# PRODUCTION OF <sup>4</sup>He IN D<sub>2</sub>-LOADED PALLADIUM-CARBON CATALYST I

W. BRIAN CLARKE\* McMaster University, Department of Physics and Astronomy Hamilton, Ontario L8S 4K1, Canada

Received April 10, 2001 Accepted for Publication November 14, 2001

A series of lead vials of internal volume 1.0 cm<sup>3</sup> were charged with ~200 mg of carbon catalyst containing 0.5% Pd and 0.4% Pd. The vials were clamped to stainless steel manifolds on a vacuum line, then pumped out and filled with high-purity  $H_2$  or  $D_2$  at a pressure of 152 cm Hg and a temperature of 23°C. Several vials contained ordinary activated carbon instead of palladiumcarbon, and some vials contained only  $H_2$  or  $D_2$ . All the vials were stored in a sandbox heated to ~200°C for times up to 45 days before mass spectrometer measurements of <sup>3</sup>He and <sup>4</sup>He were made. No evidence was found for the high concentrations of <sup>4</sup>He claimed in similar experiments by several other researchers. The upper limit for the concentration excess of  ${}^{4}He$  in  $D_2$  in vials containing palladium-carbon is 11 ppt (parts per trillion) at the 95% confidence level. This limit for <sup>4</sup>He may be compared with previous claims in similar experiments of 100 ppm (parts per million) by Case and 11 ppm by George and McKubre et al.

**KEYWORDS:** palladium-carbon catalyst, helium isotopes

#### I. INTRODUCTION

In 1997, Case published an international patent application  $^1$  which described production of heat and  $^4$ He when a palladium-carbon catalyst was exposed to  $D_2$  gas in a closed steel container at modest pressures, from a partial vacuum to 10 atm, and at temperatures from 150 to 250°C. Case restated his claims in 1998 (Ref. 2), citing reaction temperatures of 130 to 275°C, and noting that he had examined "many such catalysts, and found that a platinum-group metal supported on activated car-

bon, and a loading of about  $\frac{1}{2}$  to 1% on the substrate seemed to be preferred." Case further stated that the  $D_2$  from long-term runs had been analyzed by mass spectrometer and shown "to contain very roughly about 100 ppm of helium-4, which was not present in the research-grade  $D_2$  fuel." This finding and the apparent excess temperature detected in  $D_2$ -loaded versus  $H_2$ -loaded containers led Case to conclude that the reaction  $D + D = {}^4He + 23.8$  MeV was responsible.

Soon after the initial report<sup>1</sup> of Case's findings, George<sup>3</sup> set up similar experiments at SRI International (SRI). A 50-cm<sup>3</sup> stainless steel container containing ~10g palladium-carbon catalyst was pumped out and subjected to the cleaning procedure described by Case<sup>1</sup> before filling it with D<sub>2</sub>. The container was attached to a quadrupole-type mass spectrometer capable of resolving  $D_2$  from <sup>4</sup>He (resolution ~ one part in 200) and 15 aliquots of the D<sub>2</sub> were assayed for <sup>4</sup>He over a period of 27 days. George's results were indeed remarkable: the <sup>4</sup>He concentration showed an approximately linear increase from <0.5 ppm after about four days to 11 ppm at 27 days, whereas 14 aliquots of H<sub>2</sub> taken from an identical container containing palladium-carbon under similar pressure and temperature conditions and over the same time interval showed no apparent increase of <sup>4</sup>He concentration above 0.4 ppm.

Recently, McKubre et al. have published a further account of the "Case replication" experiments at SRI (Ref. 4). The <sup>4</sup>He results described by George<sup>3</sup> were extended to 34 days, two other D<sub>2</sub> runs were reported, and further measurements from identical containers loaded with H<sub>2</sub> instead of D<sub>2</sub> were in good accord with George's results except for an unexplained increase of <sup>4</sup>He concentration in a H<sub>2</sub>-loaded container from 1 to 2 ppm during the time period 20 to 41 days. McKubre et al. also placed temperature sensors in the catalyst, in the gas inside the containers, and in the air outside the containers. Thus, they were able to estimate the total excess energy from the D<sub>2</sub>-loaded versus H<sub>2</sub>-loaded containers at 150 KJ during a heating time of 20 days. The data indicated Q-values of 31  $\pm$  13 and 32  $\pm$  13 MeV per <sup>4</sup>He atom produced during the 20 days. It will be noted

<sup>\*</sup>We are sorry to inform our readers that Dr. W. Brian Clarke is deceased.

that these Q-values are in excellent agreement with the known value of 23.8 MeV for the nuclear fusion reaction  $D + D = {}^{4}\text{He} + \gamma$ .

