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A new physical object called the £-cell can be used as an 
appropriate catalyst to f aci/itate nuclear fusion reactions in 
solids. The £-cell is a radiation defect in a crystalline lattice 
of AxH

y 
hydride [ordering number Zand mass number N of 

element A must be equal to one of the following pairs: (2,3 ), 
(3,6), (4,7), or (5,10)] formed by the capture of a thermal 
neutron in a crystal. Two features of hydrogen nuclear dy
namics are of interest: 

1. suppression of the Coulomb barrier between hydrogen 
nuclei due to many-body screening effects 

2. sufficient acceleration of hydrogen nuclei up to a few 
hundred electron-volts. 

Experimental research in this area may lead to the cre
ation of equipment for the effective enhancement of the 
fusion rate to values that are of practical interest. 

I. INTRODUCTION 

Cold nuclear fusion of hydrogen isotopes has been an 
elusive goal in 20th-century physics. As early as 1940, 
Wildhack I conjectured that high pressure could effectively 
facilitate the nuclear fusion of hydrogen isotopes. This con
jecture has been studied in a number of theoretical works 
(see, e.g., the reviews in Refs. 2, 3, and 4). Quantitative esti
mations of the appropriate pressure were made by Zel'dovich5 

and by Salpeter and Van Horn.6 For example, it is necessary 
to compress cold hydrogen by pressure P > 1015 bar to den
sity n > 105 g/cm3 . Such a pressure exists in the bowels of 
massive stars; however, this method of fusion reaction facil
itation is unrealistic under conventional (laboratory or indus
trial) conditions. It is interesting to consider the origin of such 
high requirements for pressure and to examine possible ways 
to reduce these requirements. 

The parameter that determines the rate of nuclear fusion 
is the probability of quantum-mechanical tunneling. This 
probability is determined by exp( -W), where 
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2 
l

Ro 
W = 

h (2M[e,p(r) - £]) 112 dr , 
Rn 

(1) 

where 

M = reduced mass of hydrogen nuclei (deuterium or 
tritium) 

,,o(r) = potential energy of the Coulomb interaction of 
the nuclei 

E = initial kinetic energy of the relative movement of 
the nuclei 

Rn = radius of the nuclear interactions (it is usually as
sumed that Rn = 0) 

R0 = classical distance of the closest approach of the 
nuclei.· 

The determination of Whas been the subject of numerous 
works.7-14 The analysis takes into account the details of the 
internuclear potential (determined in the Born-Oppenheimer 
approximation),7•8 the many-body effects,8• 10 and the effects 
of the solid-state environment.11-14 It was established that 
the actual value of Wis -100 to 140, whereas a value W"" 
60 to 70 is necessary to obtain a detectable fusion reaction 
rate in solids. 

It is useful for future reference to estimate the possible 
values of W. We describe the screening effect by the factor 
exp(-Ar). Writing the function ,p(r) in the form ,p(r) = 

e exp( -Ar)/r, we see that the exponent Wis a function of en
ergy E and screening parameter A. In Fig. 1, we show the level 
lines of the function W0 = W(Rn = 0) on the (A,£) plane. 
We can conclude that the parameters A and E are mutually 
complementary; i.e., we can compensate for the effects of a 
decrease in £ by an increase in A ,  and vice versa. 

The usual assumption that Rn = 0 leads to some increase 
in the actual value of W. This is because the cross sections of 
D + D and T + D nuclear interactions increase with decreas
ing energy. Let us consider this item in detail. 

It is quite reasonable to suppose that the matrix elements 
(in wave functions of a compound nucleus representation) of 
nuclear scattering amplitude are constants in the limiting case 
of low energy. Within the framework of this assumption, the 
effective cross section of a reaction has the form 

(2) 
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Fig. I. Level lines of the functions Wo = W(Rn = 0) (dashed
dotted) and W (solid) on the plane (A,£) for the T + D 
reaction. Curves I and 3 correspond to Wo = W = 70, and 
curves 2 and 4 correspond to Wo = W = 40. 

where 
v = velocity of relative movement 

if; (0) = wave function of nuclear relative movement in 
the limit r -+ 0. 

