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Preface

This Volume 22 marks the tenth anniversary of the publication of the first volume of the Journal of Condensed
Matter Nuclear Science. This journal was created to fill a void in the scientific world. Since the beginning, in 1989,
the subject of Cold Fusion, discovered by Martin Fleischmann and Stanley Pons, has been, and is still, rejected by the
scientific community. There was a need to go beyond the International Conferences on Cold Fusion proceedings to
publish papers. It was necessary to have an internal way of communicating between scientists working together, just
like in any other field of science. From the very start, it was decided that the journal would be peer reviewed. Also,
since ICCF16, the Journal publishes the proceedings of the conferences and workshops dedicated to Condensed Matter
Nuclear Science. A total of 312 papers have been published, 93 of them being conference proceedings.

I would like to thank all the anonymous referees those who have spent lot of time and effort to make the papers of
high quality. I have been pleasantly surprised to find that some of them do such a great job in improving the papers,
they almost deserve to be listed as co-authors! I would like to thank Jed Rothwell for the great work which he is doing
to improve the quality of the English of papers written by non-English speaking authors. It is also a pleasure to thank
our Indian colleague Dr. Kumar who is doing an excellent job in the typesetting of the papers.

Please enjoy in reading this new volume.

Sincerely,

Dr. Jean-Paul Biberian
( Editor-in-Chief )

February 2017
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Research Article

CR-39 Detector Track Characterization in Experiments with Pd/D
Co-deposition

Andriy Savrasov⇤ and Viktor Prokopenko
Institute for nuclear research NAS of Ukraine, 47 Science ave., Kiev 03680, Ukraine

Eugene Andreev
Institute of physics NAS of Ukraine, 46 Science ave., Kiev 03680, Ukraine

Abstract

Four experiments replicating the GALILEO Project were performed. In two of them, excess ↵-particle track density was observed
in the CR-39 detectors in comparison with background CR-39 detectors.
c� 2017 ISCMNS. All rights reserved. ISSN 2227-3123
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1. Introduction

In LENR, the excess enthalpy production is followed in some cases by the generation of helium-4 [1] and neutrons [2].
However reliable replication of successful results has been a serious problem. In 2007 a group of researchers from San
Diego [3] reported what they called the GALILEO project, in which they obtained anomalous tracks with a method
they were able to replicate exactly.

The GALILEO project developers prepared for the experiment two cells made of plastic – one experimental and
the other a control cell. The control cell was similar to the experimental cell in all characteristics, timing and processes
with the sole exception that it used CuCl2 instead of PdCl2. The purpose of the controls was to show that the observed
pitting was not due to chemical damage. In each cell electrolysis was conducted with 0.03 M PdCl2 and 0.3 M LiCl
solutions in heavy water with a platinum anode and Pd, Ag, Ni or Au cathodes. The CR-39 track detector was in
contact with the cathode. In the process electrolysis current was gradually increased from 0.1 to 0.5 mA. The solution
became completely transparent and all Pd accumulated on the cathode (plating phase) to (1–100 mA) – the charging
phase. During the last phase the nuclear events (presumably) occur. After the charging phase was finished the CR-39
chips were taken from the solutions of both cells and were etched in etch solution (6.5 M NaOH in regular water) at

⇤E-mail: asavrasov@kinr.kiev.ua.

c� 2017 ISCMNS. All rights reserved. ISSN 2227-3123
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Table 1. Current quantity and duration during the experiments.

Experiment N1
I(mA) 0.3 1 5 10
t (h) 15a 10 14 17b

Experiment N2
I (mA) 0.07 0.17 0.5 1 80 95 95
t (h) 11.5 2 15 6.5c 2.5 4d 6
Experiment N3
I (mA) 0.05 0.1 0.15 0.05 3 10 30 90
t (h) 26 18 24 65e 22 24 24 10.5
Experiment N4
I (mA) 0.1 2 5 10 2.5 80 80 85
t (h) 74.5 17f 6 23 43 11g 8h 50
aSolution became completely transparent.
bCurrent decreased till 2.8 mA and did not increase any more. We have finished the experiment.
cSolution became completely transparent.
dPause – 11 h.
eSolution became completely transparent.
fSolution became completely transparent.
gPause – 64 h.
hPause – 20 h.

a temperature of 68�C for 6 h. Next the track detectors were analyzed for the presence of pits similar to the tracks
of alpha particles. There was a much higher number of tracks in the CR-39 chip in the experimental cell than in the
control cell. The control cell CR-39 chip had approximately the same number of tracks as the background CR-39 chip.
Additional verification was carried out after irradiation of the track detector by a source of alpha particles of known
energy and intensity.

As of today only eight groups of researchers [4] in the world have tried to replicate the reported results and only a
few of them have obtained positive results. These first results reported at the conference of four groups in March 2007
[5]. Other groups for various reasons have not been able to carry out the experiment. At the time of the conference
there was a problem with the interpretation of tracks. Some believed that the tracks were due to the chemical damage
caused by oxygen and chlorine or even corona discharge [6]. All the teams brought CR-39 detector outside the cell
close to it (a dry experiment). After that pits were not observed in the detector, but that can be caused both lower
energy of alpha particles and not taking into account water layers of varying thickness [7].

Based on what is described above, the purpose of this study was to replicate the GALILEO Project [3] in a wet
configuration, which has the detector immersed in the cell and to obtain the ↵-particles tracks using a silver cathode.

2. Materials and Methods

During electrolysis, one cell was used, and the cell with CuCl2 solution was not used. Four experiments were done. In
all the experiments the same D2O, PdCl2, LiCl substances and anodes were used.

The cell was made from Quartz glass (outer size 1.1 ⇥ 2.4 ⇥ 4 cm, inner size 0.5 ⇥ 1.8 ⇥ 3.7 cm, wall thickness
0.3 cm, volume 3.3 cm3). We bought this cell from the vender of chemical reactants in Kiev, called “Isotope.” Our
assembled cell in experiment N1 was the same as in the GALILEO project (except for the size), which was shown in
photo on page 16 of Ref. [3]. Heavy water, PdCl2 and LiCl salts, silver and platinum wires were bought from the same
vendor. The Ag cathode placed in the electrolyte in this experiment was 0.1 mm thick and 48 mm long, while the Pt
anode in the experiment N1 and in all following ones was 0.3 mm thick and its length was 147 mm in this experiment
only.
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Figure 1. Photo of the cell with cathode and anode assembles which used in experiments N2, N3 (a) and N4 (b).

It is necessary to note that the initial current was 300 µA during experiment N1. At lower current the cell had a
negative potential. As a result of the initial current being too high, the plating was done non-uniformly on the surface
of the cathode. The maximum current was only 10 mA (see Table 1), current density was J = 80 mA/cm2, cathode
area = 0.125 cm2 in experiment N1 and it did not increase any more. These circumstances became the possible reason
for the insignificant number of excess tracks in the CR-39 chip in the solution in experiment N1, compared to the
number of tracks in the background chip.

In experiments N2 and N3 cathode and anode assembles were used in which both the shapes and a spatial arrange-
ment differed from ones described in Galileo protocol [3] (see Fig. 1(a)).

In these experiments the polyethylene base was absent. Both the cathode and anode were mounted on the same
CR-39 chip. In the chip openings were bored through and a silver wire (diameter – 0.1 mm, length – 42 mm) passed
through them (in Fig. 1(a) this wire is more thin and is located in the middle of the CR-39 chip). Platinum anode
(length – 62 mm) also was passed through the additional openings made in CR-39 and folded around the cathode from
three sides (on the left, on the right and from below as shown in Fig. 1(a)). In experiments N2 and N3 both the anode
and cathode were located on one plane.

In experiment N4 the cathode with a bigger diameter (d = 0.3 mm, length – 72 mm) was used (see Fig. 1(b)),
which was fastened on the CR-39 chip. The anode was mounted from the cell opposite side in the form of a wire with
length 31 mm (see Fig. 1(b)). In this experiment both cathode and anode were located in different planes, as opposed
to the experiments N2 and N3. We used 15 mg of PdCl2 and 36 mg of LiCl on 2.8 ml of heavy water and this solution
was poured in our cell. We added heavy water to the cell during the experiments. On average we added nearly 1.5 ml
of heavy water per experiment.
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The CR-39 track detectors were fabricated in the Radium institute of V.G. Hlopina. They were wrapped in a
polyethylene film the entire time, and stored in the freezer chamber of a refrigerator. The thickness of the CR-39 chips
is 300 µm and the velocity of etching – 1 µm/h. Dimensions of the track detectors were in the first experiment (Height
⇥ width) – 1.5 ⇥ 1.0 cm, in the second and third ones – 3.3 ⇥ 1.5 cm, and in the fourth experiment – 3.6 ⇥ 0.8 cm.

We made a custom-built current source with power 3 W, made from the following components: transistor KP931A
(range of values of a direct current on the exit: 20 µA – 95 mA) and transformer, which is switched in the alternating
current network with U = 220 V (range of values of a direct voltage on an exit: 0–40 V). The resistance of the source
on the exit is R � 1 M⌦.

When the experiments were terminated, the cell was disassembled and the CR-39 detectors were etched in an
aqueous 6 M sodium hydroxide solution at 68–70�C for 7.5 h. Microscopic examination of the etched CR-39 detectors
was done using an MTKF-1 microscope.

3. Results and Discussion

After etching, the number of excess tracks on the CR-39 detectors placed in electrolytic cell was compared to the
CR-39 blanks. Extra tracks were observed in experiments N1 and N4. We used blank detectors which were exposed
for a week in the room in air near the experimental cell. The calculation of the number of pits was made by manual
procedures with the consecutive passage of the frames by MTKF-1 microscope. In experiment N1 on CR-39 in a cell,
the track density 167 tr cm�2 was measured (blanks 97 tr cm�2), and in experiment N4 – 545 tr cm�2 (back side –
292 tr cm�2).

We could best satisfy the condition of the GALILEO Project [3] only in experiment N4. We have carefully analyzed
this recent experiment.

Figure 2(a) and (b) shows two images taken at two different focal depths, at the surface (Fig. 2(a)) and bottom of
the tracks (Fig. 2(b)) of the same CR-39 detector. This sample was in the electrolytic cell during experiment N4. To
determine whether the pits are due to energetic particles or to chemical damage, we compared the pits obtained from
the Pd/D co-deposition experiment with those obtained when CR-39 was exposed to an alpha particle source [8]. The
CR-39 detector was irradiated by 238Pu, 35 kBk activity for 3 s. The 238Pu nuclei decay on 234U irradiating alpha
particles with the following energy (intensity): 5.499 MeV (70.9%), 5.456 MeV (29.0%), 5.358 MeV (0.1%). Tracks
are created by ↵-particles have the conic form. Figures 2(c) and (d) show two images taken at two different focal
depths (surface (Fig. 2(c)) and bottom of the tracks (Fig. 2(d))) of the same CR-39 detector, which was irradiated
by the ↵-particles. We used the microscope Axioscop 2 MAT mot (Carl Zeiss, Germany) with the digital chamber
AxioCam MRc Rev 2 at high resolution to photograph the CR-39 chips shown in Fig. 2. This microscope is located in
the diagnostic centre for collective use at V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine.

These tracks have a round form and dark color. When the microscope is focused more deeply in CR-39 than in the
track centre a bright spot is observed (see Fig. 2(d)). This is caused by the bottom part of a conic track. The tracks
also have beautiful optical contrast range. These signs: the optical contrast range, the form and the bright spot in the
track centre are important factors which help to distinguish the present ↵-particle tracks from chemical damage. By
comparing Fig. 2(a) and (b) with Fig. 2(c) and (d) which are the ↵-particles tracks after 238Pu decay it is possible to
see that they are similar, but the track diameters of the ↵-particles are twice as large, as shown in Fig. 2(a) and (b). We
do not have the calibration curve for a given CR-39 detector type, nevertheless the increase in diameter can be caused
by both the longer etching times (7.5 h in comparison with 6 h for the CR-39 detector irradiated by ↵-particles from
238Pu source), and possible smaller value of ↵-particle residual energy which are generated in the solution.

The photomicrographs were obtained using a magnification of 640⇥.

On the entire surface of the CR-39 detector which was in the cell, the pits are distributed nonhomogeneously in area
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Figure 2. Images of pits in the CR-39 detector surface (Fig. 2(a)), and bottom (Fig. 2(b)) taken at two different focal depths of the same CR-39
detector. This sample was in electrolytic cell during experiment N4. The similar images created by exposure to 238Pu source (Fig. 2(c) and (d)
using a magnification of 640⇥.

extent. Figure 3 shows the spatial distribution of the pits along the CR-39 surface. The count on the axis of abscises is
measured from the upper part of the CR-39 detector to the depth of the cell. The thickness of the row is 0.22 mm. The
quantity of pits increases in the lower part of the CR-39 detector, but they are distributed regularly along the surface.
There is no higher concentration of the pits near the cathode.

Unsuccessful experiments N2 and N3 prove that pits formed during Pd/D co-deposition are not due to radioactive
contamination of substances used in the experiments nor are they caused by impingement of gas bubbles on the surface
of the CR-39, nor by chemical reactions of the surface of CR-39 with D2, O2 or Cl2 present in electrolyte. The
maximum current in experiment N4 was 85 mA, and its density J = 220 mA/cm2.

Based on the evidence presented above, it is possible to draw the following conclusions:

(1) The tracks on the CR-39 detector which were observed at their arrangement in electrolytic cells during exper-
iments N1 and N4 had a nuclear origin.

(2) The source of the charged particles was in the solution volume adjacent to the CR-39 detector, and correlates



6 A. Savrasov et al. / Journal of Condensed Matter Nuclear Science 22 (2017) 1–6

Figure 3. Pits quantity on the row (N) in comparison with the depth of the immersion of CR-39 – detector in the solution (h).

with the Pd deposit.
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Research Article

Basic Design Considerations for Industrial LENR Reactors

Jacques Ruer⇤

Abstract

LENR reactors able to deliver heat at a high temperature can be coupled with heat engines to generate electric power. The conditions
of temperature and COP to achieve self-sustaining operation are given. According to the literature, the heat generation rate of some
LENR processes increases rapidly with the temperature. This phenomenon dictates the cooling criteria to maintain a stable reactor
operation. Power control can be obtained through appropriate temperature regulation. Several types of heat engines can be coupled
to LENR reactors with appropriate power control. Heat losses must be minimized with sufficient thermal insulation. The insulation
enclosure is also useful to recover the leaks of light gas, if any are present in the system.
c� 2017 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Gas leakage, Heat engines, Power control, Runaway, Self-sustaining, Stability, Thermal insulation

1. Introduction

Even if it is presently difficult to predict a precise timeframe, it can now be reasonably predicted that LENR reactors
will one day produce a sizeable source of power [1]. We focus in this paper on the particular class of LENR systems
that produce excess heat at a temperature level sufficient to envisage the conversion of the heat into mechanical and
electrical energy.

Future progress in the field will form the basis of the technology applied for industrialization. Although it is not
yet possible to describe the precise technology that will be utilized, some features that must be integrated in future
reactors can already be listed:

• Unless the reactor directly transforms the LENR phenomena into electricity, the reactors will produce heat
that will be converted into power via conventional heat engines.

• Because heat engines can only work with heat sources at a temperature above ambient, LENR reactors will
preferably operate at high temperature levels.

• LENR reactors require some form of excitation (in general in an electrical form), at least for the start-up phase.
It is assumed here that the generation of LENR energy can be controlled to some extent via the regulation of
the excitation input.

• It has now been reported by several authors that the energy generation increases with the temperature. The
design of the reactor must take this positive feedback into account.

⇤E-mail: jsr.ruer@orange.fr.

c� 2017 ISCMNS. All rights reserved. ISSN 2227-3123
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Figure 1. Schematic diagram of an LENR generator including a reactor coupled with a heat engine. Electrical energies (power) are shown in blue,
heat fluxes in orange. The sketch shows the following inputs/outputs. 1: Power input to the excitation supply, E

0

. 2: Excitation input to the reactor,
E

1

= ↵E
0

(↵ < 1). 3: Reactor heat loss: H
1

. 4: Heat input to the engine at temperature T
r

: H
2

. 5: Heat rejected by the engine at temperature
T
a

, H
3

. 6: Electricity exported, E
2

. Note that the engine produces the electrical power E
out

= E + E
2

.

