

Talk describes our effort to find excess heat in metal-hydrogen plasma Work is on going

Conclusions are still preliminary and therefore tentative

- Claytor¹
 - Report tritium
 - 1500-2500 V, 150-250 torr, > 5 A/cm²
- Karabut²
 - Report excess heat, nuclear products
 - 100-500 V, 3-10 torr, > 10-100 mA/cm²
- Claytor, et. al. "Tritium Production from Palladium Alloys", ICCF-7, 1998, p. 88
- 2. Karabut, et. Al. "*Nuclear product ratio for glow discharge in deuterium*", Phys. Lett. A. 1992, p. 265

April 2012

10th Workshop - Siena

2

Claytor tritium since early 90's

High current, high pressure

This work in this pressure/current/voltage regime

Karabut variety of effects since '92

Low pressure, lower current

Reference only – this work does not attempt to replicate Karabut

Background

Recently, simple thermometry experiments suggest possible excess heat using mixed H +D with Ni cathode³

- Plasma produces a greater temperature rise than same power delivered into a calibration resistor
- Excess power depends on H:D ratio in gas
- Excess power depends on cathode material

3. Claytor, Private conversation, September 2011

April 2012

10th Workshop - Siena

3

Cells that produced tritium also seem to make excess heat This work undertaken to validate these simple experiments

Research Objective

- Do we see excess heat in H/D plasma?
- Does excess heat depend on H:D ratio?
- Does excess heat depend on cathode material?

Courses

April 2012

10th Workshop - Siena

Original work done in uncontrolled environment Use isothermal and use ΔT and ΔP as surrogate for power Compare plasma to resistor with same input waveform

Calibrate by replacing cathode with resistor

Built from off-the-shelf high vacuum components

High pressure & current → low duty cycle

Constant power by varying pulse frequency

Sharp voltage rise time

Custom built pulse generator – IGBT discharges capacitor bank – HV DC supplied by commercial supply

100 M samples/sec data acquisition. Analyze every pulse to compute input power

Ni alloy is commercial mu-metal magnetic shielding Long skinny cathode Tested various metals

Initial pre-heat then constant power

Measure T and P after equilibrium

Note effect of change in pulse width & current

X axis gas mix, Y is percent increase when heated Ideal gas law expect ΔP and ΔT same for same power

ΔT (weighted average of 4 temps – surface area weights)

ΔT pretty similar for various cathodes – possible effect with Ni alloy- sputtering??

ΔP greater in plasma for all gases - ionization

ΔP greater for heavier gas mix ??

Cathode #1 may have lost heat due to darkening of glass due to sputtering

Maybe excess heat – need more precision

Must have calorimeter

Build a good calorimete Good by this definition should see 1% effect

Add seebeck envelope – all heat passes through sensors.

Calibrate with resistor

Means have to take apart to calibrate – worry about reproducability

Calibrate with resistor

Means have to take apart to calibrate

Challenge of repeatability

I call air cooled Seebeck – Storms water cooled, later NRL and Letts air cooled designs All heat passes through Seebeck junctions (TEC)

Output is sum all Seebeck junction voltages

EPF – expanded polystyrene foam

Change gas without opening chamber

Valve & pressure gauge inside isothermal enclosure Baratron gauges sensitive to changes in ambient temp

Calibration x=Volts, Y=Watts -> Very linear
Residual (mW) is calculated – actual
Consistent across assembly/disassembly within +/- ~30 mW
Only run for month – need more experience
Need to test for heat location sensitivity

10 second time series

Very little room coupling

Most runs at two power levels (5W and 6.5W glow – fan is 0.5W so total power is 5.5 or 7W)

Noise is both Seebeck voltage & input power variation

Double values at a given point are low & high input power levels

Suggests dependence on cathode material -> Ni alloy is best we've tested so far

Ni alloy excess power may be real

Note all runs with cathode with undisturbed calorimeter setup

Not sure helium it is valid control – may be variations in plasma conditons

Different plasma propagation as evidenced by waveform

None-the-less this suggests hydrogen makes more excess heat

Surface is quickly eroded

If LENR has implications about on – NAE can't take long to build

Excess Heat:

Confident: xP < 2-3%

Tentative: Maybe some xP – close to calorimeter limits

Isotope Effect: - not seen Cathode material - not sure

Good calorimetry is a must

Future work

- · Have we run the same experiment?
 - · Analyze gas from cell for tritium
- Do we have any measurement artifacts?
 - Look for better control
 - Additional tests of power measurements
- · Look for ways to increase effect
 - Anode-cathode separation distance
 - Other materials

April 2012

10th Workshop - Siena

2

Results are sufficiently interesting to keep going Make sure we're running same experiment Make sure no artifacts causing results Better characterize calorimeter

What is an adequate control?