Using the definition in Eq. (2), we write 

\i/;(0)\ 2 = W• [exp( W) - 11-1 = Wexp(- W) . (3) 

The cross-section measurements of the D + D and D + T 
reactions in the low-energy range were the subject of numer
ous research works (see, e.g., Refs. 15 and 16). We can de
termine the value of C by the use of the data of dependence 
ae ff(E), which are listed in Ref. 16. Arnold et al. examined 
the constancy (in the 10- to 100-keV energy range) of the value 
E·ae ff(E) •exp[ W(E)]. The results of their measurements 
confirmed this circumstance. The value of C [in Eq. (2)] 
is =2 x 10- 16 cm 3 /s for the D + D reaction and =2 x 
10-14 cm3/s for the D + T reaction. 

It is believed that the Clv ratio is the cross section <lnuc of 
pure nuclear (without Coulomb effect) interaction. This con
forms with general conclusions of the theory of inelastic col
lisions of slow particles (see, e.g., Ref. 17). The radius Rn of 
nuclear interactions can be determined by Rn = ( Chr • v) 112• 
For example, if E = 1 eV, then v = 1.3 x 106 cm/s; then, 
Rn = 1 x 10-11 cm for the T + D reaction. The part of W 
connected with Rn not being zero can be determined as 

oW = (4-elh) • (2·M·Rn ) 112 

If E = I e V, then o W = 30. The actual value of W is W0 -

o W. In Fig. 1, we present the level lines of the function 
W(),,,E) on the ("11.,E) plane. 

Using the results of calculations of function W("11.,E), we 
can determine the value of A that is required for significant 
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enhancement of the cold fusion rate. A value "11. 1 = 2 x 109 

cm_, is necessary for detectable cold (£ = 0) nuclear fusion 
in solids. Nuclear fusion in solids can be of practical signif
icance if "11.2 = 4 x 109 cm- 1• If E = 100 eV, the correspond
ing values are "11. 1 = 108 cm-1 and A2 = 2 x 109 cm- 1. 

It is interesting to compare these values of A with the 
characteristic values of screening parameters in a gas of quasi
free electrons in a metal. Within the Thomas-Fermi (T-F) 
approximation framework, the screening parameters are de
termined by 

Ap = 2em 112n 116h- 1 = l.3 x 108 cm- 1 , (4) 
where n = 1022 cm -3 is the density of the free electrons. The 
value of A is approximately ten times lower than the value re
quired. Note also that the screening parameter Ap increases 
with an increase in the electron density n. This dependence, 
however, is very weak (A ex n 116); to increase the value of A 
by ten times, it is necessary to compress a metal sample > 106 

times. The latter value is in good agreement with the estima
tions given in Refs. 5 and 6. 

The diamond anvil cell is the most powerful instrument 
available today for generating static ultrahigh pressures. 18 

The combination of cell design, precise workmanship, and 
gasketing has resulted in devices that can reach pressures be
yond 2 to 4 Mbar. The further development of this technique 
will make pressures of IO Mbar possible. The pressure of 
> 1011 Mbar that is required for the compression of the metal 
sample is unrealistic under current laboratory or industrial 
conditions. For the practical realization of the Wildhack idea 
(high-pressure nuclear fusion), we must find a new physical 
object with exotic properties (see, e.g., Refs. 19, 20, and 21). 

As one of the "pretenders" to this role, we consider a spe
cific defect in the crystalline lattice of some light element hy
drides, called the "E-cell." This object was introduced and 
studied in Refs. 22 through 28. In the E-cell, enhancement of 
the fusion rate is possible. There are a number of physical 
phenomena in the E-cell, each of which somewhat decreases 
the W value, and the whole complex of these phenomena re
duces the pressure requirements needed for the enhancement 
of the fusion rate. The resulting pressure requirements are 
within the limits of the possibilities of modern techniques. 

The idea and the formation of the E-cell are clarified in 
Sec. II, where the main phenomena developed in the E-cell 
after its formation are considered qualitatively. To begin 
with, we use simple models in Sec. II. In the following sec
tions, we use stricter models for the quantitative estimations. 
In Sec. III, we describe the general picture of the evolution 
of the E-cell. We determine the variations of the energy, vol
ume, and structure parameters of the E-cell. The dynamics 
of the hydrogen nuclei in the E-cell is investigated in Sec. IV. 
We use the idea of a pseudoparticle with nonisotropical mass, 
which moves in an effective potential hole of the E-cell. Some 
characteristics of this motion correspond to the characteris
tics of the motion of real hydrogen nuclei in the E-cell. In 
Sec. V, we determine the screening effects of the electron sub
system of the E-cell. In Sec. VI, it is shown that the eventual 
result of the combined action of the main phenomena in the 
E-cell is a significant enhancement of the fusion rate. The 
conditions under which cold fusion in solids results in a de
tectable neutron yield can be created by the use of modern 
techniques. The concluding remarks (Sec. VII) contain some 
considerations about the direction of future investigations. 

