient
γ = 1√

(1−β2)
≈ 1 + 1

2β
2. Then one usually takes for a velocity v, ωT ≈ (1/2c2) V̇ × V, while Larmor

precession is ωL = −(1/c2) V̇×V = −2ωT.

– Finally the fourth term, called Darwin term, is another relativistic correction, but it does not involve angular
momentum. This term begins at the non-relativistic limit where the electron is not like a point charge but as
a distribution of charge and current in a domain of linear dimension h̄/mc. Physically, it is generally related
to the Zitterbewegung, a rapid quantum oscillations of the electron blurring the electrostatic interaction with
the nucleus and affecting only the s-orbits. Moreover, there is an apparent paradox concerning the spectrum
of the standard velocity operator for the position operator, which would consist of ±c. This paradox can be
removed by projecting the velocity operator to the particle and the anti-particle sub-spaces of the Hilbert space
of the Dirac operator (see e.g. [30]). Quantum Electrodynamics can interpret the Zitterbewegung as quantum
fluctuations that allow the creation of particle-antiparticle pairs yielding perturbations of the electric potential
[24]. Sometimes one considers it is caused by interference between positive- and negative-energy components
[18,31]. Nevertheless, there are also alternative explanations, such as in [32].

Note that the relativistic corrective terms provide an explanation to the physical observation of the fine structure of
the Hydrogen and alkali atoms [33]. In fact these effects are not all additive, so the global spin-orbit interaction lowers
the effect of the relativistic kinetic energy correction and improves the precision of the corresponding energy w.r.t.
measured values. That is an improvement in comparison with the Klein–Gordon equation, which includes also a term
of relativistic mass correction and even a Zitterbewegung effect, but no spin-orbit interaction. Nevertheless, the Dirac
equation does not account for still subtler spectroscopic observations. It is the case for the hyperfine structure, due to
(nucleus) spin-(electron) spin interaction not included in the Dirac Hamiltonian, because the proton is represented only
by its Coulomb potential. And also for the Lamb shift, explained in principle by QED effects such as self-energy and
vacuum polarization.

Finally, we note that the transformations leading to H’ are usually done under the hypothesis E − mc2 %
mc2 and |V | % mc2, what is the case for atomic electrons of hydrogen. However, if the electron is at small dis-
tances from the nucleus, therefore in a very strong electric field (e.g. for heavy atoms with Z near 1/α or for electrons
in deep Dirac levels), one should take into account an additional non-linear attractive term of the form −V 2/2mc2

[4,34,35].

A.6. Separation of the Radial Equation

As we consider the case of an electron in a Coulomb central potential, we first use the fact that the potential is time-
invariant. So we can separate the time factor from the wavefunction and write ψ [E, x, t] = ψ(E, x) e(−iEt/h̄), where
we explicitly indicate that the eigenfunction ψ does depend on an eigenvalue E of the Hamiltonian H. This leads to the
stationary equation Hψ(E, x) = Eψ(E, x). Here, x represents the vector of the Cartesian spatial coordinates.

Next, the stationary equation can be separated in spherical coordinates in a similar, but more complex, manner than
in the case of the Schrödinger equation for at least two reasons: in the Dirac theory, the wavefunctions are 4-D, and the



70 J.-L. Paillet and A. Meulenberg / Journal of Condensed Matter Nuclear Science 18 (2016) 50–75

angular momenta are “interlaced” in the four components of the spinors. Here we give only an outline of the required
process, which is rather technical and cumbersome. So, in (Appendix A.4) the separation was prepared by defining the
radial momentum and the operator K. The following transformed Hamiltonian has been obtained:

Hsph = ih̄

r
(α · x)

(
∂r + 1

r
− ih̄

r
βK

)
+ βmc2 + V. (A.13)

As in the classical example of the Schrödinger equation, the separation needs two stages:

(a) first, solve the problem of eigenvalues of the angular operators involved in the equation;

(b) next, look for eigenfunction solutions (of the first problem) satisfying the equation.