The SRI experiments were carried out with 50 cm<sup>3</sup> stainless steel vials containing  $\sim 10g$  palladium-carbon. The estimate of  $32 \pm 13$  MeV per <sup>4</sup>He atom was deduced from the linear relationship between <sup>4</sup>He release and excess energy. Thus, the production of <sup>4</sup>He in an SRI container in 20 days must have amounted to 3.0  $\pm$  1.3  $\times$ 10<sup>16</sup> atoms <sup>4</sup>He. Because the measured concentration of <sup>4</sup>He at 20 days was 8 ppm, it follows that the D<sub>2</sub> pressure must have been constant at  $\sim$ 3 atm at 20°C or  $\sim$ 5 atm at 200°C, during the 20 days, assuming that the <sup>4</sup>He concentrations quoted by McKubre et al. are expressed in the normal way, i.e., as measured fractions of <sup>4</sup>He atoms to D<sub>2</sub> molecules in actual aliquots of the gas phase. As will be discussed later, although the initial D<sub>2</sub> pressure may indeed have been  $\sim$ 3 atm at 20°C, absorption by the palladium-carbon surely caused a rapid (within  $\sim$ 2 days) decrease in pressure to  $\sim$ 20% of the initial value. It does not seem plausible that the initial  $D_2$  pressure of  $\sim 3$  atm was maintained by periodic or continuous additions of D<sub>2</sub> from a tank because this would have resulted in a large systematic error due to spurious additions of <sup>4</sup>He from that source. Therefore, it is concluded that the <sup>4</sup>He concentrations quoted by McKubre et al. refer to the total initial D2 (absorbed plus gas phase) in the containers.

It should be mentioned that the Case-SRI heat results have not been confirmed. Little<sup>5</sup> in a series of experiments with palladium-carbon loaded with D<sub>2</sub>, under similar conditions as outlined by Case,<sup>1,2</sup> was unable to find any evidence for excess heat. Because of the apparent discrepancy, and the interest of some researchers in the possibility of low-temperature nuclear reactions, it was considered worthwhile to check the previous <sup>4</sup>He results using state-of-the-art mass-spectrometric techniques.

#### II. EXPERIMENTAL METHODS

#### II.A. Samples

Three palladium-carbon samples were donated by M. C. H. McKubre and F. L. Tanzella. Two of these contained 0.5% Pd and one contained 0.4% Pd. Aliquots of all three samples had previously shown apparent excess <sup>4</sup>He in D<sub>2</sub>-loading experiments at SRI. One palladium-carbon sample containing 0.5% Pd was donated by K. L. Shanahan. The carbon used in this work was ordinary "activated" coconut charcoal, which had been used for many years in this laboratory to condense and separate inert gases. Deuterium and hydrogen gas were made by reacting heavy water and distilled water with granulated zinc at 400°C as described by Kirshenbaum. The heavy water was made by distillation at Oak

Ridge, Tennessee, in 1946, several years before atmospheric thermonuclear testing began, and consequently had a much lower tritium content (T/D =  $0.9 \pm 0.1 \times 10^{-15}$ ) than present-day heavy water. The distilled water had a T/H ratio of  $3.0 \pm 0.2 \times 10^{-17}$ . Production of <sup>3</sup>He via tritium decay was negligible for the decay times employed in these experiments.