This paper is a discussion of the above points.

Figure 2. Relationship between the temperature of the heat source (T
hot

) and the typical efficiency of various thermal engines, Tcold = 25�C.
Compilation of various data by the author.
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Figure 3. Relationship between the temperature and the COP for different Z values, ⌘
m

= 0.7, f = 1, Tcold = 25�C.

2. Self-sustaining Operation

An LENR reactor consumes some energy to sustain its operation. If the quantity of electricity produced by the genera-
tor exceeds the need of the power supply, there is a surplus of electricity that can be exported. This is the definition of
autonomous or self-sustaining operation. The parameters required to make such an operation possible are presented in
[2] and reproduced here.

Different types of heat engines have been developed [3]. The thermodynamics teaches that such engines must take
heat (Hin) from a source at a high temperature (Thot) and reject a fraction to a heat sink at a lower temperature (Tcold)

[4]. They are characterized by their efficiency:

Figure 4. Plot of Eq. (16) between 300 and 500 K. The power is given in arbitrary units.
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Figure 5. Schematic temperature profile of an LENR reactor separated from the cooling medium by a heat resistance layer.

⌘ = Eout/Hin. (1)

The efficiency is limited by the Carnot formula:

⌘c = 1� Tcold/Thot. (2)

The engines are not perfect, so that the effective efficiency is lower than the theoretical one:

⌘ = ⌘c ⌘m, (3)

where ⌘m is the relative machine efficiency.
The machine efficiency includes all losses, e.g. the energy lost during the transformation of the mechanical energy

into electricity, or the energy required to drive ancillary components like pumps, fans, control system, etc. Figure 2
shows the typical efficiencies attained by different types of thermal engines.

These equations can be utilized to determine the coefficient of performance (COP) required from the LENR reactor
to obtain a self-sustained operation. The nomenclature of the energy fluxes is listed in Fig. 1. We write:

E1 = ↵E0, (4)

� = Tr/Ta. (5)
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The heat loss H1 is written as a ratio of E using a dimensionless heat loss factor f :

H1 = f (�� 1)E0. (6)

The efficiency is

⌘ = ⌘m(�� 1)/�. (7)

The electrical power produced by the engine is

Eout = E0 + E2 = ⌘H2. (8)

We introduce the energy gain Z defined by

Z =

Eout

E0
� 1 =

E2

E0
. (9)

A self-sustained operation is characterized by Z > 0

Eout = E0 + E2 = (1 + Z)E0 = ⌘H2, (10)

H2 = (1 + Z)E0/⌘, (11)

COP↵E0 = H1 +H2, (12)

Figure 6. Cooling of an LENR reactor across a heat resistance. Any deviation of the temperature develops an instability.
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Figure 7. Cooling of an LENR reactor by a convective fluid flow. The temperature profile exhibits a pinch Tr � Tf on the surface.

Figure 8. Cooling of an LENR reactor by a convective fluid flow. Any deviation of temperature is compensated by the system, the operation is
stable.
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COP↵E0 = f(�� 1)E0 + (1 + Z)E0/⌘. (13)

This yields

COP =

f(�� 1)

↵
+

(1 + Z)�

↵⌘m(�� 1)

. (14)

Equation (14) allows the calculation of the COP required for a given heat loss factor and a desired Z value. Figure 3
presents an example of results for an arbitrary set of parameters.

Figure 3 shows that the reactor temperature is a very important parameter to obtain self-sustaining operation. It
also shows that the heat loss through the insulation is obviously a detrimental factor that must be controlled as much
as possible.

3. Reactor Stability

3.1. Influence of the temperature

Several authors report that the LENR power measured in the experiments increases with the temperature [5–8].
Arrhenius’ theory teaches that the rate of a process, for instance heat-producing reactions, is a function of an

activation energy E and the fuel temperature T [9].

W = Ae�E/kT , (15)

where W is the heat-production power, A, the pre-exponential factor, E, the activation energy, k, the Boltzmann’s
constant, and T the absolute temperature of the reactive medium.

If an experiment performed at different temperatures T1 and T2 yields the heat power levels W1 and W2, the above
equation makes it possible to determine the activation energy:

log (W1) = log (A)� E

kT1
, (16)

log (W2) = log (A)� E

kT2
, (17)

log(W1/W2) =
E

k

✓
1

T2
� 1

T1

◆
, (18)

E = k log (W1/W2)
T1T2

T1 � T2
. (19)

In a recent paper [8], Storms reports a heat power curve well approximated by the equation:

logW = 4.54� 1621/T . (20)

The corresponding activation energy is 1.8 kJ/mol. This value is close to the activation energy for deuterium diffusion
in the lattice (1.9 kJ/mol). According to Storms, it is an indication that the role of the temperature is related to its
influence on the hydrogen diffusion coefficient.

Equation (20) is equivalent to

W = 34 600 e�3732/T . (21)
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Figure 9. Schematic evaluation of the safe power limit. The LENR heat output involves bursts and fluctuations that must be taken into account to
determine the safe conditions of operation.

Figure 4 shows the corresponding curve for temperatures up to 500 K, although this is beyond the actual experiments
presented in [8].

The influence of the temperature must be taken into account in the design of the future reactors for the reasons that
are discussed in the following.

Figure 10. Power control increase. The fluid temperature is increased from T
1

to T
2

. The power is raised from P
1

to P
2

.
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Figure 11. Power control decrease. The fluid temperature is decreased from T
1

to T
2

. The power is reduced from P
1

to P
2

.

3.2. Thermal stability

Let us first consider Fig. 5. The reactor is separated from the cooling fluid by a thermal resistance layer. This con-
figuration is found in many experimental setups. The heat flux is basically proportional to the difference between the
reactor temperature Tr and the fluid temperature Tf .

Figure 6 compares the relationships between the temperature, the heat flux to the cooling fluid and the LENR heat
output The theoretical operating point is located at point O, intersection of the two curves. The temperature at the
interface of the reactive material and the resistance layer is Tr, the heat power of the reactor is Pr. If the temperature
for any reason is changed to Ta < Tr, the LENR power decreases to Pa, while the cooling heat exchange becomes
P 0
a. Figure 6 shows that Pa < P 0

a. This means that in such a case, the temperature can only drop further. The reaction
slows down and the reactor stops.

Conversely, if the temperature is higher than Tr, the LENR power Pb is larger than the cooling capacity P 0
b. The

temperature increases continuously. The reactor goes out of control. Cooling the reactor through a heat resistance layer
leads therefore to an unstable configuration. The occurrence of an LENR excess heat may easily result in a runaway
reaction.

Another configuration is shown in Fig. 7. The reactor is directly cooled by the fluid with a bulk temperature of Tf .
The heat exchange between the reactor and the fluid can be described by the equation:

Pcooling = h (Tr � Tf) , (22)

where h is the heat exchange coefficient, measured in W m�2K�1.
The superposition of the LENR power curve and a cooling curve according to Eq. (22) is shown in Fig. 8. It

is supposed that Tf and the heat exchange coefficient h are such that the cooling curve intersects the power curve at
point O. If the temperature becomes Ta < Tr, the power Pa exceeds the cooling flux P 0

a, so that the reactor returns
to the operating point. Inversely, if the temperature is higher than Tr, the cooling exceeds the LENR power, and the
temperature returns to Tr. We see that the intersection point O is stable.

The configuration shown in Fig. 7 allows stable operation. The reactor heat must be evacuated by a flow of
fluid organized in order to achieve a satisfactory exchange coefficient. The condition to be satisfied is given by the
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Figure 12. Schematic layout of an hypothetical LENR reactor. The thickness of the LENR cells is 2t. The cells are separated by gaps filled by the
cooling fluid. Gap thickness is 2e.

relationship between the heat exchange coefficient and the slope of the power curve as given by the derivative of the
power curve equation:

h > dPLENR/dT. (23)

This condition must be obeyed in the system at any moment and any location. In fact, it is known that LENR sometimes
occur as local bursts of heat. The LENR power curve drawn in the above figure is therefore a simplification of the
actual phenomena. Figure 9 presents a more realistic picture. The power curve is blurred, to illustrate that the local heat
flux fluctuates even for a given temperature. In order to avoid instability, it is advisable to control the fluid temperature
and the power under safe limits.

3.3. Control of the reactor power

The power of LENR reactors can be controlled to some extent via the excitation energy input. However, some LENR
devices produce heat after death, meaning that the reaction proceeds even in the absence of excitation [5,6]. In such
cases, it is necessary to develop another method to control the energy output. The sensitivity of LENR to the tempera-
ture can advantageously provide this additional mode of power control.

Figure 10 illustrates an LENR power curve and two different cooling lines. Let us suppose that the reactor is ini-
tially operated at point O1. The cooling fluid temperature is then T1. Now, let us slightly increase the fluid temperature.
The reactor temperature increases. The power rises to P2. This can be easily obtained via a temporary decrease of the
fluid flow rate. This can also be accomplished by an external reheating of the fluid, especially during the startup phase,
when the whole reactor system must be warmed up. This mode of control is called Power Control Increase or PCI.
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Figure 13. Schematic LENR reactor with gas cooling. The gas is distributed to obtain an uniform temperature T
f

all over the surface of the cells.

Similarly, the power can be reduced at will. Figure 11 shows that if the fluid temperature is lowered from T1 to
T2, the reactor power is decreased from P1 to P2. This can be obtained via an additional cooling of the fluid before it
enters the reactor. This mode of control is called Power Control Decrease or PCD.

If it is desired to stop the reactor, it is possible to quench it by circulating cold fluid for a sufficient time.

Figure 14. Schematic arrangement of an LENR reactor cooled by a forced flow of liquid (oil, molten salt or liquid metal) between the cells.
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Figure 15. Schematic block diagram of an LENR power generator.

4. Potential Design of LENR Generators

4.1. Basic cooling methods

The above discussion leads to the basic design of an industrial LENR reactor. The LENR reactor must be cooled so
that the criteria of Eq. (23) is satisfied. The cooling fluid (gas or liquid) is hot, at a temperature slightly below Tr. To

Figure 16. Schematic configuration of an LENR reactor with thermoelectric converters (TEC). The TEC elements are intercalated between the
LENR cells and the cooling fluid.
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make the heat flow out of the LENR active material possible, this material is confined in multiple cells. The shape of
the cells is prismatic, planar or tubular. The gap between adjacent cells is filled by the forced flow of cooling fluid.
The sizing of the cell thickness is governed by the heat flow capacity across the active material, and by the heat flux
exchanged with the fluid.

In order to clarify the above, let us consider a theoretical example (see Fig. 12). We imagine a hypothetical LENR
system characterized by a power density of 1 W cm �3, or 1 MW m �3. The supposed operating temperature is 600�C
or 873 K. The LENR cells are square slabs 1 m ⇥ 1 m with a thickness 2t = 20 mm. They are cooled on both sides,
and the heat flux on each face is 10 kW. The fluid circulates in the gaps between adjacent cells upwards along the
whole height. Two different cases are examined in Table 1, cooling by a forced gas flow and a forced flow of liquid.

Table 1. Comparison of the cooling of an hypothetical LENR reactor by a gas or a liquid.

Gas cooling Liquid cooling
Heat flux at interface 104 W m�2 104 W m�2

Typical fluid heat capacity 103 J N m�3K�1 106 J m �3K�1

Fluid flow rate 0.1 N m3s�1 (atmospheric pressure) 10�3 m3s�1

Gap thickness: 2e 20 mm 5 mm
Fluid velocity 32 m s�1(atmospheric pressure) 0.4 m s�1

Typical exchange coefficient (9) 102 W m�2K�1 103 W m�2K�1

Delta T solid–fluid 100 K 10 K
Temperature inlet 400�C 580�C
Temperature outlet 500�C 590�C

In the case of gas cooling, the temperature difference adopted between the gas inlet and the gas outlet is 100 K. A
typical gas heat capacity is 103 J N m�3K�1. The evacuation of the heat requires a flow of 0.1 N m3s�1. We suppose
that the gap thickness is 20 mm. If the pressure is atmospheric, the gas velocity is 32 m s�1. This is acceptable.
However, the velocity is lower if a higher pressure is used. The heat exchange coefficient h between the cell and a gas
flow is typically 100 W m�2K�1 [10]. The gas enters at 400�C and leaves at 500�C. The engine performance must
take these values into account, rather than Tr. Figure 13 presents a potential configuration with gas cooling. Because
the LENR power is sensitive to the temperature, the gas circulation is organized to obtain a progressive mixing of the
cold and the hot gas, so that the value of Tf remains constant over the whole cells surface.

In the case of liquid cooling, the temperature difference adopted between the liquid inlet and outlet is 10 K. A
typical heat capacity for a liquid medium is 106 J m�3K�1. The evacuation of the heat requires a flow of 103 m3s�1,
or 1 l.s�1. We suppose that the gap thickness is 5 mm. The velocity of the liquid in the gap is 0.4 m s�1.

The heat exchange coefficient h between the cell and a forced flow of liquid is typically 103 W m�2K�1 [9]. The
temperature difference according to Eq. (22) is then 1 K. The liquid enters at 580�C and leaves at 590�C. These values
are very close to Tr. Figure 14 presents a potential configuration with cooling by a liquid fluid. A simple film flow is
suitable. The fluid flow rate is low and a narrow gap is sufficient. Another option is to immerse the cells in a boiling
liquid. Heat exchange between a hot surface and a boiling fluid is very high [10]. This type of cooling is, for example,
adopted in nuclear boiling water reactors (BWR). Boiling cooling may represent the best option for reactors with a
large LENR power density.

4.2. LENR generators generic configuration

Figure 15 presents a schematic block diagram of a complete LENR power generator. The LENR reactor is linked
to an excitation system and a supply of reactants. The heat is transferred to a heat engine by direct contact or via a
circulating loop of hot fluid.
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Figure 17. Coupling with an Ericsson engine.

The engine transforms the heat into mechanical power. The engine is coupled to an electrical generator that
produces electricity. A fraction of the electrical energy is used to energize the excitation supply and the other control
systems. The surplus is exported. The power is controlled via the level of excitation. Additional control is provided
with PCI and PCD functions. An enclosure confines the whole assembly. The roles of the enclosure are discussed
below.

This general description must be adapted following the exact type of reactor and engine used. In order to explain
how these principles can be translated into design features, some examples are detailed in the following.

4.3. Coupling with various heat converters

4.3.1. Thermoelectric converters

Figure 16 shows a LENR reactor made of reactive cells covered by thermoelectric heat converters (TEC) [11]. The
backsides of these panels are cooled to remove the heat. Initial warming can be obtained by applying a DC current in
the TECs to use them temporarily as heaters during the startup phase. The level of power extracted from the reactive
cells can be regulated through the amount of electrical current exported. This makes fine PCI or PCD possible. Forced
PCD cooling can be obtained with the help of an external DC source to enhance the heat removal. To date, the thermal
efficiency of TECs is too low to make this solution viable. The situation may change when new TEC devices become
available [12,13]. This type of LENR generator would be attractive because of the absence of moving parts other than
the cooling fluid pump.
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4.3.2. Ericsson engine generator

Figure 17 shows an Ericsson engine, which includes expansion and compression cylinders, fitted with admission and
exhaust valves. A heat exchanger recuperates a large part of the heat not transformed into mechanical energy, so that
the efficiency is good [14].

The recuperator and the cooler may have large sizes. This reduces the gas pressure drops, and the associated
energy losses. The pressure drops are also dramatically reduced if the gas loop is pressurized. The metallurgical heat
resistance of the hot parts limits the working temperature of an Ericsson engine to approximately 600�C.