(a) One may consider the “usual” angular operators J2, Jz and the new operator K acting only on the angular
coordinates, so the eigenvalue problem is independent of r . Moreover, they commute between them. So there is a
system of common orthogonal eigenvectors belonging to the Hilbert space L2(S2)4 of the square integrable functions
on the sphere S2, for the operators J2, Jz and K, with respective associated discrete eigenvalues. This allows one to
define couples of 2-D spherical spinors ω(θ,φ) similar to the couples of half-spinors defined at the end of (Appendix
A.1) and each can be expressed by means of the classical spherical harmonics, which are eigenfunctions of L2, Lz,
considered as functions of the spherical angles θ and ϕ. The 2-D spinors ω(θ,ϕ) provide eigenfunctions of K, the only
angular operator occurring in the spherical Hamiltonian Hsph, with associated eigenvalue k.

(b) Now one considers such “angular” eigenfunctions ω(θ ,ϕ) to form the eigenfunctions ψ common to Hsph
and K.

A wavefunction ψ solution of the Dirac equation can be expressed by a 2-D vector of two 2-D wavefunctions ψ1, ψ2
of the form X(r) ω(θ,ϕ), where X(r) is a scalar function. Here we do not write the quantum numbers in indices (usually
k, m or k, j±1/2). While substituting into the eigenvalue radial equation derived from Hsphψ(E,x) = Eψ(E,x), the
operator K is replaced by its eigenvalue represented by k. We note that, while decomposing the Hamiltonian into two
halves, some simplifications arise: α.x applied to the 2-D vector

ψ =
(

ψ1
ψ2

)

is reduced to σ ′ · x applied to
(

ψ2
ψ1

)
that gives

(
(σ ·x)ψ2
(σ ·x.)ψ1

)
.

Next the pseudo-vector nature of σ · x allows us to simplify its application on the spherical spinors, as application of a
constant matrix.

A very explicit and detailed process of separation of the radial equation can be found in [21]. From here, and also
in the next section (Appendix A.7), we follow the procedure indicated in [4] to obtain and to solve the system of radial
equations, because it is technically simple and we can easily see what is done. The radial part X(r) of the wavefunction
ψ(x) solution of the Dirac equation, has two components F(r)/r, G(r)/r depending on the radius r and associated
with a couple of spherical spinors. Finally, one obtains a system of coupled first order differential equations on the
radial functions F and G, valid for any electric central potential with spherical symmetry.

(
E −mc2 − V

)
F + h̄c

dG

dr
+ h̄ck

r
G = 0,
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(
E + mc2 − V

)
G− h̄c

dF

dr
+ h̄ck

r
F = 0. (A.14)

Because of the definition of ψ(x) in term of the functions F and G, the required normalization condition on ψ(x) is
equivalent to the condition

∫

R+

(
F 2 + G2

)
dr = 1.

Different processing of the spherical spinors leads to a different, but very similar, system of coupled equations. In
fact, one always recognizes all the same terms, such as (E −mc2 − V ), (E + mc2 − V ), the derivatives of the radial
functions, kG/r , etc…, but the signs of the coefficients can change.

A.7. Equation Solution

When considering a Coulomb potential and hydrogen-like atoms, the Coulomb potential energy is equal to V (r) =
−Ze2/r and, in this case, analytical solutions can be obtained. As usual, one defines some parameters that allow the
introduction of a dimensionless radius variable and pure numerical equations (we use identifiers different from those
in [4] to avoid confusion with the matrices αi and the coupling constant α):

β1 = mc2 + E

h̄c
, β2 = mc2 − E

h̄c
, β =

√
β1β2, ρ = βr, γ = Ze2

h̄c
. (A.15)

An ansatz is defined in two stages:

(1) First one sets F(ρ) = f (ρ)e−ρ, G(ρ) = g(ρ)e−ρ . Then the equations become

g′ − g + k
g

ρ
−

(
β2

β
− γ

ρ

)
f = 0, (A.16a)

f ′ − f − k
f

ρ
−

(
β1

β
+ γ

ρ

)
g = 0. (A.16b)

(2) Next one looks for solutions in the form of power series, where an is the coefficient of the term containing ρn:

f = ρs (a0 + a1ρ + · · · ) , g = ρs (b0 + b1ρ + · · · )
with a0 and b0 ,= 0. While substituting f and g into the coupled equations and after equating the coefficients
of ρs+n−1, one obtains two crossed recurrence relations between the coefficients of the series.