#### II.B. Lead Tube Containers and Vacuum Techniques

Palladium-carbon and carbon samples weighing 0.19 to 0.21 g were placed in 8-cm lengths of 99.99% lead tubing (outer diameter = 0.95 cm, wall thickness = 0.16 cm), which were pinch-sealed at one end. About 10 cm of stainless steel ribbon (0.5 mm  $\times$  0.03 mm) was crumpled loosely and placed on top of the palladiumcarbon and carbon to prevent the particles from jumping when pumping was started. It is considered that the steel ribbon did not interfere significantly with free flow of H<sub>2</sub> or D<sub>2</sub> in the containers. The lead tube technique for storing gas samples was developed in this laboratory for another purpose,<sup>7</sup> and extensive tests have shown that the vials have excellent integrity for outward leakage of sample helium or inward leakage of atmospheric helium. For example, mass spectrometer analyses of residual gas inside lead tube vials of internal volume  $\sim 1.0$  cm<sup>3</sup>, pumped out and sealed then stored in air at temperatures from 20 to 250°C for times of up to 2 yr show an accumulation of  $<2 \times 10^8$  atoms <sup>4</sup>He.

The lead tube vials were attached with clamps to sidearms of two stainless steel manifolds on a vacuum line. Vials containing palladium-carbon and carbon were interspersed with empty vials on the manifold. All vials were heated to  $\sim 130^{\circ}$ C with electrical heating tapes for 4 days, until the pressure reached  $10^{-8}$  torr; H<sub>2</sub> and D<sub>2</sub> gas was made in a separate vacuum system and stored in 1-L Pyrex glass containers. The H<sub>2</sub> and D<sub>2</sub> were "cleaned" of traces of atmospheric helium by briefly pumping through a trap containing activated charcoal held at -196°C, then allowed to heat up to -120°C immediately before admitting the purified H<sub>2</sub> or D<sub>2</sub> to the manifold sections of the vacuum line. The procedure outlined by Case<sup>1</sup> was followed, i.e., the manifold sections were initially filled with H<sub>2</sub> or D<sub>2</sub> at a pressure of 152 cm Hg with the vials heated to 150°C, then allowed to stand for 1 h before pumping out. This procedure was carried out twice before filling the vials with H<sub>2</sub> or D<sub>2</sub> at a pressure of 152 cm Hg and a temperature of 23°C. Pinch-sealing of individual lead vials was done as rapidly as possible, within  $\sim 10$  min. Twenty lead vials were filled with D<sub>2</sub> in one manifold, and 2 h later, 24 lead vials were filled with H<sub>2</sub> in the other manifold. Immediately after pinchsealing, the vials were placed upright, with the palladiumcarbon or carbon at the bottom, in a sandbox on a hot plate. Tests made with a temperature probe showed that there was a gradient from 200°C at the bottom of the lead vials to 190°C at the top.

## II.C. Mass Spectrometry

The mass spectrometer was designed specifically for  $^3$ He and  $^4$ He measurements on small helium samples. The detection limits are  $\sim 10^4$  and  $10^8$  atoms for  $^3$ He and  $^4$ He, respectively. The instrument is operated in the static mode, with simultaneous detection of  $^3$ He and  $^4$ He ion currents and a mass resolution of 1 part in 620. More detailed descriptions have been given in previous papers.  $^{8-11}$  After removal from the sandbox, the lead-tube vials were each placed in a simple vacuum bellows puncturing device attached to the mass spectrometer inlet system. Helium samples prepared from 0.008 cm $^3$  STP air aliquots were used to calibrate the mass spectrometer during each series of analyses of  $^3$ He and  $^4$ He in H $_2$  or D $_2$  contained in the lead-tube vials.

#### III. RESULTS AND DISCUSSION

### III.A. The <sup>3</sup>He and <sup>4</sup>He in the Palladium-Carbon

Before the work on H<sub>2</sub> or D<sub>2</sub>-loading began, trapped helium was released from small pieces of the three SRI palladium-carbon samples by heating to 2300°C in the mass spectrometer inlet line as described previously. 9–11 The helium isotope results are given in Table I. It seems likely that the observed amounts are due to traces of atmospheric helium trapped in closed pores in the carbon and therefore not removed by pumping for  $\sim$ 12 h at 23°C in the mass spectrometer inlet system before analysis. The "worst case" example appears to be G75-E (A) which contains  $0.73 \pm 0.09 \times 10^9$  of <sup>4</sup>He atoms/mg. It will be assumed that the 50 cm<sup>3</sup> containers used at SRI (Refs. 3 and 4) were charged with 10 g palladiumcarbon with a true density of 2.0 g/cm<sup>3</sup> (Refs. 12 and 13). It is also assumed that in the SRI experiments the initial pressure of H<sub>2</sub> or D<sub>2</sub> was ~3 atm at 20°C (i.e.,  $\sim$ 5 atm at 210°C) and that the <sup>4</sup>He concentrations<sup>3,4</sup> refer to the initial filling pressure of H<sub>2</sub> or D<sub>2</sub> in the container and not to the actual pressure attained after adsorption of H<sub>2</sub> or D<sub>2</sub> by the palladium-carbon. Thus, it

