Talk describes our effort to find excess heat in metal-hydrogen plasma Work is on going Conclusions are still preliminary and therefore tentative - Claytor¹ - Report tritium - 1500-2500 V, 150-250 torr, > 5 A/cm² - Karabut² - Report excess heat, nuclear products - 100-500 V, 3-10 torr, > 10-100 mA/cm² - Claytor, et. al. "Tritium Production from Palladium Alloys", ICCF-7, 1998, p. 88 - 2. Karabut, et. Al. "*Nuclear product ratio for glow discharge in deuterium*", Phys. Lett. A. 1992, p. 265 April 2012 10th Workshop - Siena 2 Claytor tritium since early 90's High current, high pressure This work in this pressure/current/voltage regime Karabut variety of effects since '92 Low pressure, lower current Reference only – this work does not attempt to replicate Karabut ## Background Recently, simple thermometry experiments suggest possible excess heat using mixed H +D with Ni cathode³ - Plasma produces a greater temperature rise than same power delivered into a calibration resistor - Excess power depends on H:D ratio in gas - Excess power depends on cathode material 3. Claytor, Private conversation, September 2011 April 2012 10th Workshop - Siena 3 Cells that produced tritium also seem to make excess heat This work undertaken to validate these simple experiments ## Research Objective - Do we see excess heat in H/D plasma? - Does excess heat depend on H:D ratio? - Does excess heat depend on cathode material? Courses April 2012 10th Workshop - Siena Original work done in uncontrolled environment Use isothermal and use ΔT and ΔP as surrogate for power Compare plasma to resistor with same input waveform Calibrate by replacing cathode with resistor Built from off-the-shelf high vacuum components High pressure & current → low duty cycle Constant power by varying pulse frequency Sharp voltage rise time Custom built pulse generator – IGBT discharges capacitor bank – HV DC supplied by commercial supply 100 M samples/sec data acquisition. Analyze every pulse to compute input power Ni alloy is commercial mu-metal magnetic shielding Long skinny cathode Tested various metals Initial pre-heat then constant power Measure T and P after equilibrium Note effect of change in pulse width & current X axis gas mix, Y is percent increase when heated Ideal gas law expect ΔP and ΔT same for same power ΔT (weighted average of 4 temps – surface area weights) ΔT pretty similar for various cathodes – possible effect with Ni alloy- sputtering?? ΔP greater in plasma for all gases - ionization ΔP greater for heavier gas mix ?? Cathode #1 may have lost heat due to darkening of glass due to sputtering Maybe excess heat – need more precision Must have calorimeter Build a good calorimete Good by this definition should see 1% effect Add seebeck envelope – all heat passes through sensors. Calibrate with resistor Means have to take apart to calibrate – worry about reproducability Calibrate with resistor Means have to take apart to calibrate Challenge of repeatability I call air cooled Seebeck – Storms water cooled, later NRL and Letts air cooled designs All heat passes through Seebeck junctions (TEC) Output is sum all Seebeck junction voltages EPF – expanded polystyrene foam Change gas without opening chamber Valve & pressure gauge inside isothermal enclosure Baratron gauges sensitive to changes in ambient temp Calibration x=Volts, Y=Watts -> Very linear Residual (mW) is calculated – actual Consistent across assembly/disassembly within +/- ~30 mW Only run for month – need more experience Need to test for heat location sensitivity 10 second time series Very little room coupling Most runs at two power levels (5W and 6.5W glow – fan is 0.5W so total power is 5.5 or 7W) Noise is both Seebeck voltage & input power variation Double values at a given point are low & high input power levels Suggests dependence on cathode material -> Ni alloy is best we've tested so far Ni alloy excess power may be real Note all runs with cathode with undisturbed calorimeter setup Not sure helium it is valid control – may be variations in plasma conditons Different plasma propagation as evidenced by waveform None-the-less this suggests hydrogen makes more excess heat Surface is quickly eroded If LENR has implications about on – NAE can't take long to build ## **Excess Heat:** Confident: xP < 2-3% Tentative: Maybe some xP – close to calorimeter limits Isotope Effect: - not seen Cathode material - not sure Good calorimetry is a must ## Future work - · Have we run the same experiment? - · Analyze gas from cell for tritium - Do we have any measurement artifacts? - Look for better control - Additional tests of power measurements - · Look for ways to increase effect - Anode-cathode separation distance - Other materials April 2012 10th Workshop - Siena 2 Results are sufficiently interesting to keep going Make sure we're running same experiment Make sure no artifacts causing results Better characterize calorimeter What is an adequate control?