(s + n + k) bn − bn−1 + γ an −
β2

β
an−1 = 0, (s + n− k) an − an−1 − γ bn −

β1

β
bn−1 = 0. (A.17)

In particular, the relations between a0 and b0 are the following, for n = 0

(s + k) b0 + γ a0 = 0, (s − k) b0 − γ a0 = 0. (A.18)

As the determinant of this linear equation system has to be 0, this gives the following condition on s

s = ±
√(

k2 − γ 2
)
. (A.19)
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Here the choice of the sign plus determines the “regular” solutions, whereas the minus sign leads to the “anomalous”
solutions, which are usually rejected. One can obtain a relation between an and bn for any n > 0 by multiplying the
first of equations (A.18) by β and the second by β2

bn

[
β (s + n + k) + β2γ

]
= an

[
β2 (s + n− k)− βγ

]
. (A.20)

One can deduce by simple manipulations from relations (A.18), that both series f and g diverge unless, for some integer
n′, the coefficients an and bn vanish for all n > n′.

In these conditions, both equations of (A.18) give the same relation between an′ and bn′ , i.e. β2an′ = −βbn′ . Next,
by using relation (A.19) and the definitions of the parameters β,β1andβ2, we obtain the relation

2β(s + n′) = γ (β1 − β2) = 2Eγ

h̄c
, (A.21)

where we can remark that the energy E has the sign of the term (s + n′). Thus, for s = +
√

(k2 − γ 2) we have E > 0,

but if taking s = −
√(

k2 − γ 2
)
, then E > 0 iff n′ >

√(
k2 − γ 2

)
.

From the previous relation, one can obtain the following expression of the energy as functions of the quantum
numbers k and n′:

E = mc2



1 + α2

(
n′ ±

√(
k2 − Z2α2

))2





−1/2

. (A.22)

The number n′ is the “radial” quantum number and the number n = n′ + |k| is the total quantum number. The specific
Dirac quantum number k, related to the total angular momentum and corresponding to the physical effect of the spin
precession is an important element.

Usually, the regular solutions for the energy level are obtained by taking the positive root for the parameter s in the
expression of E, i.e. taking the positive sign between n′ and the square root. The choice of s > 0 is made for satisfying
the boundary conditions at the origin for F and G, F(0) = G(0) = 0.

There exist other methods of processing of the initial system of first-order differential equations to obtain the
expression of the energy levels E. For example, eliminating one of the two functions of this initial system can lead to a
second- order differential equation on the remaining function, such as a Kummer’s equation [36]. The solution of this
equation is a confluent hypergeometric series 1F1, the coefficients of which are determined to obtain their convergence
by reducing them to polynomials ([37], p.7). This method is similar to the one used to solve the Schrödinger equation
for the H atom. Other methods can lead to a Whittaker’s equation [12,38], a modified form of confluent hypergeometric
equations [13].

A.8. Evaluated Equation Solution

A computer program was written by Maly and Va’vra [14] that calculates atomic energy levels for Relativistic
Schrodinger levels E1S(+), E2S(−) in Table 1, Dirac levels ED1(+) and ED2(−) in Table 2, and the non-relativistic
Schrodinger levels E(N, Z) given by a simple Bohr formula. (Tables from [14] are reprinted here with permission.
Copyright November 1993 by the American Nuclear Society, La Grange Park, IL.) Note the lack of a 1s level in the
deep levels of Table 2.
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Table 1. Relativistic Schroedinger levels for H (Z = 1) in eV