TABLE I
Helium in Palladium-Carbon Specimens

| Sample    | Mass<br>(mg) | Pd (%) | <sup>4</sup> He<br>(Atoms/mg) <sup>a</sup><br>(× 10 <sup>9</sup> ) | $^{3}$ He $(Atoms/mg)^{a}$ $(\times 10^{3})$ |
|-----------|--------------|--------|--------------------------------------------------------------------|----------------------------------------------|
| G-75E (A) | 5.53         | 0.5    | $0.73 \pm 0.09$                                                    | $3 \pm 11$ $-11 \pm 10$ $-2 \pm 8$           |
| G-75D     | 5.38         | 0.4    | $0.45 \pm 0.04$                                                    |                                              |
| G-75E (B) | 5.50         | 0.5    | $0.24 \pm 0.03$                                                    |                                              |

<sup>&</sup>lt;sup>a</sup>Uncertainties are estimates of random and systematic errors at a level of 1 sigma.

follows that complete release of trapped  $^4\text{He}$  from the worst case G75-E (A) would result in only 2.2 ppb (parts per billion) of additional  $^4\text{He}$ . This is negligible compared with the concentrations of up to 11 ppm found by George  $^3$  and McKubre et al.  $^4$  However, as will be discussed later in this paper, release of trapped atmospheric helium must be considered in this work because of the much lower measured concentrations of  $^4\text{He}$  in the  $\text{H}_2$  and  $\text{D}_2$ .

# III.B. Absorption of $H_2$ and $D_2$ by Palladium-Carbon and Carbon

When each lead vial was punctured, the pressure was recorded with a small mercury manometer in a known-volume section of the mass spectrometer inlet system. In this way, the amounts of  $H_2$  or  $D_2$  were accurately determined. For pure H<sub>2</sub> or D<sub>2</sub> samples, the measured amounts agreed closely (within 5%) with those calculated from the filling pressure and temperature, and the vial internal volumes. Measurements of the vial internal volumes were made at a later date by sealing the puncture holes with a small blob of epoxy and then repuncturing the vials in a vacuum system containing a low-sensitivity McLeod gauge. Because of absorption by carbon, the palladium-carbon vials contained much less H<sub>2</sub> or D<sub>2</sub> in the gas phase than originally admitted to the vial. As mentioned previously, the vials on the vacuum manifolds were pinch-sealed as rapidly as possible to minimize contamination by diffusion of atmospheric helium through Pyrex glass sections. During the 10-min sealing time, the H<sub>2</sub> or D<sub>2</sub> pressure was not observed to decrease and, in fact, increased slightly from 152 cm Hg to 153 cm Hg because the pinch-sealing caused a decrease in manifold volume.

Vials containing palladium-carbon analyzed after 5 days in the sandbox at 200°C had only  $\sim$ 23% of the original H<sub>2</sub> or D<sub>2</sub> in the gas phase, with the remainder absorbed in the carbon and not released during the 3-min processing time in the mass spectrometer inlet system. Later tests showed that most (>90%) of the absorbed H<sub>2</sub> or D<sub>2</sub> was released to vacuum in 3 h at 23°C. A summary of the H<sub>2</sub>, D<sub>2</sub> results is shown in Fig. 1. It is apparent that in the palladium-carbon vials, there was a rapid decrease in  $H_2$  or  $D_2$  pressure, which reached equilibrium at  $\sim 23\%$ of the initial pressure in <5 days, whereas the ordinary activated carbon absorbed H2 or D2 at a much slower rate. The carbon data shown in Fig. 1 were fitted to the logarithmic equation  $y = -0.16 \ln(x) - 1.2$  which indicates that  $\sim$ 430 days would elapse before the H<sub>2</sub> or D<sub>2</sub> pressure in the carbon-containing vials reached 23% of the initial pressure.