PCI takes the form of an ancillary gas re-heater arranged on the gas line entering the reactor. This re-heater allows
the reactor warming for the startup phase. During that period, the engine does not yet produce power. An ancillary
blower must provide the gas circulation. Alternatively, the gas is circulated by the engine itself, driven by the generator
used temporarily as a motor. PCD can be finely tuned during operation via a by-pass of the recuperator, as shown in
the picture. PCD forced cooling is also feasible with another cooler combined with the ancillary blower.

The PCD can be finely tuned during operation via a by-pass of the recuperator, as shown on the picture. The PCD
forced cooling is also feasible with another cooler combined with the ancillary blower.

4.3.3. Brayton gas turbine

A closed loop gas turbine with the Brayton cycle is a suitable heat engine if the temperature exceeds about 700�C
(see Fig. 2) [15]. Figure 18 shows the configuration. It is quite similar to the Ericsson system, except that rotating

Figure 18. Coupling with a closed cycle gas turbine.
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Figure 19. Coupling with a Stirling engine (two pistons type). The heat is transferred from the reactor to the engine hot exchanger by a hot fluid
loop.

equipment replaces the volumetric machines. During startup, the generator is used temporarily as a motor. The PCI is
included as a gas re-heater before the reactor. A recuperator by-pass line provides the PCD function.

4.3.4. Stirling engine

Figure 19 schematizes the coupling of an LENR reactor with a Stirling engine. In this type of engine, a confined mass
of gas is alternatively transferred between a cold and a hot cylinder, while being heated or cooled. A heat regenerator
greatly improves the thermal efficiency. There are no gas valves. Several types of Stirling engines exist, with different
arrangements of the cylinders [16].

The gas volume enclosed in the exchangers and regenerator must be commensurate with the volume swept by the
cylinders. The size of the exchangers is therefore limited, and this gives a limit to the actual efficiency and power
density of the Stirling engines. The working gas is preferably of high conductivity (H2 or He). In order to control
the effect of the viscous pressure drops, the gas circuit is pressurized The temperature in the hot exchanger is limited
below about 700�C to withstand the high pressure. Because of the limited size of the hot exchanger, it is beneficial
to input the heat by a fluid (gas or liquid) heat transfer circuit, as shown in Fig. 19. A pump drives the heating fluid
circulation. A re-heater installed in the fluid loop provides the PCI function. The PCD is obtained via a cooler also
inserted in the circuit. The heating fluid loop is started before and independently from the Stirling engine.
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Figure 20. Coupling with an ORC turbine.

4.3.5. Organic Rankine cycle

Figure 20 shows the principle of an Organic Rankine Cycle (ORC) turbine coupled with an LENR reactor. An organic
fluid is vaporized under pressure in the boiler. The vapor is expanded in the turbine. The residual heat of the low
pressure vapor is recovered in the heat exchanger. The vapor is condensed, and the liquid is pumped back to the boiler
[17].

This description seems similar to a steam turbine. The use of an organic compound simplifies the overall design,
because for a given temperature the pressure level can be much lower than for steam. In most cases, the turbine

Figure 21. Boiling LENR reactor. The fluid boils between the cell gaps. PCI: The re-heating of the reactor is provided by an ancillary heater
immersed in the boiler. PCD: A vapor scavenging line allows the cooling of the boiling fluid.
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includes only one or two stages of blades. Contrary to steam, the expansion of the organic vapor does not result in
partial condensation. The absence of liquid droplets in the vapor stream eliminates the potential erosion of the turbine
blades. Many different compounds are available following the temperature, between 100�C and 350�C [18].

The heat transfer fluid can be oil, a liquid salt or metal. It may also be a diphasic circuit, for example pressurized
steam vaporized in the LENR reactor and condensed in the ORC boiler. This last option is interesting if the LENR
reactor is a high temperature electrolytic system, provided the COP of the process is sufficient. To increase the power,
the LENR reactor is re-heated by a PCI unit arranged on the hot fluid loop or inside the reactor When the operation
temperature increases, the vapor pressure in the boiler increases as well. A throttling valve regulates the vapor flow
rate admitted in the turbine.

The PCD may be a cooler installed on the fluid loop. A vapor line directly linked between the boiler and the
condenser can provide additional cooling. Scavenging vapor results in a fast cooling of the fluid contained in the ORC
boiler.

4.3.6. Boiling reactor

Figure 21 shows a boiler heated by LENR cells, coupled to a turbine. Future large reactors operated between 200�C
and 300�C may use a technology similar to BWR, with water as a cooling fluid and condensing steam turbines [19].
However, as LENR does not suffer of the same constraints as fission reactors in terms of materials and neutron flux,
organic fluids or other chemicals may replace water. This will make it possible to operate with modest pressures. Small
units are also feasible.

4.3.7. Classification of the potential techniques

The different techniques for heat transfer and heat engines are summarized in Fig. 22 according to their typical
temperature domain. The range of possibilities is very large and this sketch is only indicative.

Figure 22. Typical temperature domains for reactor cooling and heat engine types.
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4.4. Enclosure design

The last item visible in Fig. 15 is the enclosure that surrounds the whole generator assembly. The enclosure serves a
dual purpose:

• Limits the thermal losses to the environment.
• Avoids the hydrogen (deuterium) loss to the atmosphere.

Heat losses originate at the LENR reactor walls, the hot parts of the heat engine, the heating fluid piping. These pieces
must be adequately insulated in order to limit heat transfer to the environment by conduction, convection and radiation.

Some LENR processes require the presence of hydrogen (H2) or deuterium (D2) to drive the reactions. It is
supposed that the LENR cells are inserted in metallic containers. The walls of these containers are hot during operation.
At high temperature, H2 or D2 diffuse through the metals. This is a problem in the case of D2, because this expensive
gas must be conserved as much as possible.

The light gases leak out of the cells and accumulate in the cooling fluid, gaseous or liquid. The cooling fluid loop
must be designed to accommodate their presence. Because the partial pressure of the light gas in the cooling fluid is
nonzero, from there, it can diffuse further within the atmosphere of the thermal insulation material. It is supposed that
the temperature of the enclosure wall is close to the ambient, and that all passages through the wall are gas tight, so
that the enclosure does not leak any H2 or D2. The light gas accumulates within the insulation lagging. From there, it
may be recovered by a gas separation unit.

The presence of light gases in the insulation increases the gas thermal conductivity and adversely influences the
insulation performance. The higher conductivity must be taken into account.

5. Conclusion

The LENR reactors able to deliver heat at a high temperature can be coupled with heat engines to generate electrical
power. If the temperature and the COP are sufficient, the power covers the needs for the reactor excitation and surplus
electricity is available for external use

According to the literature, the heat generation rate of some LENR processes increases rapidly with the tempera-
ture. It is desirable that the R&D related to all LENR processes includes the study of the influence of the temperature.
The future industrial reactors will have to be designed in order to guarantee a safe and stable operation. Cooling is
achieved by a fluid in direct contact with the reactive cells. Power control can be obtained through an appropriate
temperature regulation. Several types of heat engines can be coupled to LENR reactors to generate electricity.

Heat losses must be minimized thanks to a sufficient thermal insulation. The insulation enclosure is also useful
to recover the leaks of light gas if any. This may be an important economical factor if deuterium is utilized in high
temperature reactors.
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1. Introduction

Since Pons and Fleischmann reported their experiments in 1989, many labs in the world tried to replicate their results,
but many failed. Thereafter, there was a wave of rejection to their claim of table-top nuclear fusion at room temperature.
Some establishment physicists even called “cold fusion” pathological science. But many nonmainstream physicists
and chemists continued their works in an underground manner. Also some eminent physicists have taken risks to join
this underground movement, including Prof. Peter Hagelstein from MIT.

But the rejection of mainstream physics towards cold fusion/LENR remains strong. Even the famous Prof. Brian
Josephson from Cavendish Lab. in Cambridge University was denied access from arXiv server because of his endorse-
ment to E. Storms’ works. He went on to write a paper suggesting that such a denial of many successful experiments
related to cold fusion/LENR can be called “pathological disbelief.”

In this context, allow us to recall a story that was told to the first author (VC) several times by Dr. Iwan Kurniawan,
a nuclear engineer from Indonesia.a When he was a doctoral student in a University in Japan in the 1990s, his professor
invited him to do an experiment related to cold fusion in the physics lab. After setting all the apparatus properly, they
went home. In the morning, they were surprised that all the apparatus was blown up and it damaged the window
glasses in lab. Dr. Iwan told me that since then he concluded that cold fusion does not work as claimed by Pons and
Fleischmann.

He has been one of our good friends for a long time, and he and VC often discussed many things. But we have
a different opinion regarding his cold fusion experiment: the fact that the apparatus blew the entire lab indicates that
there was huge energy release in the device, so huge that it damaged the window glass. The problems appear to
come from at least two aspects: (a) poorly understood mechanism of the reaction and (b) the reactor failed to work
properly. So, it is basically similar to reactor meltdown in a usual fission reactor. We need to learn what makes their
cold fusion reactor failed. It is not because there is no energy inside the system, but because there was a huge energy
release. Reactor shutdown has recently been admitted as one of the real problems in many LENR reactors, and this is
a challenge for experimenters and companies who want to design commercial LENR reactors [8–10].

However, in this paper we will not repeat such debates that have been discussed many times elsewhere. Instead
we will discuss how we can study some effects associated with LENR from the principles of classical electromagnetic
theory. We are aware that this approach has its own risks, because many physicists consider that nuclear fusion should
be associated with tunneling through Coulomb barrier, and this kind of tunneling is a pure quantum effect. But is that
true?

We will discuss the possibility there are some aspects of Classical electromagnetic theories which may have an
impact on our understanding on LENR phenomena, including: (a) nonlinear electrostatic potential as proposed by
Eugen Andreev, (b) vortex sound theory of Tsutomu Kambe, and (c) nonlinear ponderomotive force. The latter aspect
has been proposed recently by Lundin and Lidgren in order to understand the mechanism of LENR [13,14].

It is our hope that this paper will motivate young electrical engineers to study LENR phenomena from new per-
spectives starting from classical electromagnetic theories. In short, classical electromagnetic theories still offer many
surprises to those who are willing to dig deeper into the hidden mysteries of nature.

2. Nonlinear Electrostatic Potential of Eugen Andreev

In modern physics, there is a firm conviction based on the vast empirical material that:

• The electromagnetic and nuclear interactions are of a different nature.
• The field of electric charge (proton, electron) is spherically symmetric.

aSpecial thanks to Dr. Iwan Kurniawan for telling his first-hand experiment with cold fusion. Wishing you will recover soon, brother!
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• The nucleon–nucleon forces depend on the direction.

In his paper, Andreev [1] suggested a hypothesis that the notion of the nuclear interaction could be interpreted as a
nonlinear distribution of the electrostatic potential, which manifests itself on the Fermi scale. An analytical form of
the potential of the proton is proposed, which coincides with conventional forms used in the nuclear physics at a short
scale, but becomes the usual Coulomb potential at a large scale.

The model potential possesses a set of properties that could be called “nuclear van der Waals forces.”
Coulomb’s law can be written in integral form as follows [1].

φ(x, y, z) =
kφ

R
= −k

∫∫∫

v

div(∇φ(x, y, z))dV√
(x2 + y2 + z2)

. (1)

If we replace R with Rdd, which is defined as follows:

Rdd =
√
x2 + y2 + β2z2 + r2o. (2)

Then we will have a two parameter field potential [1]

ϕ(x, y, x,β, r0) =
ϕ

R+ r0
(3)

or

ϕ(x, y, z,β, r0) = [φ]

(
k1
Rdd

+
k2∣∣Rdd
∣∣2

)
. (4)

In Andreev’s approach, two new parameters were introduced, namely, a fundamental length of Heisenberg, r0, which
has to describe a discreteness of the physical vacuum and a parameter β depicting a deformability or polarizability of
the physical vacuum. The conventional Coulomb’s law appears from Andreev’s expressions when β = 1 and r0 = 0.

As a result, Andreev obtained an explicit analytic form of the electronuclear potential of a proton [1]:

ϕ(proton) =
r0√

(x2 + y2 + 2z2 + r2o)
+

dz r20
(x2 + y2 + 2z2 + r2o)

. (5)

Especially for one of the four orientations in a wide range of distances, the interaction energy Eq. (5) is negative,
which indicates the existence of an attractive force and the possibility of forming a bound state [1]. Such behavior
is similar to the van der Waals interaction (dipole–dipole, dipole-induced dipole, dipole–quadrupole interaction, etc.)
which emerges between two nonbonded atoms and can be expressed as a function of internuclear separation, r.

This model includes a kind of anisotropy of space, represented by a coefficient “beta” in the direction Z of the
nuclear spin, and includes also a parameter r0 to eliminate the infinities in r = 0: r0 would be the size of a discrete
elementary cell of the physical (quantum) vacuum. This is very interesting, because in particular, it leads without
preliminary hypothesis to retrieve the space partitioning into three areas, with a + sign for two external areas and a –
sign for an internal one: that could represent the three quarks. Moreover, by computing the total energy of a proton-
proton interaction, according to Andreev’s potential model and as a function of various relative orientations of the
proton, the author finds a mutual orientation providing an attractive interaction.

The above result, in fact, demonstrates the Coulomb barrier suppression starting from classical electromagnetics
theory. Furthermore, Andreev has shown that PP potential as described above can be compared with [1]:

• Lennard–Jones potential (resulting from the van der Waals interaction):
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V LJ =
0.01

r12
− 1

r5
. (6)

• Reed potential

VReed = −10
e−r

r
− 1650

e−4r

r
+ 6484

e−7r

r
. (7)

Thus the introduction of the discreteness of space (r0) and its deformability (β) allows one to resolve the problem of
overcoming the Coulomb barrier in nuclear physics.

Although this approach hints at a solution, much work still needs to be done, especially to establish how this model
can be compared head-to-head with LENR/CMNS experiments. For more detailed information, the reader is advised
to refer [1].

3. Vortex Sound Theory of Tsutomu Kambe [2–4]

The above-described electronuclear potential starts with electrostatics/Maxwell equations. It is very interesting to note
that Prof. T. Kambe from University of Tokyo has made a connection between the equation of vortex sound and fluid
Maxwell equations.

Kambe wrote that it would be no exaggeration to say that any vortex motion excites acoustic waves. Kambe
considers the equation of vortex sound of the form [2] :

1

c2
∂2t p−∇2p = ρ0∇ · L = ρ0div(ω × v). (8)

Also Kambe wrote that dipolar emission by the vortex–body interaction is [3]

pF(x, t) = − P0

4πc
Π̇i

(
t− x

c

) xc
x2

. (9)

Then he obtained an expression of fluid Maxwell equations as follows [4]:

∇ ·H = 0,
∇ · E = q,
∇× E + ∂tH = 0,
a20∇×H − ∂tE = J,

(10)

where [4] a0 denotes the sound speed and

q = −∂t(∇ · υ)−∇!,
J = ∂2t v +∇∂th+ a2o∇× (∇× υ).

(11)

In our opinion, this new expression of fluid Maxwell equations suggests that there is a deep connection between vortex
sound and electromagnetic fields. Therefore, it may offer new ways to alter the form of electronuclear potential as
described in Section 2.

However, it should be noted that the above expressions based on fluid dynamics need to be verified with exper-
iments. We should note also that in Eqs. (10) and (11), the speed of sound a0 is analogous of the speed of light
in Maxwell equations, whereas in Eq. (8), the speed of sound is designated “c” (as analogous to the light speed in
electromagnetic (EM) wave equation).

For octonic formulation of fluid Maxwell equations, see [15]. For alternative hydrodynamics expression of elec-
tromagnetic fields, see [16].



V. Christianto et al. / Journal of Condensed Matter Nuclear Science 22 (2017) 27–34 31

4. Nonlinear Ponderomotive Force

According to Brechet et al. [6], a ponderomotive force results from the response of inhomogeneous matter fields to
the presence of electromagnetic fields. In particular, the Miller ponderomotive force could explain transmutations by
thermal capture of neutrons in the context of the classical EM theory.

Ponderomotive forces are generally overlooked since the electromagnetic community is not much concerned with
continuum mechanics, and the continuum mechanics community does not usually deal with electromagnetic systems.

