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The e4-order quantum electrodynamic term for neutron 
transfer fusion is 1040 to Ja5° times larger than the direct 
term, suggesting that room-temperature fusion does not con
tradict nonexotic physics. 

In addition to many negative findings, an increasing num
ber of laboratories are reporting observations of cold fu
sion. 1-5 As is well known, the observed fusion rate exceeds 
the theoretical estimates by factors of 1025 to 1035 . In a pre
vious paper, 6 it was pointed out that when the lowest order 
term is suppressed, higher order terms may take over and be 
responsible for the reaction under consideration. This theory 
was applied to the cold fusion process where d-p fusion was 
considered in order e2

, and it was shown that the probabil
ity of the process may be substantially enhanced over that 
given by the direct term. In this technical note, we consider 
the process of neutron transfer fusion to order e4 in the elec
tromagnetic coupling; in particular, we work out the reaction 
amplitude according to Figs. 2d and 2e of Ref. 6. 

It must be emphasized that the evaluation of the graphs 
can yield only a result that largely overestimates the reaction 
probability since we do not at this time incorporate any spe
cific information about the stereochemistry of the actual re
action. Such molecular/solid-state effects usually result in 
large (four or five orders of magnitude) suppression factors 
of the reaction rates. Our calculation must be considered to 
represent only the skeleton of the actual reaction. 

For concreteness, we assume the following process. We 
consider that a deuteron of momentum k3 impinges on the 
bound-state system of nuclei A and C with momenta k I and 
k2 , respectively, the momentum space wave function of 
which we denote as 'lr(P) ['lr(RAc) in position space]. The 
binding energy is assumed to be -0. l eV, corresponding to 
solid-state or molecular dynamics. After the neutron trans
fer fusion reaction, we assume that the final-state nuclei C, 
B, and Tare free and have momenta ki, k2, and k3, respec
tively. For nucleus A, we have in mind 2H or 7Li; nucleus C 

could be palladium or oxygen, corresponding to electrolyti
cally or chemically induced fusion, respectively. Of course, 
the treatment is the same for any neutron transfer fusion 
process. 
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Since all participating nuclei are strictly nonrelativistic, 
the Feynman graph in Fig. l can be replaced by its non
relativistic time-ordered form, i.e., by the appropriate reac
tion graph, Fig. 2. At the same time, only the Coulomb part 
of the photon propagator survives. 

Before actually evaluating Fig. 2, we illustrate its mean
ing in terms of the usual position space Rayleigh-Schrodinger 
perturbation expansion. In the second-order matrix element 
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Fig. I. Second-order quantum electrodynamic correction to trans
fer fusion. 
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Fig. 2. Nonrelativistic model for Fig. I: momentum space reaction 
graph. 
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the participating wave functions have the following meanings: 

and 
'11; = '11(RAd1/lc(Rc,P;)1/IA (RA ,PBn)fo(Rv,Pd (2) 

'111 = fc(Rc,P;)1/IB(RB,Pi)1/lr(Rr,Rv,PnD) , (3) 

while the intermediate state '11 m is 

'11m = h(Rc,P;)V1B(RB,Pi)1/lv(Rv,Pk)V1n Crn) (4) 

The interaction potentials are 

and 

e2ZcZv 

Vj 
= 

I Re - Roi 
<5) 
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In these equations, the m; are the masses of nuclei i; M;; = 

m; + m1, Muk = m; + m1 + mk, etc.; and the momenta are 
those shown in Fig. 2. 

Considering nuclei A and T to have s-wave neutron chan
nels, SA (0) =I:- 0 and Sr(0) =I:- 0. Since nuclei A and T contain 
reasonably large (nuclear) momenta, we neglect their momen
tum dependence; i.e., we replace SA (pi) with SA (0) and 
Sr(P2) with Sr(0) and extract them from the integral. (This 
leads to a minor overestimate of the probability.) 