#### III.C. <sup>4</sup>He Measurements

The <sup>4</sup>He measurements are summarized in Fig. 2 and Table II. The <sup>4</sup>He concentrations in the palladium-carbon

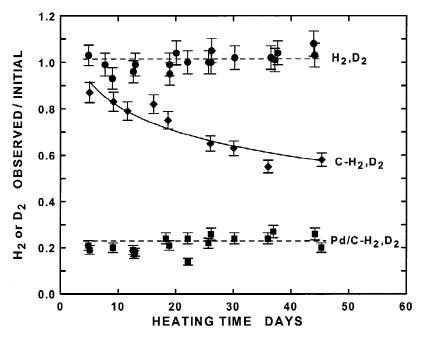



Fig. 1. Ratios of measured H<sub>2</sub> or D<sub>2</sub> amounts in the lead vials to the initial amounts immediately after filling. Horizontal dashed lines were drawn at mean ratios of 1.015 for vials containing only H<sub>2</sub> or D<sub>2</sub> and at 0.23 for vials containing palladium-carbon and H<sub>2</sub> or D<sub>2</sub>. The solid line drawn through the carbon points is a least-squares logarithmic fit (see the text).

TABLE II He-4 Concentrations and  $R/R_a$  Values

| Sample                                                                                                                 | $N^{\mathrm{a}}$            | <sup>4</sup> He/(H <sub>2</sub> or D <sub>2</sub> )<br>(ppt) <sup>b</sup> | $R/R_a^c$                                                                           |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Pd/C-H <sub>2</sub><br>Pd/C-D <sub>2</sub><br>C-H <sub>2</sub><br>C-D <sub>2</sub><br>H <sub>2</sub><br>D <sub>2</sub> | 9<br>8<br>5<br>4<br>10<br>8 | $58 \pm 16$ $46 \pm 9$ $57 \pm 20$ $42 \pm 11$ $62 \pm 11$ $54 \pm 17$    | $0.9 \pm 1.0$ $2.2 \pm 0.7$ $2.3 \pm 1.8$ $0.5 \pm 1.6$ $2.0 \pm 0.9$ $1.7 \pm 1.0$ |

 $<sup>^{</sup>a}N =$  number of samples analyzed.

or carbon vials are expressed relative to the initial  $H_2$  or  $D_2$  immediately after filling and not to the measured  $H_2$  or  $D_2$  when the vials were punctured in the mass spectrometer inlet system. Thus, the <sup>4</sup>He concentrations are expressed relative to the sum of adsorbed and gas phase

 $H_2$  or  $D_2$ . In the case of palladium-carbon specimens, the concentration excess of <sup>4</sup>He in D<sub>2</sub> versus that in pure D<sub>2</sub> vials is  $-8 \pm 19$  ppt (parts in  $10^{12}$ ), which indicates an upper limit excess of ~11 ppt at the 95% confidence level. Similar upper limits are obtained when other comparisons are made, for example, palladium-carbon D<sub>2</sub> versus palladium-carbon H2, although it can be argued that this comparison is not strictly valid because the H<sub>2</sub> and D<sub>2</sub> may have had different initial concentrations of atmospheric <sup>4</sup>He. In this connection, it may be noted that for all three H<sub>2</sub>-D<sub>2</sub> comparisons (palladium-carbon, carbon, and  $H_2$  versus  $D_2$ ), the data show that the removal of traces of atmospheric <sup>4</sup>He was less successful for the H<sub>2</sub> than for the D<sub>2</sub> used to fill the lead vials. The weighted mean <sup>4</sup>He concentration is  $60 \pm 3$  ppt (N = 24) for all H<sub>2</sub> samples analyzed and 45  $\pm$  7 ppt (N = 20) for all D<sub>2</sub> samples.