The nonrelativistic ponderomotive force as proposed by Miller (1958) is as follows [7] :

F = m¯̈r = − q2

4mω2
∇
∣∣∣E⃗(r, t)

∣∣∣
2
. (12)

Equation (12) can obviously be derived from the ponderomotive potential:

ϕ(p)(r, t) =
q2

4mω2

∣∣∣E⃗(r, t)
∣∣∣
2
. (13)

Other than Miller’s force, there are other types of ponderomotive forces, i.e. [5] :

• Abraham force (1903),
• Barlow (1958),
• Lundin and Hultqvist (1989),
• Bolotovsky and Serov (2003).

It can be noted here that the Miller force is independent of wave frequency for ω2 ≪ Ω2 and attractive for the entire
frequency range below resonance. The Miller force is repulsive at frequencies above resonance, but decays strongly
at higher frequencies. Ponderomotive forcing by electromagnetic waves is capable of causing the attraction of solid
bodies.

Brechet et al. [6] discuss the electromagnetic force density of magnetoelectric ponderomotive force, which is
different from Miller’s force.

In a recent paper, Lundin and Lidgren proposed that Miller ponderomotive force may offer an explanation to
nuclear spallation as observed in some LENR experiments [13]. Although their study is not yet conclusive, it opens an
entirely new way to discuss LENR based on pure classical electromagnetic theory.

5. Submicroscopic Consideration

Monograph [11] presented a detailed structure of physical space (or a vacuum, ether), which is based on pure mathe-
matical principles — set theory, topology and fractal geometry. The study shows that matter appears from a primary
substrate that has a structure of a mathematical lattice named the tessellattice. Thus, all massive particles as well
as electrically charged particles emerge from the tessellattice as local distortions of its cells. In this motion such
anamorphosis has to interact with the tessellattice, which is neglected in quantum mechanical, quantum field and elec-
tromagnetic theories. The bulk fractal deformation of a cell of the tessellattice is associated with the notion of mass; it
is thought that the surface deformation of a cell is related to the electric charge.

Hence, two kinds of equations should appear: one system of equations describes the behavior of a massive particle
and one more system of equations depicts the behavior of the electric charge. The first system is quite new and
presented in a book [11] and it is related to the quantum mechanical formalism; the other system is reduced to the
conventional Maxwell equations, which is also illustrated in this book [11].

It has been demonstrated [11] that the interaction of a moving particle with the tessellattice results in the generation
of a new kind of quasi-particles named ‘inertons’. These inertons are carriers of massive properties of particles and
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they play in some sense the role of hidden variables introduced in physics by de Broglie, Bohm and Vigier. Inertons
exchange by mass, speed and hence momentum and kinetic energy with the particle that generates them. A section of
space known as the particle’s de Broglie wavelength λ is the spatial amplitude of the particle. It is a section in which
the particle initially generates inertons and passing the whole kinetic energy to the generated cloud of inertons finally
stops; then in the next section λ inertons guide the particle passing on to it their velocity, mass, momentum and kinetic
energy.

The particle’s inerton cloud together with the particle, which exist in real space, are projected to the quantum
mechanical formalism, which was developed in a phase space, as the particle’s wave ψ-function. Thus, in a solid each
atom is surrounded with its inerton cloud; the same for each free electron, proton or another canonical particle.

In the recent experiment [12], in a chamber filled with a gas, a discharge has been generated. Positive ions of the
gas reached the cathode where they interacted with atoms of an electrode made of tungsten. If the gas is hydrogen,
discharges produce free protons in it. Reaching the cathode, protons interact with a metal matrix in such a way, that
at the resonance conditions, i.e. when the momenta of the interacting atom and proton are coincide by absolute value
and have opposite directions, i.e. the proton impacts the tungsten atom being in antiphase oscillating in its site of the
crystal lattice, both particles must stop, mpυ⃗p + mWυ⃗W = 0. This condition means that the proton knocks out the
tungsten’s atom inerton cloud.

One of the free electrons available at the surface of the electrode absorbs the tungsten atom’s inerton cloud and also
traps a proton. The merging of the heavy electron with the proton results in the creation of a super heavy hydrogen
atom. In this system the reduced mass of the proton and the electron is almost equal to mp (indeed 1/mp + 1/(me +
mW) ≃ 1/mp). Therefore, the proton starts to rotate around the heavy electron; the Bohr radius for the rotating proton
is

rp−e =
4πε0!2n2

e2mp
= 2.88× 10−14m, (14)

where we put n = 1. Although the electron orbit (14) deeply penetrates into the middle of the proton, the electron still
does not reach the critical distance of 2× 10−14 m that characterizes the quark orbit inside the proton [11]. If we put
n = 2, 3, the radius (14) will be larger but still in the order of femtometers.

What is interesting, these small atoms named subatoms [12] behave like neutrons, namely, neutron detectors mea-
sured the presence of neutrons in the experiment conducted. We [12] were able to generate subatoms, such as subhy-
drogen and subhelium (in a helium atmosphere), which were perceived by the neutron detector as real neutrons. The
intensity of the measured “neutron” radiation was rather significant; the maximum value measured by the detector was
3 × 105 neutrons/cm2 min. Nevertheless, the real intensity could even be five orders higher. Besides, analyzing our
experiments, we came to the conclusion about the existence of other tiny systems: subdeuterium, neutral (deuteron +
subhydrogen) pair, and neutral (deuteron + subhelium) pair.

Many other researchers reported similar very small stable atoms, or combined particles, though they were unable
to explain their structure and properties.

All these nuclear systems had the size around several units of 10−14 nm. They can be generated artificially in a
chamber filled with a gas. When a discharge is generated in the chamber, positive ions of the gas reaches the cathode
where they interact with atoms of the electrode, which is typically made of tungsten.

When we launch the production of subatoms and the above mentioned nuclear pairs, at the high intensity of these
entities we are able to anticipate the real transformation of nuclei in the system. Indeed, tiny subatoms and nuclear
pairs (with the size ≤ 5 × 10−14 m) can easily penetrate the shell of electrons around each atom, which have a size
around 10−10 m. In other words, a subatom or nuclear pair moving to the nucleus of the atom will pierce the electron
shell similarly to a spaceship that is travelling in our solar system. Any electron of the electron shell cannot experience
this pinhole because of the incommensurability of the sizes of tiny particles and electron orbits.
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Note that Andreev’s phenomenological approach [1] to the suppression of the Coulomb barrier is consistent with
the submicroscopic concept. Andreev points to some minimum size r0. Indeed, scales of sizes of objects that compose
the universal tessellattice prescribe an order of sizes of stable structures starting from the minimum, which is the size
of the quark (in the lattice, the size is 10−10 or 10−17 m) and the size of an atom (in the lattice, the size is 10−17 or
10−21 m) [11]. Hence real space has to influence a physical mechanism of interaction. The tessellattice possesses an
elasticity and Andreev’s parameter β takes exactly this fact into account.

Approaching a nucleus, a subatom or nuclear part starts interacting with nuclides: a subatom brings to the nucleus
a thermal proton (deuteron or α particle), the inerton cloud and electron. The electron will be getting away from
the nucleus because it does not participate in nuclear reactions. But the proton (deuteron or α particle) will bring an
additional interaction inside the nucleus, which has to result in its mutation.

In fact, studying samples of iron and samples of water contaminated with Cs-137 we [11] revealed significant
mutations in iron (in which emerged such elements, as Co, Ni, Ca, Hf, Cs) and decrease in radioactivity of the water
sample up to 30–40% at the application of an inerton field. It seems in those experiments initially subatoms formed
that then influenced nuclei of Fe (in samples of iron) and nuclei of Cs-137 (in samples of water contaminated with
radioactive cesium).

6. Discussion and Concluding Remarks

We have discussed a new expression of electronuclear potential starting from electrostatics law. This explains Coulomb
barrier suppression from a purely classical origin, without the use of nuclear potential such as Woods–Saxon potential.
The model potential possesses a set of properties that could be called “nuclear van der Waals forces.” In our opinion,
this is a quite surprising result that offers a novel way to explain low energy nuclear reaction (LENR) from Classical
Electromagnetic theories.

Moreover, Kambe’s new expression of fluid Maxwell equations suggests that there is a deep connection between
vortex sound and electromagnetic fields. Therefore, this result may offer a new insight on how to alter and modify the
form of electronuclear potential using vortex sound equations. This requires further investigations.

In a recent paper, Lundin and Lidgren proposed that Miller ponderomotive force might offer an explanation to
nuclear spallation as observed in LENR experiments. Although their study is not yet conclusive, it opens an entirely
new way to discuss LENR from purely classical electromagnetic theories.

The electrostatic/electronuclear potentials, fluid Maxwell equations and ponderomotive force have been proposed
as an alternative to tunneling effects that could occur as a quantum mechanical consideration of LENR. However, in
Section 5, we have shown that the tunneling effect itself can be considered in deeper terms, namely from the submicro-
scopic point of view. This is a quite new approach to the description of physical phenomena, which however, promises
a lot in both our understanding of mysterious phenomena of nature and the modeling of some crucial experiments,
such as LENR and similar work.

As follows from the submicroscopic concept, LENR can be possible only in the case when subatoms or nuclear
pairs emerge in the system studied. An efficiency of LENR is directly proportional to the quantity of generated
subatoms and nuclear pairs. That is why it seems possible that the highest efficiency in LENR can reached under the
following two main conditions: (i) in a reaction chamber one has to increase the number of subatoms and nuclear
pairs to the value of no less than 1012; at this quantity of deuterons in a macroscopic sample reactions d + d = He
produces heat comparative to room temperature; (ii) we need to invent mechanism(s) that would stimulate collisions
of subatoms and nuclear pairs with potential targets and between themselves.

Of course, we do not pretend to have the last word on how to apply Classical Electromagnetic theory to understand
LENR, instead we offer some new insights on how to explain and enhance the Coulomb barrier suppression without
the usual quantum tunneling paradigm.
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It is our hope that some of the proposed new theoretical approaches as described herein will be proved fruitful in
the continuing study of CMNS/LENR.
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Oscillating Excess Power Gain and Magnetic Domains in
NANOR R⃝-type CF/LANR Components
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Abstract

Post-magnetization effects, both significant and time-variant, were observed in NANOR R⃝-type CF/LANR components. In con-
trast to previously observed exponential falloffs of sample activity (peak incremental excess power gain), post-magnetization activity
demonstrates oscillatory activity. This paper reports an analysis of the force density and expected theoretical frequency for oscil-
lations, which have already been observed to exist between these magnetic domains after magnetization, calculated by using the
Maxwell stress tensor.
c⃝ 2017 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: LANR, Magnetic domains, Magnetism, NANOR R⃝, Oscillating power gain

1. Introduction – NANOR R⃝-type CF/LANR Dry Preloaded Components

A NANOR R⃝-type component is a hermetically sealed CF/LANR (cold fusion/lattice assisted nuclear reaction) nano-
material, preloaded and arranged as a two-terminal electrical component which can yield significant heat (Figs. 1 and
2). They are designed to avoid leakage, enable stabilization and activation of the contained nanostructured alloyed
material. As a result, the NANOR R⃝-type preloaded component [1,2] has been like the proverbial “lab rat” for several
papers, and was also the central component in an open demonstration at MIT in 2012 ([3]; which is one of the locations
where the “normal” (unexposed to magnetization effects) exponential fall off of CF/LANR activity was followed over
months). The papers include investigations of material science [4–6] and radiation physics [5,6,8], which have revealed
several electrical transconduction states. Most importantly, of these transconduction states, only one produces the de-
sired trait known as “excess heat” [7]. We begin by considering how the activity of these components is measured,
and then how they are affected by the applied magnetic field intensity, and finally what may cause the post-magnetic
activity-oscillations.

∗Dr. Mitchell R. Swartz ScD, MD, EE, E-mail: nanors@nanortech.com.

c⃝ 2017 ISCMNS. All rights reserved. ISSN 2227-3123
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2. Methods

2.1. Determination of activity of NANOR R⃝-type components

The preloaded NANOR R⃝-type components are driven by a high voltage circuit (up to 3000 V peak). In addition to us-
ing several types of commercial calibrations, we augment the calibrations using Keithley picoammeters (Types 480 and
486) and Keithley current sources (Type 225). For voltage measurements, Keithley electrometers (610B,610CR,602)
and HP5334, HP3490, and Keithley multimeters were used. Voltage sources include HP-Harrisons, Kepco, and VWR.
The input voltage was delivered in every run alternatively to the NANOR R⃝ and the ohmic control which was at the
same location and used to thermally calibrate the system [9–11].

Input power is defined as V × I. There is no thermoneutral correction in the denominator. Therefore, because
consideration of loss by possible recombination is not removed, the observed power is a lower limit [12]. The energy
calculations are also calibrated by time integration for additional validation. The instantaneous power gain (non-
dimensional power amplification factor [10.11,13]) is defined as Pout/Pin. When present, the excess energy is defined
as (Poutput – Pinput) × time. Data acquisition is taken from voltage and current sensors, and temperatures and heat
flux sensors at multiple sites of the system. Data sampling is at 0.20 – 1 Hz, with 16–24+ bit resolution, a voltage
accuracy of 0.015+/−0.005 V, and a temperature accuracy of <0.6 degrees C. The noise power of the Keithley current
sources driving the reactions is generally ~10 nW.

After driving the component and the control in each run, their power and energy gain were separately determined
both by power-normalized delta-T (dT / Pin), and input power normalized increase in heat flow (delta-HF/Pin), and the
directly by semiquantitative calorimetry [2,3]. In semiquantitative calorimetry, the amount of output energy is directly
determined from the heat release, which is then compared to the input energy. The excess heat-producing activity can
be determined by comparing the output of the NANOR R⃝ type component to the output of the precisely driven ohmic
control, as demonstrated in the middle of Fig. 1.

2.2. Magnetization of NANOR R⃝-type components

For what is reported here, the applied magnetization sequence consisted of rapidly repeating pulses of an intense >2
Tesla magnetic field intensity [4]. The applied magnetic field intensity, thus, highly fractionated with 3500 pulses
delivered, each with a rise time of <0.1 ms, followed by an intra-pulse delay of one second.

3. Results

3.1. Response without applied magnetic field

Figure 1 shows the responses of these CF/LANR NANOR R⃝-type components with any applied magnetic field inten-
sity in three graphs of the same experimental run. A determination of the presence of excess heat can be made by
comparing the output for NANOR R⃝-type LANR component to the thermal (ohmic) control. The top of Fig. 1 shows
the electrical input power and the incremental output temperature rise (defined as “delta-T ”). The x-axis represents
time. The y-axis on the left-hand side represents electrical input power in watts. The y-axis on the right-hand side
represents delta-T . The calibration pulses, used for accuracy and precisions checks of voltages and currents and time,
are also shown. The middle of Fig. 1 includes the same data but the incremental output temperature rise is normalized
to the input power by dividing by the input power. This metric has delta-T /Pin be a nearly straight horizontal line for
the ohmic control; which facilitates semiquantitative measurements by use of a simple ratio. The bottom of Fig. 1
is a full calorimetric presentation showing the input power and energy and output power and heat (energy) from the
ohmic control and the NANOR R⃝-type component at several input powers. The y-axis on the left-hand side represents
electrical input power in watts. The y-axis on the right-hand side is the time-integrated amount of energy delivered at
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Figure 1. Response of a control and NANOR R⃝-type component – No magnetic field. This figure shows three different ways of evaluating the
possible presence of excess energy from a single run of an ohmic control and a NANOR R⃝-type component. The ohmic control was driven first
and then the component was electrically driven, as marked (top). The electrical input power and resultant delta-T for the ohmic control and then
the NANOR R⃝-type component are shown (middle). The electrical input power and resultant delta-T normalized to the input power (delta-T /Pin).
Importantly, this linearizes the output and enables calculation of power gain. In contrast to the graph on the top, this metric is a nearly straight
horizontal line for the ohmic control (bottom). Calorimetric presentation of the input power and energy and output power and heat for the ohmic
control and the NANOR R⃝-type component.

input, and then released. The lighter energy curves (dots) are read off of the right-hand side y-axis, which represents
the amount of energy released in joules.