We now can write down the matrix element correspond
ing to the graph. We have 

M(P,Q,K;P',Q',K) 

= e4ZcZ8SA (0)ZcZv Sr(0)J(P,Q,K;P',Q',K) (17) 

(6) and 

In these equations, the R; are center of mass (CM) coor
dinates, while the P; are relative coordinates. The energy de
nominator in Eq. (1) begins at the (-y,n) threshold of nucleus 
A, which is 2.2 MeV for the deuteron and 0.6 MeV for 7Li. 
We evaluate this matrix element in terms of the reaction 
graph in momentum space. 

The vertices of Fig. 1 have the following meanings. Ver
tex 1 describes the photodisintegration of nucleus A, yield
ing nucleus B and a neutron. Vertex 2 is that of the (inverse) 
photodisintegration of the triton. Vertex 3 is that of the (elas
tic) Compton scattering off nucleus C. Since all of these ver
tices concern off-the-mass-shell processes, we replace them by 
the simplest possible models, as indicated in Fig. 2. Vertex 1 
is given by the appropriate spectroscopic factor SA (p2) of 
the n-B system (depending on nucleus A, order of magnitude 
10- 1 to 10-2), while the (Coulomb) photon interacts with the 
(charged) recoiling nucleus B. Similarly, vertex 2 is described 
by the spectroscopic factor Sr(P3) of the D-n system of tri
tium (order of magnitude unity), while the photon interacts 
with the recoiling nucleus D. Finally, the (Coulomb) photon 
scattering vertex 3 is described by the two photon/ C interac
tion vertices and the propagator carrying the system from ver
tex 3a to 3b. 

We employ the momentum space Jacobi coordinates also 
indicated on Fig. 2: The initial and final-state three-body sys
tems are given in terms of the Jacobi coordinates P and Q, 
and P' and Q', respectively, while the intermediate four-body 
system is described by the Jacobi coordinates p, q, and r. The 
overall CM coordinate is written as K. All these coordinates 
are three-vectors. We thus have the following kinematic re
lations: 

g, = (k2 -k2 ) + (k1 - ki ) + kn , 

g2 = k2 -k2 + kn , 

P = [mck2 -mB(k -k2 + k2 -kn)l IMcB , 

(7) 

(8) 

(9) 

q = (mnk3 -mvkn)IMnv , (10) 

r = [Mvn(k1 + k2 -kn) - MCB(kn + k3)] IMBCDn , (11) 

P= (mck2 -mAki )/MAc , 

Q = [MAck3 -mv(k, + k2)l IMACD , 

K = k, + k2 + k3 = K' = k1 + k2 + k3 , 

P' = (mck2 -mBk;)/MBc , 
and 

Q' = [MBck3 - mr(ki + kz)] IMBcT 
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(12) 

(13) 

(14) 

(15) 

(16) 

where 

and 

mBmc 
µ, = -

M
' 

BC 

MBcMvn 
µ3 = 

MBcDn 

Using Eqs. (7) through (16), we rewrite Eq. (18) as 

J(P,Q,K;P',Q',K) 

(I 8) 

(19) 

-Afd3kn ---�--�--�-� -
(21r)3 (A -kn)2(B -kn }2 [(C-kn>2 + D2 ] ' 

where 

and 

where 

A = k1 - k1 + k2 -k2 , 
B = k2 -k2, 

C = 
_f.J_ 

212 ' 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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(28) 

Note that Eq. (18), and hence also Eq. (20), has no sin
gularities for real kn . This can be seen as follows. Breaking 
the domain of integration of Eq. (20) into three regions, i.e., 
around kn "" A ,  around kn "" B ,  and the rest, one sees by 
shifting the integration variable to x = kn - A and x = kn -
B for the first two regions, respectively, that in fact no sin
gularity remains. Therefore, the integrals given below have 
to be taken as principal value integrals. 