As mentioned earlier, the amounts of trapped <sup>4</sup>He in the three SRI samples listed in Table I indicate a negligible effect on the <sup>4</sup>He concentrations observed by the SRI researchers<sup>3,4</sup> even if all the trapped <sup>4</sup>He was released during H<sub>2</sub> or D<sub>2</sub> treatment. However, in the work reported here, trapped <sup>4</sup>He in the palladium-carbon is a relatively much larger potential source of <sup>4</sup>He. The palladium-carbon vials contained ~200 mg of the catalyst and were charged with 1.9 cm<sup>3</sup> STP H<sub>2</sub> or D<sub>2</sub> initially. If we take a mean value of 50 ppt for the measured <sup>4</sup>He concentration (see Table II), then it can be calculated that trapped <sup>4</sup>He in the three specimens listed

<sup>&</sup>lt;sup>b</sup>Helium concentrations are weighted mean ratios (in parts per 10<sup>12</sup>) of measured numbers of <sup>4</sup>He atoms to the initial numbers of H<sub>2</sub> or D<sub>2</sub> molecules in the sample vials (see the text). Uncertainties are estimates of random and systematic effects at a level of two standard errors.

 $<sup>^{\</sup>rm c}R=^{\rm 3}{\rm He}/^{\rm 4}{\rm He}$  in the sample;  $R_a=^{\rm 3}{\rm He}/^{\rm 4}{\rm He}$  in air = 1.38  $\times$  10<sup>-6</sup>. Values of  $R/R_a$  are weighted means and uncertainties are two standard errors.

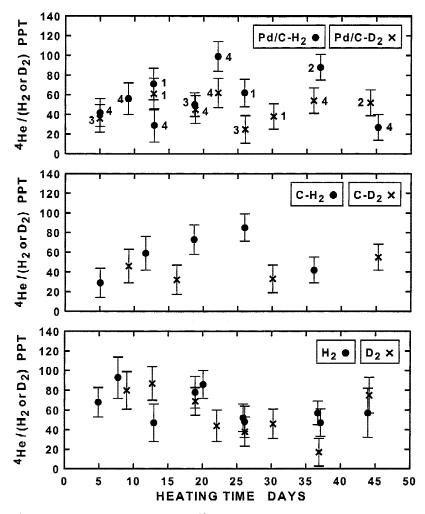



Fig. 2. Concentrations of  ${}^4\text{He}$  in  $H_2$  or  $D_2$  in ppt (parts per  $10^{12}$ ) versus heating time. The values for palladium-carbon and carbon are expressed relative to the initial amounts of  $H_2$  or  $D_2$  in the lead vials and not to the amounts of  $H_2$  or  $D_2$  in the gas phase at the time of measurement (see the text). Numbers 1, 2, and 3 next to the palladium-carbon points in the top diagram identify the three SRI samples in the order listed in Table I, and the number 4 identifies the sample donated by K. L. Shanahan.

in Table I overshadows measured  $^4\text{He}$  in the  $\text{H}_2$  or  $\text{D}_2$  in palladium-carbon vials by factors of 56, 34, and 18. Clearly, practically none of the trapped  $^4\text{He}$  was released from the palladium-carbon by the action of  $\text{H}_2$  or  $\text{D}_2$  during the time the vials were in the sandbox at  $200^{\circ}\text{C}$ .

# III.D. <sup>3</sup>He/<sup>4</sup>He Ratios

 $^3$ He/ $^4$ He ratios given in Table II are expressed relative to the air ratio of  $1.38 \times 10^{-6}$ . Although uncertainties are large because of the very small amounts of  $^3$ He in the samples, the results show no evidence for significant nonatmospheric components of  $^3$ He or  $^4$ He in any of the samples.

### IV. SUMMARY

The apparent discrepancy between the  $^4$ He results reported in this paper and those given by Case  $^{1,2}$  is a factor of  $\sim 10^7$ , if the upper limit concentration excess of  $\sim 11$  ppt is compared with Case's measured value of 100 ppm. The apparent discrepancy with the SRI results  $^{3,4}$  is not much better: a factor of  $\sim 10^6$ . Clearly, something is very different and/or seriously wrong. If Case and the SRI researchers have achieved the "right" conditions in their experiments for  $^4$ He to be formed by D-D fusion, then this author must have missed the mark by 6 or 7 orders of magnitude. Because making  $^4$ He almost completely vanish inside some sealed metal (lead) vials and/or in the inlet system of the mass spectrometer

is not possible, it is reasonable to conclude that observation of significant <sup>4</sup>He production depends either on subtle differences in experimental conditions, or on some systematic error that affected the Case and SRI results. On the evidence, this author believes that systematic error is more likely.