Thus, these calorimetric curves rule out energy storage, chemical sources of the induced heat, possible phase
changes, and other sources which might interfere with obtaining semiquantitative results.

Figure 2 shows the calorimetric responses of both the ohmic control and the preloaded NANOR R⃝-type compo-
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Figure 2. Reproducibility of a NANOR R⃝-type component – No Magnetic Field. This is a calorimetric presentation of an experimental run,
discontinuous with Fig. 3, with more than four cycles. The electrical input power and energy and output thermal power and heat are shown
alternatively both from the ohmic control and the NANOR R⃝-type component at several input powers. This component and control had NOT been
driven in the presence of an applied magnetic field intensity, unlike Figs. 3 and 4.

nent over four complete cycles, at four different input electrical power levels. Figures 1 and 2 show that the active
preloaded CF/LANR component has significant improvement in thermal output compared to a standard ohmic control
(a carbon composition resistor). They also demonstrate that excess heat was produced only during energy transfer to
the NANOR R⃝-type LANR component heralding clearly over-unity thermal output power from it. Figure 2 demon-
strates the reproducibility of the ohmic control and the near reproducibility of the NANOR R⃝-type component over
several cycles. In Fig. 2 the peak power gain of the NANOR R⃝-type component slowly decreases, in a regular way,
over time.

Figure 2 also demonstrates an exponential falloff of the peak incremental excess power gain. It is important to note
that this component had NOT been driven in the presence of an applied magnetic field intensity, versus what is shown
in Fig. 3. Contrast this exponential, slowly decreasing response, which is what was always seen [1–5], to the newly
observed irregular, somewhat oscillatory-like, activity which occurred only after the components were exposed to the
H-field, and only while an applied E-field was used to activate the CF/LANR component (Figs. 3 and 4).

3.2. Unique response after magnetic field

3.2.1. Introduction – Magnetic responses in CF/LANR systems

Previously, magnetic [14–16] and radiofrequency electromagnetic [17] effects have been reported in aqueous
CF/LANR systems. In aqueous CF/LANR systems, steady magnetic fields have a small inhibitory effect on loading
electrolysis when the applied H-field is perpendicular to the direction of the electrical currents [16]. In dry, preloaded
CF/LANR systems, at higher electrical drive currents to the component, time-varying alternating magnetic fields si-
multaneously applied, induce small to significant increase gains in the activity [4] and some changes are long-lasting.
Therefore, magnetically treated NANOR R⃝-type components are called M-NANOR R⃝-type components by our group
to distinguish them and anticipate their unique oscillating-activity behavior and other longer term effects (Figs. 3
and 4).
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Figure 3. Impact of an H-field on the behavior of a NANOR R⃝-type component. This experimental runs shows the impact of an applied H-field
on the activity of a NANOR R⃝-type component before, during and after, a single sequence of fractionated high intensity magnetic field application
between the arrows. At all other points in time there were NO additional large applied magnetic field intensity. Note the absence of an exponential
or linear fall-off of peak activity.

3.2.2. Synchronous magnetically induced increased energy gain

During the first magnetic-NANOR R⃝ run, we were quite surprised by the different responses of the NANOR R⃝ com-
ponent during and after dH/dt coercing. It was discovered that for magnetic interactions with active nanostructured
CF/LANR systems [4], there is enhanced improvement of LANR (which occurs at the same time as the magnetization
and therefore is called “synchronous”). As a result of the magnetization sequence, there appeared a significant increase

Figure 4. Subsequent late-term impact of magnetization on CF/LANR activity. The post-magnetization electrical input power and energy and
output power and heat are shown for the ohmic control and the NANOR R⃝-type component. This experimental run of a M-NANOR R⃝-type
component was made several hours after a single application sequence of the fractionated magnetic field was delivered. There was no additional
H-field applied for this figure. The peak applied voltage was ~125 V. Note the absence of an exponential or linear fall-off of peak activity.
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in incremental power gain and excess energy gain, over ordinary CF/LANR. This magnetization sequence created an
increase of ca. 4–10 times the peak power gain over conventional LANR with the same system. The peak power gain
of such treated NANOR R⃝s ranged from 22 to up to ~80 times input electrical power or more beyond the control, as
determined by calorimetry [4,10,11].

There are also subsequent effects (occurring later, or metachronous) and strong evidence for the first ever-observed
two (2) optimal operating point (OOP) manifolds [4]. Some of these dramatic changes can be seen in Fig. 3, which
shows the first evidence of magnetic rejuvenation of nanostructured CF/LANR material, and even increasing the
CF/LANR activity to higher levels than observed initially!

Figure 3 shows a calorimetric presentation of the ohmic control and the NANOR R⃝-type component. It demon-
strates the impact of the magnetic field, with no change from the same magnetic field on the background or control. In
Fig. 3, the magnetic field intensity was applied only at one point in time which is indicated by the black arrows. At all
other points in time, there was NO additional applied magnetic field intensity. Note the synchronous amplification of
the M-NANOR R⃝ power output induced by the magnetic field. This is not seen in the ohmic control.

3.2.3. Metachronous magnetically induced increased energy gain

Other effects were noted. Astonishingly, after the single application of the fractionated large applied magnetic field
intensity was delivered at one point in time (between the arrows), there is improvement in the CF/LANR activity
which also appears later – long after the initiation of the magnetization [4]. This metachronous impact wrought
upon the treated CF/LANR M-NANOR R⃝s, long after the treatment, is heralded as increased power and energy gain
as determined by delta-T /Pin, delta-HF/Pin, and calorimetry. Subsequent, metachronous effects are those physical
changes wrought by the applied high intensity fractionated magnetic field after the field was applied.

Figure 4 is a calorimetric presentation of a different run later many hours after the single application of the fraction-
ated large applied magnetic field intensity was delivered. In Fig. 4, many cycles are shown which demonstrated clearly
that there was more output than the ohmic control, and as astonishingly, there is improved activity which is shown
here to be metachronous and long-lasting. Notice that the peak power gain of the M-NANOR R⃝-type component is
increased after the application of the fractionated large applied magnetic field intensity.

3.2.4. Magnetically induced activity has an oscillation of activity

There are other remnant effects long after the application of the H-field. These late-appearing effects include an
increased, but variable, activity. The subsequent activity of the magnetized M-NANOR R⃝-type components no longer
decreases in a simple regular, evanescent manner over time (as described in previous publications [1–5]); but instead
appears irregular with a periodic component, as first seen in Fig. 3 and also shown in Fig. 4. The cyclic component of
the activity in in the range of circa 1.3 × 10−4 Hz (0.2–5 × 10−4 Hz).

3.2.5. Magnetically induced unique dual optimal operating manifolds (OOPs)

Although not covered in detail here, previously, all CF systems and the NANOR R⃝s had shown a single optimal
operating point manifold for excess heat operation, 4He production, and other products [15,14,4]. Today, that is no
longer accurate. Even after a single treatment to a high intensity fractionated magnetic field, there arise two OOP
manifolds. The new OOP is elicited at higher input electrical power, and so the new, second, OOP is located to the
“right” of the conventional, first, CF/LANR OOP [4]. Although this revelation is far beyond the scope of this paper,
its impact is very important because magnetically activating preloaded nanostructured CF/LANR devices is both very
useful [4] and instructive [8]. Although cold fusion (LANR) has a first stage mediated by phonons within the loaded
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lattice by coherent Phusons [18], there is also a magnetically coerced second stage, which we believe may be mediated
by magnons, or interactions of phonons in H-field and included magnetization field.

4. Interpretation

4.1. Possible implications of magnetized domains

The unique temporal changes, shown in Figs. 3 and 4, and the amplification of CF/LANR excess heat by fractioned
magnetic fields effects suggest a new CF/LANR material science/nuclear interaction. The analysis below is thus
important because the magnetic domains, magnetic interactions, magnetically increased incremental power gain, might
be relevant to other materials and other systems.

4.2. Magnetism in ZrO2–Pd/Ni and ZrO2–Pd components

How can palladium become magnetic? Nickel is ferromagnetic and the induction of magnetization is to be expected. So
this is expected for the nickel-containing NANOR R⃝s, but it is somewhat surprising for the palladium M-NANOR R⃝s.
However, palladium like platinum, has potential capacity as an exchange-enhanced paramagnetic materials to exhibit
a strong Stoner enhancement and become ferromagnetic upon tension [19]. When the Stoner criterion is satisfied, in
response to external stimuli such as applied E-field, the materials can exhibit unconventional magnetic responses –
they become exchanged-enhanced ferromagnetic.

Thus, the solid state metallurgical lattice of Pd can become ferromagnetic or its equivalent post-magnetization.
This has now been seen [20] and confirmed in magnetic domain scanning and imaging which will be the subject of an
upcoming paper (cf. also Fig. 5).

The magnetization and oscillations may also be consistent with other reports of quantum oscillations in several
systems, including metallic triangular-lattice antiferromagnet PdCrO2 [21], and as seen in the (electrically tunable)
anomalous Hall effect observed in platinum thin films [22], as seen with both lattice and magnetic oscillations in stacks
of Josephson junctions [23], and with reports of excess energy production with high voltage magnetic pulses coerced
through nanograined magnetic materials such as strontium ferrites [24]. The coerced magnetization is important and
may also be consistent with some of those materials considered theoretically in investigations using DFT calculations
of strained ferromagnetic lattices [25].

4.3. Interaction forces between magnetized domains

It is important to consider the material science and metallurgy of this new magnetic behavior and material(s) (Fig. 5).
From what do the domains arise, and how do they interact. How can the magnetic domains couple and account
for the unusual time-variant activity? Magnetic materials can self-interact, as described by the Langevin function
[26]. Theoretically, this is supported by density-functional calculations [27]. Most interestingly, this appears to be
driven by vacancies in Pd (theoretically, up to 15% calculated using the SCR Korringa–Kohn–Rostoker coherent
potential approximation method, which predicts a magnetic moment at ~10% vacancies) [28]. Attention is drawn to
the interesting fact that several theories of cold fusion also require vacancies [29].

5. New Hypothesis. Is Oscillation of Activity Linked to Magnetized Domains

The continuum electromechanical equations may give a possible new understanding of the just-discovered time-
varying activity change that appears in post-magnetized components [4]. This is important because these changes
are uniquely different from observations of hundreds of runs on scores of samples. These M-NANOR R⃝-type compo-
nents have responded markedly differently, requiring this attempt to mathematically analyze, and possibly explain, this
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Figure 5. Magnetic Domains in NANOR R⃝-type components. (top) Schematic showing magnetic domains interacting within a lattice. The
magnetization is observed changing over a distance (after John Mara and A.von Hippel [32]. (bottom) These magnetic domains have been observed
experimentally and their imaging, and possible implications, are the focus of a manuscript [20]. The graph shows the vectorial scanned magnetization
from the domain (in nanotesla) as a function of distance along the long axis of the M-NANOR R⃝ 7-8 at rest, long after it was previously operated.
The square of each of the x-, y-, and z-axis components are shown as a function of x-axis. (bottom inset) Estimated vectorial magnetization along,
and just vicinal to, the body of M-NANOR R⃝ 7-8.

new post-magnetization observation. The activity oscillations observed in the output excess power of M-NANOR R⃝-
type components long after their magnetic field interaction must result from the applied magnetic field intensity. So
what is the impact of the H-field on any magnetic domains there? We have begun to measure them in M-NANOR R⃝s
after magnetization [20] as shown in Fig. 5.

In this report, we examine the behavior of the oscillating excess heat activity of magnetized M-NANOR R⃝-type
components, and attempt to link that behavior to loco-regional magnetic domains in the treated coerced lattice to
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understand the very unique observed responses of these magnetically treated components. Although better models for,
and a solution to, this observation are needed, this is a first approximation.

These domains can be modeled as a remnant magnetization of the lattice, and here are taken into account through
the forces and tension they incur through the density of the lattice and Poisson’s ratio. Specifically, using the findings
of strained layer ferromagnetism in transition metal, it is found that tension increases magnetization and simultaneous
should decrease density [25], and these may be the conditions that give rise to the activity oscillations.

6. New Results. Magnetic Forces and Oscillations from CF/LANR Domains

To model the interactions of two neighboring magnetic domains, we assume that in addition to the normal mechanical
restoring forces that there are also electromechanical forces. We begin the analysis with Newton’s equation, using a
continuum model using a simple spring constant equation for the initial analysis.

d2x
dt2

=
F

M
. (1)

The magnitude of the restoring force is derived using Hooke’s law augmented by the Maxwell stress tensor which is
integrated over the surface boundary between those two magnetic domains to derive the volume-integrated induced
force [30–32].

The force density, in integral and differential forms, thus becomes
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Therefore, the force, and the stress tensor, would there be, and derived as follows:
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Note the magnetoelectric term at the end (reminiscent of electrical dielectrophoresis). Substitution in the original
equation, with terms including magnetostriction, gives
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The solution has an amplitude of
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and a natural frequency of
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ω0 =

√
K

ρV
. (8)

This might be the resultant natural frequency which we see in the M-Nanor R⃝’s excess energy cyclic activity (cf.
Figs. 3 and 4).

7. Conclusion. Oscillating Activity and Magnetic Domains

There are two types of NANOR R⃝-type CF/LANR components. They have very different behavior. The post-
magnetization effects are significant and time-variant because it has now been discovered that high intensity, dynamic,
repeatedly fractionated, magnetic fields have an incremental major, significant and unique, complex, metachronous
amplification effect on preloaded M-NANOR R⃝-type LANR devices.

Furthermore, in contrast to previously observed exponential falloffs of sample activity (peak incremental excess
power gain), post-magnetization activity demonstrates oscillatory activity, and the Maxwell stress tensor heralds a
theoretical frequency for oscillations now observed to exist between these magnetic domains in these magnetized
NANOR R⃝-type components. The observed frequencies of activity change observed appear be circa 1.3 × 10−4 Hz
(range 0.2–5 × 10−4 Hz).

This paper’s analysis of the force density, calculated by using the Maxwell stress tensor, predicts oscillations now
observed to exist between these magnetic domains in these magnetized NANOR R⃝-type components. This analysis
indicates that magnetic interactions between domains should augment other restoring forces, and that the frequency
should increase with decreasing mass, and increasing applied magnetic field intensity (presumably until coercion
effects elicit no further increase). It is important to consider this new material science and metallurgy with surprising
new magnetic behavior in future analyses and experiments.
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Abstract

For three consecutive years, an introductory non-credit short course was taught on the science and engineering of cold fusion (CF).
It reviewed its origin, extent, basis and substantial experimental proof of the observed excess energy (XSE) from active cold fusion
(lattice assisted nuclear reactions) systems. The range of CF technologies spanned from early aqueous CF/LANR systems to recent
day nanomaterials. While academic officials are slow to recognize cold fusion and its viability, the fact is that the subject and its
science have entered the academic domain, and students can learn that the phenomenon is real and reproducible.
c⃝ 2017 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: CF academic course, CF curriculum, CF education, CF training, LANR academic course, LANR education, LENR
academic course, LENR education

1. Introduction

Education plays a critical role in the development of any science and technology, and it is especially significant in an
emergent, controversial field like cold fusion. What heightens its difficulty here, however, is that the scientists and
others interested in learning more about the field are almost always under an intense barrage of unfair criticism and
blistering attacks from competing interests and skeptics. Despite this major obstacle, just as it has been important to
have occasional cold fusion open demonstrations, it is important to create (and expand) cold fusion education in the
classroom.

This report describes how a complicated and new alternative energy subject-matter was tailored to a college course-
work program, and was offered as an introduction to cold fusion during its Independent Activities Period (IAP),
designed for students to engage in topics outside-of the-normal-curriculum.