The integral (20) now can be transformed in the usual 
manner by defining the shift in the integration variable 

x= kn - C (29) 

and introducing the auxiliary integration to yield 

6A (1 
l(P,Q,K;p ' ,Q' ,K) = 

(27r)3 Jo da(l - a)cd(a) , (30) 

where 

(3 I) 

and where 
R(o:) = o:A + (I - o:) B - C (32) 

The integral (30) now can be worked out in terms of ele
mentary functions. To obtain the transition amplitude, we 
now have to account for the initial bound state. Thus, 

U= J d3 Pv(P)M(P, Q, K;P', Q',K) . (33) 

We now recognize that v(P) has support only for IPI 
of molecular or solid-state scale, while the main contribu
tions to /involve nuclear-scale momenta. Throughout, e.g., 
Eqs. (7) and (8), one can thus neglect the unprimed (i.e., 
initial-state) variables with respect to the primed variables. We 
are thus led to 

Assuming now for the bound-state wave function 

we find 

( 8Kl )'12 

'1'
(P) 

= 1571'2 -(P-2 -+-K--=-t-cc)2 ' 

( 
8 2 3 )1/2 

U = �
5
KL M(0,0,0;P' Q' 0) . 

This concludes the formal developments. 

(35) 

(36) 

Since this treatment does not include molecular/solid
state dynamics, a precise evaluation of the cross section at 
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this stage is not worthwhile. We therefore give an order-of
magnitude evaluation of the reaction rate 

W= apv, (37) 

where p "" 1022 cm -3 is the density of (AC) bound systems in 
the target, v"" 105 cm/s is the velocity of the incoming deu
terons, and a is the cross section: 

The final state three-body phase-space is 

PJ(E) - Pj , 

(38) 

(39) 

where P1 is a characteristic momentum of the final three
body state: 

(40) 

where £1 is the reaction Q value and µ1 is the appropriate re
duced mass. In our case, £1 "" 5 MeV, /J.J "" 2000 MeV, and 
Pf "" 140 MeV (h = c = I). 

We now turn to the matrix element itself. To estimate 
its magnitude, we consider the form of Eq. (18). Because of 
its strong convergence and because no resonances occur, 
the main contributions to the integral result from small mo
menta. We substantially underestimate its magnitude by re
placing it with 

I -> � __!_ -2_ _!_ 
(27r)3 k; 4£ k; 

when taking kn "" 200 and E = 5. We have/"" 2 x 10-6. Fi
nally, we specify C = 160, A = 7Li, and D = 2 H to obtain 
the estimate for the rate: 

which should be compared with the experimental rate of neu
tron production (Wn "" 10-22 s- 1) and of heat production 
(Wh "" 10- 12 s- 1), as quoted elsewhere. 

At this point, it is worthwhile to briefly discuss some as
pects of the influence of the surroundings and the way they 
might modify the computed fusion rate. A prominent consid
eration is provided by analogy with other physical processes 
associated with the Coulomb interaction, e.g., bremsstrah
lung or pair production, which, as is well known, are deci
sively influenced by screening of the nuclear charge by the 
surrounding electrons. This effect plays no role in the present 
context for two reasons. First, the reaction amplitude, being 
analogous to Compton scattering, is quadratic in the charge 
of particle C. Thus, rather than yielding a cancellation be
tween the contributions from the nuclei and from the elec
trons, as is the case in low-momentum transfer bremsstrahlung 
(i.e., the screening effect), here the amplitudes add. 

Furthermore, in the present case, the typical momen
tum transfers are some hundreds fm- 1

. The process is there
fore inelastic in that particle C is knocked out of its initial 
bound state, thus eliminating the possibility of interference, 
either destructive or constructive. Hence, the contributions 
from the different neighboring catalyzing particles, both nu
clei and electrons, simply add as probabilities. Thus, as far 
as the basic reaction mechanism is concerned, the surround
ings only increase the reaction rate. The investigation of the 
actual inhibition factor, evident in the ratio of observed to 
computed fusion rate, is far beyond the scope of this technical 
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note. However, our result, which is 40 to 50 orders of mag
nitude larger than the conventional results, seems to indicate 
that the existence of room-temperature fusion under favor
able conditions is compatible with the present-day under
standing of physics and requires no special mechanism for its 
explanation. 
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