E(N, Z) N N L E1S E2S
1s −13.605826 1 0 0 −13.606597 −507171.937500
2p −3.501457 2 0 1 −3.401449 −13.605632
2s −3.401457 2 1 0 −3.401570 −13.603699
3d −1.511759 3 0 2 −1.511747 −3.401425
3p −1.511759 3 1 1 −1.511755 −509755.250000
3s −1.511759 3 2 0 −1.511790 −3.401207
4f −1.511764 4 0 3 −0.850357 −1.511744
4d −0.850364 4 1 2 −0.850358 −13.605434
4p −0.850364 4 2 1 −0.850361 −13.604666
4s −0.850364 4 3 0 −0.850376 −1.511683
5g −0.850364 5 0 4 −0.544228 −0.850356
5f −0.544233 5 1 3 −0.544228 −3.401415
5d −0.544233 5 2 2 −0.544229 −510264.468750
5p −0.544233 5 3 1 −0.544231 −3.401328
5s −0.544233 5 4 0 −0.544238 −0.850331
6h −0.544233 6 0 5 −0.377936 −0.544228
6g −0.377940 6 1 4 −0.377936 −1.511743
6f −0.377940 6 2 3 −0.377936 −13.605356
6d −0.377940 6 3 2 −0.377937 −13.604863
6p −0.377940 6 4 1 −0.377938 −1.511719
6s −0.377940 6 5 0 −0.377942 −0.544215

Table 2. Dirac levels of hydrogen-like atoms for H (Z = 1) in eV.

E(N, Z) N M K L1 E1D L2 E2D
1s −13.605826 1 0 1 0 −13.605873 1 −13.605873 *
2p −3.401457 2 0 2 1 −3.401434 2 −3.401434 *
2s −3.401457 2 1 1 0 −3.401479 1 −509133.375000
3d −1.511759 3 0 3 2 −1.511746 3 −1.511746 *
3p −1.511759 3 1 2 1 −1.511750 2 −13.605512 *
3s −0.850364 3 2 1 0 −1.711764 1 −13.604422
4f −0.850364 4 0 4 3 −0.850356 4 −0.850356 *
4d −0.850364 4 1 3 2 −0.850357 3 −3.401419 *
4p −0.850364 4 2 2 1 −0.850359 2 −510064.125000
4s −0.850364 4 3 1 0 −0.850365 1 −3.401298
5g −0.544233 5 0 5 4 −0.544228 5 −0.544228 *
5f −0.544233 5 1 4 3 −0.544228 4 −1.511744 *
5d −0.544233 5 2 3 2 −0.544229 3 −13.605389 *
5p −0.544233 5 3 2 1 −0.544230 2 −13.604785
5s −0.544233 5 4 1 0 −0.544233 1 −1.511710
6h −0.377940 6 0 6 5 −0.377936 6 −0.377936 *
6g −0.377940 6 1 5 4 −0.377936 5 −0.850356 *
6f −0.377940 6 2 4 3 −0.377936 4 −3.401412 *
6d −0.377940 6 3 3 2 −0.377937 3 −510381.343750
6p −0.377940 6 4 2 1 −0.377937 2 −3.401344
6s −0.377940 6 5 1 0 −0.377939 1 −0.850342

*Negative energy states, not observable.
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Note Added in Review

The authors wish to thank the reviewer for bringing the topic of Nuclear Collapse [34,35] to our attention. While
we had not considered the deep-electron atomic orbitals of heavy atoms to be part of our deep-electron story, a quick
review of the suggested references indicates both experimental evidence and a theoretical basis for confirming the
existence of deep-electron orbits beneath those of the atomic orbitals. The references suggest a desired alternative
means of populating the deep-Dirac levels (DDLs), since direct population via photo-emission is so highly forbidden.
Furthermore, the relativistic DDL electrons provide an alternative to, or basis for, the reference-proposed dense-electron
plasma for initiating collapse to super-heavy nuclei. Exploring both fields together certainly appears to be a desirable
pursuit.
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