### **ACKNOWLEDGMENTS**

Thanks are given to M. C. H. McKubre, F. L. Tanzella, and K. L. Shanahan for donating the specimens of palladium-carbon used in this work. Gratitude is also expressed to K. L. Shanahan for helpful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

#### REFERENCES

- 1. L. C. CASE, "Coproduction of Energy and Helium from  $D_2$ ," International Patent Application PCT/US97/08033. International Publication WO 97/43768 (Nov. 20, 1997).
- 2. L. C. CASE, "Catalytic Fusion of Deuterium," *Proc. 7th Int. Conf. Cold Fusion*, Vancouver, Canada, April 19–24, 1998 (1998).
- 3. R. GEORGE, Personal Communication (June 7, 1998).
- 4. M. C. H. McKUBRE, F. L. TANZELLA, P. TRIPODI, and P. HAGELSTEIN, "The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems: Evidence for <sup>4</sup>He and <sup>3</sup>H Production," *Proc. 8th Int. Conf. Cold Fusion*, Lereci, Italy, May 21–26, 2000, F. SCARAMUZZI, Ed., Italian Physical Society (2001).

- 5. S. R. LITTLE, "Dr Case's Experiment: 30 April to 22 May 1998," available on the internet (http://www.earthtech.org/experiments/).
- 6. I. KIRSHENBAUM, *Physical Properties and Analysis of Heavy Water*, McGraw-Hill Book Company, New York (1951).
- 7. W. B. CLARKE, M. KOEKEBAKKER, R. D. BARR, R. G. DOWNING, and R. F. FLEMING, "Analysis of Ultratrace Lithium and Boron by Neutron Activation and Mass-Spectrometric Measurement of <sup>3</sup>He and <sup>4</sup>He," *Appl. Radiat. Isot.*, **38**, 735 (1987).
- 8. W. B. CLARKE, W. J. JENKINS, and Z. TOP, "Determination of Tritium by Mass Spectrometric Measurement of <sup>3</sup>He," *Int. J. Appl. Radiat. Isot.*, **27**, 515 (1976).
- 9. W. B. CLARKE and R. M. CLARKE, "Search for <sup>3</sup>H, <sup>3</sup>He, and <sup>4</sup>He in D<sub>2</sub>-Loaded Titanium," *Fusion Technol.*, **21**, 170 (1992).
- 10. W. B. CLARKE, "Search for <sup>3</sup>He and <sup>4</sup>He in Arata-Style Palladium Cathodes I: A Negative Result," *Fusion Sci. Technol.*, **40**, 147 (2001).
- 11. W. B. CLARKE, B. M. OLIVER, M. C. H. McKUBRE, F. L. TANZELLA, and P. TRIPODI, "Search for <sup>3</sup>He and <sup>4</sup>He in Arata-Style Palladium Cathodes: Evidence for Tritium Production," *Fusion Sci. Technol.*, **40**, 152 (2001).
- 12. F. A. P. MAGGS, P. H. SCHWABE, and J. H. WILLIAMS, "Adsorption of Helium on Carbons: Influence on Measurement of Density," *Nature*, **186**, 956 (1960).
- 13. P. MALBRUNOT, D. VIDAL, J. VERMESSE, R. CHA-HINE, and T. K. BOSE, "Adsorbent Helium Density Measurement and Its Effect on Adsorption Isotherms at High Pressure," *Langmuir*, **13**, 539 (1997).

W. Brian Clarke (BA, physics, Trinity College, Dublin, Ireland, 1958; PhD, McMaster University, Canada, 1962) is currently an emeritus professor of physics at McMaster University where he has taught and conducted research since 1965. He has pioneered applications of noble gas mass spectrometry to the fields of cosmochemistry, oceanography, hydrology, uranium prospecting, and more recently in the analysis of ultratrace lithium and boron in biological materials.