∗Dr. Mitchell R. Swartz ScD, MD, EE, E-mail: education@nanortech.com.

c⃝ 2017 ISCMNS. All rights reserved. ISSN 2227-3123
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2. Experimental

The goal has been to increase the number of well-trained cold fusion scientists, researchers and theoreticians by intro-
ducing a range of material science, physics and engineering to them with the hope of expanding awareness, educational
excellence, and the science and technology needed to develop and proceed with this energy-efficient technology. En-
rollment was open with permission from the instructors, Prof. Peter Hagelstein, PhD, MIT Professor of Electrical
Engineering and Dr. Mitchell Swartz, ScD, MD, of JET Energy Inc. IAP at MIT, for those not familiar with it, is a
special four-week program where students can choose from a vast array of non-credit and for-credit short coursework
offered only during the month of January of each year. CF-101 was a non-sign up, non-credit introductory course open,
to MIT and non-MIT students, alike, as well as the public. The CF/IAP classes generally extended over two weeks.

A brief summary of the content was published in Current Science [1], and this paper goes considerably further to
enable and encourage others to adopt and expand the curriculum. Here is the scope of what was covered during January,
2013. Prof. Peter Hagelstein began with an overview of how cold fusion began, its science, the structure, materials
and output of the Fleischmann/Pons (F/P) effect, and skeptics’ arguments. He reviewed the origin, extent, and basis of
the observed excess energy (XSE) from active CF/LANR systems. He spoke about the roles of palladium, palladium
hydrides (palladium filled (aka “loaded” with an isotope of hydrogen), and the method/difficulties of metals actually
loading with hydrogen. He then clearly detailed some of the exact reasons why F/P succeeded whereas so many “good
scientists from good laboratories” could not initially replicate their experiments in the early 1990s. Generally, they
were unable to achieve the requisite highly loaded palladium, which is unconditionally required for achieving active,
deuterium fusion which is the desired cold fusion effect.

Prof. Hagelstein explained that the big issue was that the experiments were attempted at the “best” labs by very
good scientists, and they were not able to confirm it; that the effect itself is unexpected, and in contradiction with what
would be expected from condensed matter physics and from nuclear physics. One member of the class pointed out
that even the Harwell data clearly demonstrated a 10–15% excess power during the portion of the run shown. Prof.
Hagelstein explained that such a small amount was insufficient for them (as were the bursts of excess energy in only
the heavy water side of their setup). Like the other famous groups, they too, could not report positive results. This
report describes how a complicated and new alternative energy subject-matter was tailored to a college course-work

Figure 1. Students and interested researchers develop their science and engineering skills about cold fusion, isotopic loading of metals, and
calorimetry during the “Introductory Cold Fusion IAP Course” offered at MIT in 2013 (photocredit: Gayle Verner).
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program, and was offered as an introduction to cold fusion during its Independent Activities Period (IAP), designed
for students to engage in topics outside-of the-normal-curriculum (Fig. 1).

To understand how success was achieved, Prof. Hagelstein then moved the discussion along to kinetic issues
involving the loaded/loading palladium deuteride (PdD) lattice, including its dynamic structure and the roles of lattice
expansion. He clarified how deuterium goes in via the Volmer reaction, and out via the Tafel reaction and through
cracks. In “good” cathodes, the internal leaks are minimized, which can reduce the level of internal leaks by more than
1000. At ENEA, Frascati, Violante, and his team anneal to samples, so as to get grain sizes on the order of the foil
thickness, which, thus, minimizes internal leaks. To further underscore the importance of adequate loading, Hagelstein
also referred to the SRI experiments which showed that excess heat only appeared when the loading ratio was, at least
in, or above, the 0.85–0.9 range. Also supporting the need for high loading, he discussed the results of the Energetics
group from Israel, who have used the Dardik-discovered Superwave.

Prof. Hagelstein proposed conditions under which deuterons in the metal are stabilized (or not), and how 4He*
might form for its nanosecond of existence in the metal. Since the electron density is too high, there is no site in the
lattice where fusion can occur, except possibly at vacancies, where the electron density is lower. Because vacancies
are actually stabilized with H or D addition, at a loading of 0.95 near room temperature, so vacancies then become
thermodynamically preferred. Supporting that, since vacancies diffuse very slowly, they are also made on new surfaces,
which is done by codeposition, he said. In the codeposition experiments, (going back decades) excess heat turns on
within an hour after initiating codeposition. Later, he spoke of activation of CF/LANR and detailed the Dennis Letts’
laser “beat frequency” terahertz region experiments which activate the desired reactions.

On Wed., January 23, Prof. Hagelstein explained how the loaded palladium hydride lattice, with sufficient flux and
activation energy, is able to highly overcome the Coulomb barrier and then “chop up” the 24 MeV energy of freshly
made helium (the so-called excess energy) into smaller energy quanta which the phonons (lattice vibrations) can then
deliver coherently, in tandem, to the lattice. This enables the excess heat production in F/P and (variant) CF/LANR
experiments.

Figure 2. The success of cold fusion experiments has generally depended upon the loading achieved of the Group VIII metal. This is because in
cold fusion, excess heat only appears when the loading ratio is very high. This graph shows that with increased loading (right-hand side of the data)
there was historically a much greater likelihood of having seen cold fusion’s excess heat.
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Dislocations and cracks in the average cathode generate many pathways that include many internal leaks. These
can become “superhighways” of hydrogen loss, can appear suddenly, and can end active samples, as they reduce stress
internally. Generally, they were unable to achieve the requisite highly loaded palladium, which is unconditionally
required for achieving active, deuterium fusion which is the desired cold fusion effect (Fig. 2).

On Thursday, Jan. 24th, Prof. Hagelstein continued about the several meticulous experiments which documented
that helium (4He) is made as the product of cold fusion from the deuterium which is loaded at very high levels into the
palladium lattice. He showed this for three sets of experimenters including Dr. Mel Miles at the US Navy, and Dr. Len
Case (working independently) from N.H., and at SRI in Calif., where it was also measured.

Prof. Hagelstein said that even the rate of helium production is also commensurate with observed excess power
of cold fusion experiments, as was reported years ago in Italy by Gozzi. Furthermore, he said, regarding 4He mea-
surements that Bush and Miles demonstrated it was there; Gozzi showed that it was correlated in time with the excess
power; SRI provided important confirmations, but beyond that they made the best measurement in his view of the
Q-value. The issue is that some of the He is retained in the PdD (which was obvious from the Gozzi experiment).

One class attendee asked why there were not more of these experiments done. Prof. Hagelstein quickly pointed
out that helium measurements are difficult because of both atmospheric contamination and confusion with materials of
similar mass (that is D2), and that meticulous efforts are required to shield the experiments from the atmosphere (by
metal flasks, for example) and that expensive equipment is required to make the discriminating measurements required.

As a result, this type of work is very hard to do, he said, and expensive, and simply put, there has not been enough
funding.

He also talked about the problem of helium occupancy at important choke-points in the lattice which must be
empty as required for active, excess heat-producing, cold fusion systems. He proposed that the big advantage that the
NANOR R⃝-type CF/LANR components (JET Energy’s) have is that the helium does not have to diffuse very far, so
that the power level can be much higher.

Prof. Hagelstein discussed the activation energy required to get the desired reactions. He went through the data
of several experimenters in the field including Dennis Cravens, who demonstrated observation of heavy water cells
increasing output with a temperature rise. Hagelstein then followed that up with corroboration from other experi-
menters, including early recognition of this effect, an increase in excess power in time following a brief temperature
rise (usually due to a calibrating pulse), as was seen by Fleischmann, Storms and Swartz.

Regarding activation energy, Prof. Hagelstein discussed the Dennis Letts laser experiment which activates specif-
ically required, key phonon modes in the lattice – compressional optical phonon modes when the beat frequency is
around 8.5 THz, and compressional optical phonon modes when the beat frequency is ~16 THz.

Prof. Hagelstein introduced the cold fusion/LANR Hamiltonian and the role of orbitals of hydrogen. Next, he
related to the Hamiltonian he developed to also include the roles of deuteron flux through, and loading into, the
palladium citing work by Mitchell Swartz and Akito Takahashi. He then explained how Corkum’s mechanism led him
to further understand his own, developing spin boson model which was derived from the work of Cohen–Tannoudji,
and which explained how the 24 MeV from the 4He* is chopped up into tiny amounts, and then delivered to the loaded
palladium lattice. This is where there is then the appearance of the “excess heat” as the excited helium (4He*) returns
to its own ground state (4He) as the energy is converted to THz phonons, and then thermalized to produce that heat.

Hagelstein’s Take Away Message is that the lattice is key, and the physicist’s theories are really not inconsistent
with cold fusion, after all. He demonstrated exactly where it was insufficient to explain CF/LANR in the absence of
his later discovery of the role of destructive interference and other loss and dephasing issues. Those loss mechanisms
occur in the real loaded lattice.

On Friday, Prof. Hagelstein focused on the mathematical models and physical models for coherent energy ex-
change under conditions of fractionation, and on the Karabut collimated X-rays, which appears to show this effect, and
expanded his CF/LANR Hamiltonian to now include coupling parameters.
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Prof. Hagelstein continued with relativistic physics. Examination of the very strong coupling between the center of
mass momentum and internal nuclear degrees of freedom is normally eliminated by a generalized Foldy–Wouthuysen
rotation. However, under conditions of destructive interference such as in the lattice filled with lossy bosons, it does
not appear appropriate. The Take Away Message was that his corrected condensed matter nuclear science (CMNS)
Hamiltonian with all the additions is finally becoming very close to describing accurately what is actually being
observed in CF/LANR

After a weekend break, lectures resumed on Mon., Jan. 28, led by Dr. Mitchell Swartz. He continued the talk
regarding substantial experimental proof for cold fusion (lattice assisted nuclear reactions). Dr. Swartz presented what
many consider the well-researched, evidence for existence (and development) of cold fusion in an understandable four
plus hours (two each day) of scientific detail, not only reviewing decades of CF/LANR experiments but also presenting
many how-to’s of the successful processes.

He then shifted to hot fusion which unfortunately has a long history of technical and engineering failures. By
contrast to hot fusion, cold fusion does not make any significant amount of dangerous radiation, he said, nor does it
make other materials radioactive. It has zero carbon footprint. It could change everything.

He then discussed yet another reason why CF/LANR is so important – its energy density. He directed the class
to the hard facts that the helium (4He) production is in quantitative agreement with the XSE, as Mel Miles, Case, and
SRI had measured; and that the rate of He4 production is commensurate with the power, as the Gozzi experiment had
demonstrated.

Dr. Swartz continued, talking about the materials involved in CF/LANR. He taught how loading is achieved with
either an applied electric field intensity acting upon water, separating out the deuterium, which with palladium, comes
from the surrounding heavy water.

In the next session, after Dr. Swartz surveyed the methods of calibration of heat-producing reactions and systems,
he detailed how there are now available many types of controls, time-integration, thermal waveform reconstruction,
noise measurement and additional techniques, which are used, and is needed, for verification.

He then spoke at great length of the importance of the role of deuteron flow (flux) and explained the differences
between flow calorimetry which can be inaccurate under some conditions where it is not calibrated, and the preferred
methods of measuring excess energy. Having discussed the materials, and methods of measuring excess energy accu-
rately, he segued to many examples of actual excess heat generated by a variety of CF/LANR systems. He showed
graphs that were derived, using aqueous nickel and palladium systems.

Dr. Swartz returned to the concept of deuteron flux. Then using the Navier–Stokes equation, he developed the
flow equations for both protons and deuteron flow in “conventional” cold fusion and in its variant, codeposition, where
there is also flux of the palladium ions into the cathode which builds up a loaded compartment of active material. The
concept of deuteron flux then led to metamaterials, a major improvement of CF systems. He focused on the salient
advantages of the LANR metamaterials with the PHUSOR R⃝-type system, stating that it is one prime, extremely
useful, example with high output.

Dr. Swartz then shared another of his discoveries – Optimal Operating Point (OOP’s) manifolds that organize
CF/LANR output by the amount of input power. He explained how he discovered the OOP experimentally and showed
how in all CF/LANR systems, no matter what the product (helium4, heat, or tritium production), and no matter what
the system (palladium with heavy water, nickel with ordinary water, and nanomaterials) all of these when plotted as a
function of input power demonstrate a series of dots which assemble and show a distinct pattern.

He went through the different regions, and showed where the reactions turn on and off, and how by plotting out
the experiments this way, one could show consistency and reproducibility, time and time again. He demonstrated that
OOP operation has shown the ability to determine the products of CF/LANR, and why OOP manifolds demonstrate
that CF is a reproducible phenomenon, applicable to science and engineering. He also said that he had found OOPs in
other colleague’s experiments where they had not, and showed that their data also fit these curves.
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Returning to the experimental results and engineering methods developed to control cold fusion, he then surveyed
“heat after death” and its control for several useful applications, including the use of CF/LANR systems to drive
motors. The important Take Home Point, he said, was that there is an extraordinary amount of data and information
from it that has been collected over the years.

Emissions and energy derived from CF systems is how Dr. Swartz led the lecture on Tues., Jan. 29, 2013. He
continued with the discussion of experimental results, now beginning with the near infrared emissions from active
LANR devices, and the use of CF/LANR engines to generate electricity.

He finally focused the class from aqueous cold fusion to the nanomaterials in CF/LANR, now holding worldwide
intrigue. Of particular interest was his discovery of a new type of dry and preloaded nanomaterials, a CF/LANR
material which is producing phenomenal excess heat output.

After discussing these novel characteristics and electrical breakdown (avalanche) issues, which electric drive re-
gions actually generate excess energy, he presented the development of several types of the NANOR R⃝-type CF elec-
tronic components. He concluded with introduction to advanced driving circuits that were shown to have excess energy
documented by temperature rise, heat flow, and calorimetry; heralding their revolutionary potential to change the en-
ergy landscape in circuits, distributed electrical power systems, artificial internal organs, propulsion systems, space
travel, and more.

3. Results

According to the participants, the course was a success. At the beginning of the two week course, Room 4-153 in
the Electrical Engineering building was nearly packed with a blend of about 35–40 students, as well as entrepreneurs,
engineers, physicists, and “curious” members of the community, as the class size ebbed and flowed throughout the six-
day event. Attendees came from as far away as Spain, China, Germany, and Switzerland. But they also traveled from
California, Pennsylvania, New York, and throughout Massachusetts. Many said the course was “great” and reported
also they were glad they came. If others disapproved, no one said so publicly.

4. Conclusion

While MIT officials still reportedly do not recognize cold fusion or its viability, the fact that it has entered the academic
domain, albeit through the less-structured IAP agenda, is certainly noteworthy, both for those scientists working for
its public acknowledgement and for the appearance of a place to go and get an education in this field. Twenty-seven
years later, one can now walk into an MIT classroom, listen to academic lectures on the subject, and learn that the
phenomenon is real and reproducible. And while it is still controversial, cold fusion seems to have found a fit, albeit
tight, in the academic world.
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Abstract

Collimated X-ray emission near 1.5 keV in the Karabut experiment is an anomaly that cannot be explained by conventional solid
state, atomic, or nuclear physics. In order for the X-rays to be collimated, there must either be an X-ray laser present, or else a
phased-array collimation effect produced by emitting dipoles that radiate in phase. Although there have been arguments made in
support of an X-ray laser origin of the effect, from our perspective this approach suffers from an absence of a plausible mechanism,
short excited-state electronic lifetimes, high power requirements, and an incompatibility between the experimental geometry and
the need for an elongated laser medium for beam formation. In this work we consider a model for beam formation due to many
emitting dipoles randomly positioned within a circle on a mathematically flat surface. When the emitting dipole density is low, a
speckle pattern is produced. Above a critical emitting dipole density beam formation occurs. The average intensity of the speckle
and beam is estimated from simple statistical models at low and high dipole density, and combined to develop an empirical intensity
estimate over the full range of dipole densities which compares well with numerical simulations. Beam formation occurs above a
critical number of emitting dipoles, which allows us to develop an estimate for the minimum number of emitting dipoles present
in the Karabut experiment. The effect of surface deformations is considered; constant offsets do not impact beam formation, and
locally linear offsets direct the beam slightly off of normal. Minor displacements quadratic in the surface coordinates can produce
focusing and defocusing effects, leading to a natural explanation for intense spot and line formation observed in the experiments.
c⃝ 2017 ISCMNS. All rights reserved. ISSN 2227-3123

Keywords: Beam formation, Collimated X-ray emission, Karabut experiment, Phase coherence, Up-conversion

1. Introduction

Karabut and his coworkers at the Luch Institute reported the observation of excess heat and other anomalies in glow
discharge experiments in the early 1990s [1]. In subsequent experiments Karabut noticed that soft X-rays near 1.5 keV
were emitted, and that they were collimated upward in his experiment normal to the cathode surface [2]. This effect
was studied for more than a decade [3–10], and was found to be independent of the cathode metal (the effect was
seen with Al, and with other metals through W), also to be independent of which discharge gas was used (collimated
emission was seen with H2, D2, He, Ne, Ar and Xe).
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Collimated X-ray emission in this experiment is a striking anomaly for a variety of reasons. In order to arrange
for collimated X-ray emission, either you need an X-ray laser, or else you need coherence among the emitter phases;
either option would have deep implications. Karabut was convinced, especially in his later years, that he had made an
X-ray laser. In some recent articles Ivlev speculates about the possibility of an X-ray laser mechanism in connection
with Karabut’s experiment [11,12].

In years past the author spent a decade modeling and designing X-ray lasers [13]; an experience that led to an
understanding of just how difficult it is to create a relevant population inversion and to amplify X-rays. The notion
of a population inversion at 1.5 keV involving electronic transitions in a solid state environment is unthinkable due to
the very short lifetime. And then even if somehow a population inversion could be generated, one would need enough
amplifier length to produce a collimated beam (the solid state medium is very lossy), as well as an amplifier geometry
consistent with the observed beam formation. The very broad line shape associated with the collimated emission
also argues against an X-ray laser mechanism. All of these headaches combine to rule out an X-ray laser mechanism
associated with the solid. The primary headache associated with an X-ray laser in the gas phase is the absence of
relevant electronic transitions in hydrogen, deuterium, helium and in neon gas. In this case one could contemplate
the possibility of a ubiquitous impurity in the discharge gas; however, this leads to an additional headache of coming
up with enough inverted atoms, molecules or ions to provide many gain lengths. If somehow one has any optimism
left for the approach, a consideration of the relatively long (millisecond) duration of the collimated X-ray emission
following the turning off of the discharge current should provide a cure. If the upper state radiative life time is long
then the gain is very low; and if the gain is high then the upper state radiative life time is very short and the power
requirement becomes prohibitive.

All of these arguments have led us to consider collimated X-ray emission as a result of a phased array emission
effect. In this case serious issues remain; such as how excitation is produced (which in this case is much easier since
a population inversion is not required); and how phase coherence might be established. From our perspective, both
excitation and phase coherence could be developed via the up-conversion of vibrations to produce nuclear excitation
in 201Hg, which is special because it has the lowest energy excited state (at 1565 eV) of any of the stable nuclei. We
have reported on our earlier studies of models that describe up-conversion in the lossy spin-boson model, and various
extensions and generalizations [14–16].

In this work we consider models for beam formation of the collimated X-ray emission in Karabut’s experiment
based on the assumption of phase coherent emitting dipoles randomly positioned on a plane, in connection with the
“diffuse” X-ray emission effect observed under “normal” high-current operating conditions. The collimated X-rays
in this case were observed to be normal to the cathode in a beam essentially the same size as the cathode; we find
that beam formation in the high dipole density of the model (where the emission is produced from localized dipoles)
works the same way. When the emitting dipole density is low then no beam forms, but a speckle pattern is produced.
It might be proposed that the very intense spots seen in the experiments following the turning off of the discharge are
connected with the random constructive interference effects that lead to speckle. However, we find that individual spots
associated with the speckle pattern are too small to account for this “sharp” emission effect, and that speckle cannot
account for lines or curves. Instead we find that spot formation and line formation follow naturally from models that
describe surface deformations that are quadratic or higher-order in the transverse surface coordinates.

A weak speckle pattern is generated at low emitting dipole density, and a beam is produced when the emitting dipole
density is high. A critical number or density of emitting dipoles can be estimated for the development of a beam. Since
beam formation is reported in Karabut’s experiment, it is possible to develop a constraint on the number of emitting
dipoles consistent with experiment. We have conjectured previously that a small amount of mercury contamination in
the chamber might result in some mercury sputtered onto the cathode surface, resulting in a relatively small number of
mercury nuclei that emit on a broadened version of the 1565 eV transition in 201Hg. It is possible to develop a lower
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bound on the number of mercury atoms present near the surface, to see whether it is consistent with the proposed
picture.

Key features of the model which allows for collimation of the emitted beam normal to the surface are the phase
coherence assumed, as well as the surface itself (which in the model is mathematically flat). There is no reason to
think that the cathode surface is flat at the atomic scale, since whatever the surface looked like initially is modified
in the ion bombardment, and surface loss through sputtering, which occurs during discharge operation at high current
density. Mercury atoms in the discharge gas ionized above the cathode fall would be accelerated toward the cathode
surface in this picture with an energy of up to a few keV, which means that they would end up randomly positioned
in the outer 5–10 nm of the cathode surface. If so, then one would not expect any alignment in a plane, as assumed
in the model, unless there were an ordering of the crystal planes so that some fraction of them were aligned with the
cathode surface. The expected randomization of the locations of the mercury atoms inside the cathode surface would
make beam formation to be impossible, except from the occasional crystal plane accidentally aligned with the surface.

However, it is well known in the literature that substantial deformation of a metal, as occurs during rolling, can
result in a substantial alignment of the local crystal planes with the surface [17–19]. It seems likely that the cathodes
used by Karabut were from stock that was rolled, so that one would expect the cathodes themselves to provide a source
of crystal planes oriented with the surface. During the discharge operation the cathodes undergo additional surface
deformation due to local thermal effects and electrostatic forces, which provides a natural mechanism for intense
spot and line formation. In this picture the crystal ordering built in during rolling is largely maintained during the
deformations that occuring during discharge operation.

2. Basic Model

We note that models for random arrays of emitting dipoles have been studied previously; in the case of random linear
arrays, see [20–23]; a model for a random distribution of antennas in a two dimensional circle has been studied in [24];
and for a random distribution in a triangle in [25]. Statistical models for the analysis of beam formation from random
antenna arrays have also been discussed in [26–28].

Following the discussion above, we turn our attention to a simple model for X-ray emission due to a collection of
identical emitting dipoles that are randomly distributed in a plane. We can write for the vector potential in the case of
oscillating electric dipoles [29] the summation

A(r) = −i
∑

j

kpj

|r− rj |
exp

{
ik|r− rj |

}
→ −i

kp

|r|
∑

j

exp

{
ik|r− rj |

}
, (1)

where we have assumed uniform phase, identical dipoles, and we focus on the field that results far away from the
plane. The nuclear transition in 201Hg is a magnetic dipole transition, which provides the motivation to consider the
analogous approximation for a set of oscillating magnetic dipoles

A(r) = i
∑

j
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exp

{
ik|r− rj |

}
→ i

kn̂×m

|r|
∑

j

exp

{
ik|r− rj |

}
. (2)

In either case, the resulting intensity is proportional to
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The dipoles are assumed to lie in the emitting plane defined by zj = 0, and we are interested in the intensity pattern
produced at image plane defined by z = Z (a schematic is shown in Fig. 1). In this case we can write

I(x, y, Z) ∼
∑

j

∑

j′

exp

{
ik

(√
(x− xj)2 + (y − yj)2 + Z2 −

√
(x− xj′ )2 + (y − yj′)2 + Z2

)}
. (4)

Simulations based on this model predicts beam formation for small areas when the dipole density is high, and spot
formation in the case of larger areas or when the dipole density is low.

Since the locations of the dipoles are probabilistic, it will be of interest to estimate the expectation value of the
intensity

E[I(r)] ∼
∑

j

∑

j′

E

[
exp

{
ik(|r− rj |− |r− rj′ |)

}]
. (5)

In what follows we will focus on specific model results for the summation on the right-hand side.

3. Beam Formation in the High Density Limit

Beam formation occurs when there are several dipoles that are sufficiently close together so that their contributions
can combine coherently. In this regime there is the possibility of making use of a Taylor series expansion according to

Dipoles randomly 
positioned on a flat 
surface

Collimated x-rays

Beam image 
on film

Z

Figure 1. Schematic of the model. Phase coherent dipoles are positioned randomly within an emitting area of the cathodes surface, and radiate to
form a beam if the emitting dipoles are in phase and have a sufficiently high density.
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√
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In this case we can write for the difference
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If we assume that beam formation is dominated by contributions from the lowest order terms in the Taylor series
expansion, then we can write
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The locations of the emitting dipoles are random variables, so that the intensity will be random as well. It will be
of interest to estimate the expectation value of the intensity which we can write as
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If we assume that the various xj and yj values are independent, then this becomes
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For simplicity, let us assume uniform probability distributions for a square emitting region defined by

fX(xj) =
1

L
(−L/2 < x < L/2),

fY (yj) =
1

L
(−L/2 < x < L/2). (11)
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Also for simplicity let us focus on the origin at the image, so that

E[I(0, 0, Z)] ∼ N2
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We can approximate
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We end up with

E[I(0, 0, Z)] ∼ (λZ)2

L4
N2. (14)

We have verified that the numerical are consistent with this estimate in the limit of high dipole density for a square
emitting region. Adapting this formula to emission from a circular area by simply modifying the area appears to work
well in comparison with numerical results.

4. Average Intensity in the Low Density Limit

We recall that the expectation value of the intensity is proportional to

E[I(r)] ∼
∑

j

∑
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E

[
exp

{
ik(|r− rj |− |r− rj′ |)

}]
. (15)

In the high density limit we took advantage of a Taylor series approximation, as well the separability of the sums in j
and in j′, to develop an estimate for the expectation value. In the low density limit it is possible to develop an estimate
for the expectation value of the intensity by neglecting contributions from dipoles at different locations; at low density
there are not nearby emitting dipoles for local phase coherence to contribute significantly. In this case we can write
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When the dipole density is low then the expectation value of the complex terms can be thought of as involving random
phases so that
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E
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0
eiθdθ = 0.

In this limit there is no beam formation; instead there is a speckle pattern with average intensity proportional to N , in
the vicinity of where a beam might have formed if N were higher, and also away from where the beam might have
formed.

It is possible to develop an empirical approximation that includes both the contribution from the low density limit
and from the high density limit according to
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This result is closely related to the exact formal result for the expectation value in [27,31].

5. Numerical Results

We have carried out simulations with randomly located dipoles in a square corresponding to the models described
above, and have found good agreement with the simple probabilistic models outlined above. The exposed surface of
the cathodes in the Karabut experiment are circular, which motivates us to consider the generalization

E[I(r)] ∼ E
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(18)

appropriate to emitting dipoles within a circular region of radius R.
An example of beam formation is illustrated in Fig. 2, where we see that dipoles randomly localized on a plane

within a circle of radius 100 µm results in a circular beam with a radius 100 µm. Diffraction rings are apparent in the
image which are a result of the discontinuity in the dipole density near the edge of the circular emitting area. One also
sees a speckle pattern which results from the limited number of dipoles present in the calculation.

In Fig. 3 is shown the average intensity (from many simulations) in the case of a 100 µm radius circle containing
random emitting dipoles and a 100 µm radius circle on the image plane displaced 25 cm in z. One can see that at
low dipole density the average intensity is that of a spot pattern, and at high intensity the average intensity matches
the analytic estimate. The empirical formula of Eq. (18) is seen to be a good match over the whole range of dipole
densities.

6. Beam Formation in the Karabut Experiment

Although we have no published photographic record of beam formation in Karabut’s experiment, there are two pho-
tographs that show the damage done to a Be window and a plastic window in [30]. It might have been possible to
discern the amount of speckle present from an X-ray photographic image of the beam, which based on the analysis
above would have provided us with information about how many emitting dipoles are present. In some of the photo-
graphic spectra taken in the bent mica crystal spectrometer configuration of Ref. [8] there is obvious speckle present,
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Figure 2. Beam at image plane located at Z = 25 cm in the case of a dipole density of 109 cm−2 localized in a circle of radius 100 µm. Marked
in yellow is a circle of radius 100 µm.

which tells us that the quadratic beam contribution to the intensity is not so many orders of magnitude greater than the
linear speckle contribution.

From the empirical model described above we can define a critical number of dipoles N0 at which the linear and
quadratic contributions match

N0 =

(
λZ

πR2

)2

N2
0 . (19)

We can evaluate

N0 =

(
πR2

λZ

)2

. (20)

If we assume that phase coherence among the emitting dipoles is established over the entire surface of the cathode,
then we can develop a numerical estimate for the critical number of dipoles. For this estimate we take

R = 0.5 cm, λ = 8 nm, Z = 25 cm. (21)

The corresponding critical number in this case is

N0 = 1.5× 1011. (22)
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In this picture we would good expect beam formation when the number of dipoles is larger than N0 by an order of
magnitude or more.

Another possibility is that phase coherence is established over only a part of the cathode surface, in which case the
critical number of dipoles would be smaller by the square of the ratio of the coherence area to the cathode area.

7. Spot Formation

When the dipole density is low we see speckle formation in the image plane, which is a consequence of fluctuations in
the intensity. We are interested in the development of a model that we can use to estimate the intensity of a spot given
the number of emitting dipoles in a given area.

We recall that the intensity is determined from the random locations of the dipoles according to

I(r) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik|r− rj |

}∣∣∣∣∣∣

2

. (23)

To form a spot we need for the phases associated with the different dipoles to be nearly the same. In this model we are
specifically not interested the phase coherence associated with beam formation, in which the contribution from many
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dipoles near a point add coherently. Instead we are interested in spot formation where the contribution from dipoles
that are well separated combine randomly.

Since the contribution from each dipole is assumed to be equal in this model, the only difference in the contribution
comes from the phase factor. If the dipole positions are random, then we might presume that the associated phases are
random as well. Consequently, we might consider the simpler model defined by

θ =

∣∣∣∣∣∣

N∑

j=1

exp

{
iφj

}∣∣∣∣∣∣

2

=
N∑

j=1

N∑

k=1

exp

{
i(φj − φk)

}
. (24)

From numerical simulations, the associated probability distribution is exponential in θ according to

fΘ(θ) →
1

N
exp

{
− θ

N

}
. (25)

This result is consistent with a random walk model in two dimensions, and is well known in the literature in the context
of speckle [32]. In the event that fewer than the critical number of dipoles emit in this model, then there is little or no
beam apparent, but instead individual randomly positioned spots associated with speckle.

According to this model the average intensity will be proportional to N

E[I] ∼ E[θ] = N (26)

with spots at higher intensity being rarer exponentially in the intensity. This result is consistent with the low dipole
density model discussed briefly above, where

E[I(r)] ∼ E

⎡

⎢⎣

∣∣∣∣∣∣

∑

j

exp

{
ik|r− rj |

}∣∣∣∣∣∣

2
⎤

⎥⎦ = N. (27)

In Fig. 4 we show a calculated image of the weak beam and spots under conditions where the density of dipoles
is lower, so that the total number of emitting dipoles is a bit less than the critical number. In this case the dipole
density is 5 × 107 cm−2, and the critical density needed for beam formation is about 7.4 × 107 cm−2. A histogram
of intensities for the speckle pattern and weak beam inside of the indicated circle is shown in Fig. 5, and is seen to be
close to exponential consistent with the discussion above, and in this case the number of match dipoles in the circle is
a reasonable match to the exponential fall off.

Karabut reported that the “diffuse” spectra that he observed appears when the discharge is running, and that the
very intense “sharp” emission could be seen when the discharge was turned off suddenly [8]. In this case there is a
large current spike (short in time) which accompanies the turning off of the current. Of interest is how this “sharp”
emission might be interpreted. We previously proposed that this effect could be a result of Dicke superradiance from
emitting dipoles in a localized region, where the emitting region was thought to be on the order of a square millimeter
[33]. In the following section surface deformations will be considered, which will provide a superior interpretation.

We might have conjectured that the very intense spots might be a speckle effect under conditions where the indi-
vidual dipole emission is stronger than in the case of beam formation. One argument against such a proposal is that
individual speckles in this calculation are quite small, with a peak intensity only over a few microns by a few microns.
The intense features in Karabut’s data are much larger.
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Figure 4. Beam at image plane (located at Z = 25 cm in the case of a dipole density of 5 × 107 cm−2 localized in a circle of radius 100 µm.
Marked in yellow is a circle of radius 100 µm).

It is of interest to examine the intensity distribution in the case of beam formation. In Fig. 6 we show a histogram
of the intensities when the emitting dipole density is 109 cm−2. This intensity distribution corresponds to the beam
illustrated in Fig. 2, which shows some diffraction rings inside near the boundary of the circle. The brightest speckles
are seen to be associated with the outermost diffraction ring which is on average brightest. Once again the individual
speckles in this calculation are very small, and we would not expect them to account for the intense spots seen in
Karabut’s experiment.

8. Surface Deformation Effects

After a number of runs in the glow discharge, the cathode has undergone plastic deformations (as was clear in experi-
ments done at MIT with a copy of Karabut’s system in the 1990s prior to the discovery of the collimated X-ray emission
effect). Consequently, we would not expect there to be a mathematically flat surface present, even if the cathode some-
how started out mathematically flat. There are also transient effects associated with compressional, transverse, and
drum head mode excitation. We would expect the largest dynamic effects to be due to excitation of the drum head
modes.

It is possible to include these effects in our description by working with a displacement field u(x, y, t) which keeps
track of the amount of displacement in the different directions. The intensity pattern including surface displacement
can be written as

I(r, t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik|r− rj − u(rj , t)|

}∣∣∣∣∣∣

2

. (28)
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The idea here is that the dipole positions rj are specified in the case of a mathematically flat surface. When the surface
is displaced, the (slowly varying) displacement is added systematically to the initial positions of the dipoles in the
contribution to the phase factors.

Since we expect the largest effect to come from drum head mode displacements and plastic deformations, we can
restrict the surface displacement to be normal to the surface

u(r, t) = îzu(x, y, t). (29)

It will be informative to consider the impact of low-order variations in the displacement; consequently, we work with
a Taylor series expansion around the origin given by

u(x, y, t) = u(0, 0, t) + x
∂u

∂x
+ y

∂u

∂y
+

1

2
x2 ∂

2u

∂x2
+ xy

∂2u

∂x∂y
+

1

2
y2
∂2u

∂y2
+ · · · , (30)

where the various derivatives are evaluated at x = 0 and y = 0, and may be oscillatory in time.

8.1. Uniform displacement

We consider first the impact of a uniform displacement

u(x, y, t) = u(0, 0, t) = u0(t). (31)
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Figure 5. Histogram of intensity for speckle pattern with weak beam of Fig. 4.
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Figure 6. Histogram of intensity for speckle pattern with beam of Fig. 2 formed at an emitting dipole density of 109 dipoles/cm2 .

In this case we can write for the intensity

I(r, t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik|r− rj − îzu0(t)|

}∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

j

exp

{
ik
√
(x− xj)2 + (y − yj)2 + (Z − u0(t))2

}∣∣∣∣∣∣

2

. (32)

Since we expect the largest displacement to be very small compared to the distance between the cathode and image
plane

|u0(t)| ≪ Z, (33)

we do not anticipate observable effects from uniform surface displacements.

8.2. Linear displacements

Next we consider linear displacements of the form

u(x, y, t) = a(t)x+ b(t)y. (34)

In this case we can write
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I(r, t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik
√
(x− xj)2 + (y − yj)2 + [Z − a(t)xj − b(t)yj ]2

}∣∣∣∣∣∣

2

. (35)

We would expect the beam to be offset (in the high dipole density limit) depending on the surface gradient. We can
include this effect by writing

I(r′(t), t) = I(r+ îxδx(t) + iyδy(t), t)

∼

∣∣∣∣∣∣

∑

j

exp

{
ik
√
[x+ δx(t)− xj ]2 + [y + δy(t)− yj ]2 + [Z − a(t)xj − b(t)yj ]2

}∣∣∣∣∣∣

2

. (36)

We can eliminate some of the low-order terms in the phase by choosing

δx(t) = −Za(t), δy(t) = −Za(t). (37)

If we focus on the beam originally at the origin of the image plane then we can write

I (̂ixδx(t) + iyδy(t), t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik
√
[δx(t)− xj ]2 + [δy(t)− yj ]2 + [Z − a(t)xj − b(t)yj ]2

}∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

j

exp

{
ik
√
x2
j + y2j + Z2 + δx(t)2 + δy(t)2 + [a(t)xj + b(t)yj ]2

}∣∣∣∣∣∣

2

. (38)

If the displacements are small, then the higher-order terms can be neglected, and we have the approximate result

I (̂ixδx(t) + iyδy(t), t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik
√
x2
j + y2j + Z2

}∣∣∣∣∣∣

2

. (39)

In this approximation the beam is collimated normal to the displaced surface, which is mathematically flat but not in
the x − y plane. The neglected phase factors in this case are present since the image plane is not collinear with the
displaced flat surface.

8.3. Surface curvature

If the surface is curved, there is the possibility of increasing or reducing the beam intensity, since it may be that
phase coherence can be maintained for more emitting dipoles. In general we can describe a curved surface through
displacements of the form

u(x, y) = c(t)x2 + d(t)y2 + f(t)xy. (40)

In this case we can write
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I(r, t) ∼

∣∣∣∣∣∣

∑

j

exp

{
ik

∣∣∣∣r− rj − îz[c(t)x
2
j + d(t)y2j + f(t)xjyj ]

∣∣∣∣

}∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

j

exp

{
ik
√
(x − xj)2 + (y − yj)2 + [Z − c(t)x2

j − d(t)y2j − f(t)xjyj]2
}∣∣∣∣∣∣

2

. (41)

The intensity at the origin reduces to

I(0, 0, Z, t) ∼

∣∣∣∣∣∣

∑

j

exp
{
ik
√
x2
j + y2j + [Z − c(t)x2

j − d(t)y2j − f(t)xjyj ]2
}
∣∣∣∣∣∣

2

. (42)

Note that it is possible to arrange for cancellation if

2Zc(t) = 1, 2Zd(t) = 1, f(t) = 0. (43)

In this case we can write

I(0, 0, Z, t) ∼

∣∣∣∣∣∣

∑

j

exp

⎧
⎨

⎩ik

√

Z2 +
(x2

j + y2j )
2

4Z2

⎫
⎬
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∑
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⎝
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j + y2j )
2

4Z2
−

√

Z2 +
(x2
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2

4Z2

⎞

⎠

⎫
⎬

⎭ . (44)

We can make use of a Taylor series expansion in this case to write

√

Z2 +
ρ4j
4Z2

−

√

Z2 +
ρ4j′

4Z2
=
ρ4j − ρ4j′

8Z3
+ · · · (45)

The intensity in this limit is approximately

I(0, 0, Z, t) ∼
∑

j

∑

j′

exp

{
ik

(
(x2

j + y2j )
2 − (x2

j′ + y2j′ )
2

8Z3

)}
. (46)

It is probably simplest to evaluate the expectation value assuming N emitting dipoles in a circular area with radius ρ0
around the origin, in which case the expectation value of the intensity is
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E[I(0, 0, Z, t)] ∼ E

⎡

⎣
∑

j

∑

j′

exp

{
ik

(
(x2

j + y2j )
2 − (x2

j′ + y2j′)
2

8Z3

)}⎤

⎦

= N2

∣∣∣∣∣E
[
exp

{
ik

(
ρ4j
8Z3

)}]∣∣∣∣∣

2

. (47)

To evaluate the expectation value we make use of a radial probability distribution given by

f(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

2ρ

ρ20
, 0 ≤ ρ ≤ ρ0,

0, otherwise.

(48)

We can compute

E

[
exp

{
ik

(
ρ4j
8Z3

)}]
=

2

ρ20

∫ ρ0

0
ρ exp

{
ik

(
ρ4

8Z3

)}
dρ. (49)

If the circle is sufficiently large, so that

kρ40
8Z3

=
πρ40
4λZ3

≫ 1 (50)

(the characteristic value of ρ0 for the numbers under consideration is about 2.5 mm) then we obtain

E

[
exp

{
ik

(
ρ4j
8Z3

)}]
→ 1√

−i

√
2πZ3

kρ40
. (51)

In the end we can write

E

⎡

⎣
∑

j

∑

j′

exp

{
ik

(
(x2

j + y2j )
2 − (x2

j′ + y2j′)
2

8Z3

)}⎤

⎦ =

(
2πZ3

kρ40

)
N2 =

(
λZ3

ρ40

)
N2. (52)

This is a much greater intensity that we obtained with earlier models. Collimated X-ray emission under conditions
where the surface is distorted in this way can result in a very intense beam with a corresponding small spot size at the
image plane.

We note that surface displacement in this case is a focusing effect, with no enhancement in the area integral of the
intensity at the image plane. An example of a focused beam with parameters

c(t) = 0.80
1

2Z
, d(t) = 0.80

1

2Z
, f(t) = 0 (53)

is illustrated in Fig. 7. A beam in the shape of a line longer than the size of the circle containing the emitting dipoles
is shown in Fig. 8. In this case the distorted surface parameters are
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Figure 7. Partially focused beam at image plane located at Z = 25 cm in the case of a dipole density of 109 cm−2. Marked in yellow is a circle
of radius 100 µm.

c(t) = −0.30
1

2Z
, d(t) = 0.90

1

2Z
, f(t) = 0. (54)

9. Discussion and Conclusions

Collimated X-ray emission in the Karabut experiment is an anomaly that cannot be understood based on currently
accepted solid state and nuclear physics, which provides motivation for seeking an understanding of the effect. There
are two possible origins of a collimation effect: either an X-ray laser has been created; or else beam formation is due
to phased array emission. We have argued many times against the proposal that an X-ray laser has been created, in part
due to the absence of any compelling mechanism to produce a population inversion, in part due to the associated high
power density requirement, and in part due to the mismatch between the geometry needed for beam formation and the
geometry of the experiment.

Instead we have conjectured that the collimation is a consequence of phased array emission, a proposal which on
the one hand is free of the strong objections against an X-ray laser mechanism, but which on the other hand brings new
issues to resolve. The two most significant mechanistic issues are how excitation in the keV range can be produced, and
how phase coherence might be established. These problems are very serious; however, in our view there are plausible
mechanisms for both of these issues.

Independent of Karabut’s experiment we have for many years been interested in mechanisms that might down-
convert a large nuclear quantum in the Fleischmann–Pons experiment, to account for excess heat as due to nuclear re-
actions without commensurate energetic nuclear radiation. The big headache in understanding the mechanism through
which excess heat is produced is that in a successful experiment one has the possibility of measuring thermal energy
and 4He in the gas phase, neither of which at this point shed much light on whatever physical mechanism is involved.
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Figure 8. Beam partially focused in x and defocused in y at image plane located at Z = 25 cm in the case of a dipole density of 109 cm−2.
Marked in yellow is a circle of radius 100 µm.

If the large nuclear quantum is being down-converted, then we would want to study the down-conversion mechanism
in a different kind of experiment more easily diagnosed and interpreted. Because of the intimate theoretical connection
between up-conversion and down-conversion, we have the possibility of understanding how down-conversion works
by studying up-conversion. Initially we contemplated a theory-based experiment in which THz vibrations would be
up-converted to produce excitation at 1565 eV in 201Hg nuclei, which has the lowest energy excited state of all the
stable nuclei, and which would decay primarily by internal conversion but also in part via X-ray emission. In this
proposed theory-based experiment we recognized that the up-conversion of vibrational energy would result in phase
coherence, with the possibility of phased array beam formation. The claim of collimated X-ray emission near 1.5 keV
in the Karabut experiment drew our attention since it seemed that the up-conversion experiment that we were interested
might have already been implemented. From this perspective collimation in the Karabut experiment could be inter-
preted as an experimental confirmation of the up-conversion mechanism, primarily since there seems to be no other
plausible interpretation. Collimated X-ray emission claimed in some cases near 1.5 keV in the water jet experiments
of Kornilova, Vysotskii and coworkers [34–37] seems to us to be closely related, and to provide another experiment
where up-conversion is observed (a point of view we note that is at odds with the theoretical explanation put forth by
Vysotskii in these references).

One motivation for the modeling described in this paper was to see whether we might develop constraints on the
number of emitting dipoles involved, which according to our picture would shed light on the number of mercury atoms
present on the surface. We had thought initially that low levels of mercury as an impurity in the cathodes or in the
gas might be responsible for the collimated emission; however, the spectra published by Karabut shows no indication
of edge absorption which favors implantation from mercury contamination in the discharge gas. For example, the
K-edge absorption in aluminum starts at 1562 eV, which should be readily apparent if the emission originates in the
bulk. The transmission for a 1 µm Al layer is close to 90% below the K-edge, and near 30% above the K-edge (see



P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 22 (2017) 53–73 71

E (eV)
0 500 1000 1500 2000

tra
ns

m
is

si
on

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. Transmission through 1 µm of Al as a function of the X-ray energy from Henke’s online x-ray transmission calculator.

Fig. 9); this difference would be readily apparent in the spectra if the emission was due to bulk radiators. The absence
of an observable K-edge absorption feature in the spectrum suggests that the emission is localized to within 0.1 µm
or less from the surface, which is consistent with implantation from the mercury as an impurity in the discharge gas.
Beam formation requires a dipole density above a threshold value, and we have estimated the threshold to correspond
to about 1.5 × 1011 emitting dipoles in the Karabut experiment. Probably the total number of dipoles is on the order
of 1.5 × 1012 or higher, to be consistent with unambiguous beam formation. Since the natural abundance of 201Hg is
13.18%, this puts the total number of mercury atoms at or above 1013.

For beam formation we made use of a model based on emitting dipoles randomly positioned on a mathematical
plane within a circle, to match the cathode geometry in Karabut’s experiment. Beam formation in this case requires
both uniform phase, and for there to be a mathematical plane to restrict random variations in position normal to the
surface. In previous work presented at ICCF17 we assumed that the dipoles were randomly spaced in a volume near
the surface, which could produce speckles, but we did not appreciate at the time that this model does not produce a
beam of about the same size as the cathode. The orientation of the crystal planes aligned with the surface produced by
the rolling process used in the fabrication of the foils from which the cathodes are taken is critical for beam formation,
based on the model studied in this paper.

We have speculated previously about the origin of the very intense spots and lines that appear on the film (and
which produces film damage), including proposals that small fraction of the surface produces a collimated beam to
form a spot, and that a line might be produced by a steering effect. Here we have shown that surface deformation can
produce a focusing of the beam, both in one dimension to produce a line, and in two dimensions to produce a spot.
This new picture provides in our view a much stronger argument than the earlier speculation.

We have previously speculated at ICCF17 that the bursts in emission following the turning off of the discharge
was due to nonlinear Rabi oscillations in the donor and receiver model, a proposal strongly criticized by Vysotskii
[38] on the grounds that the strong coupling needed to produce such rapid nonlinear Rabi oscillations was unlikely. In
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retrospect Vysotskii’s argument seems right, and we have subsequently been thinking about new models for the up-
conversion which will be discussed elsewhere. However, in these models the burst effect comes about from the basic
time dependence of the phonon–nuclear coupling matrix element, which in this case involves two photon exchange
since the transition is M1 and the phonon-nuclear interaction is E1, to produce a cos4 ω0t time-dependence which
is sharpened by a nonlinearity associated with local up-conversion effects. In this picture the excitation of the 201Hg
transition is from excitation transfer from much more strongly coupled transitions in the cathode holder and steel target
chamber, and drum head mode excitation of the cathode mediates this excitation transfer.
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