In this technical note, we use the Hartree system of 
atomic units. In this system, the length scale is defined as 
a =  h2/e2m = 0.529 A =  5.29 x 10-9 cm. The energy scale 
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£0 is equal to e2/a = 4.36 x 10- 11 ergs= 27.2 eV. The den
sity scale N0 is a-3 = 6.75 x 1024 cm-3, and the pressure 
scale P0 is E0/41ra 3 

= 2:34 x 10 13 din/cm2 = 23.4 Mbar. In 
these units, the space variable is x = r/a, and the energy, den
sity, and pressure variables are f, = E/£0 , 9c = n/N0 , and 
IJ) = PIP0, respectively. 

II. THE E-CELL: FORMATION, STRUCTURE, AND MODELS 

The E-cell22 is a r�diation defect in crystalline lattice hy
drides AxHy (x andy are ·determined by the chemical for
mula of the hydride), where A is one of the isotopes: 3He, 
6Li, 7Be, or 10B. An' E-cell forms as a result of the capture 
of a thermal neutron by the nucleus of an atom A in one of 
the following reactions: 

or 

3He + n-+ T + p + 0.746 MeV , 
6Li + n-+ 4He + T + 4.785 MeV 
7Be + n-+ 7Li + p + 1.650 MeV , 

10B + n--> 
7Li + 

4He + 2.791 MeV . 

The reaction products leave the cell in 10-17 s, which is much 
shorter than the reconstruction time of the electron system 
(-10-15 to 10-12 s), and initially, the E-cell has a surplus of 
electrons, which form the electronic shell of an atom A. The 
problem of the confinement of surplus electrons is discussed 
in Sec. 11.B, as well as in Refs, 22 through 25. 

Now we define the geometry of the E-cell. We consider, 
for definition, the face-centered cubic crystalline structure of 
a NaCl-type lattice·(LiH has such a structure29). This consid
eration is not correct for BeH2 hydride. The BeH2 lattice has 
a hexagonal structure. The .7Be isotope is unstable; there
fore, the investigation of the BeH2 hydride is of no practical 
interest. As for boron, it is well-known that boron forms sev
eral stable hydrides (e.g., B2H6, B4H10, etc.); however, their 
crystalline structure is still unknown. Helium hydride does 
not exist under normal conditions. There is no doubt that the 
H + He mixture forms a hydride under high pressure, but its 
crystalline structure is unknown. Thus, the results of the fol
lowing considerations should be regarded as tentative for the 
boron and helium hydrides. 

II.A. The E-Cell Structure 

Let us define that the center of the E-cell is located at the 
site of the fission nucleus, and the centers of the neighboring 
metal atoms are connected by straight lines. The border of the 
E-cell formed by these lines is an octahedron (see Fig. 2). Six 
hydrogen nuclei together with both their own electrons plus 
the Z electrons that earlier formed the electron shells of the 
central atom A are located inside the E-cell. 

It is practically impossible strictly to investigate a system 
consisting of 24 nuclei and N = 18Z + 6 (or more) electrons. 
Therefore, we consider several models of the E-cell, each of 
which -describes one of the E-cell phenomena. 

One of these models is the so-called "shell model" of the 
E-cell (see Refs. 22 and 27). It is the analog of the Wigner
Seitz approximation for a separate atom. Within the shell 
model framework, we replace the boundary octahedron by 
a sphere with the same volume. The radius Re of this sphere 
is related to the crystalline lattice constant L by R; = L • 1r - 113. 
Using the considerations of Evjen (see, e.g., Ref. 30) regard
ing the charge distribution between the cells of a crystalline 
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Fig. 2. Geometry of the E-cell with the Cartesian coordinate sys
tem. The open circles are the lithium atoms, and the closed 
circles are the hydrogen atoms. 

lattice, we infer that one-fourth of all nuclei placed on the oc
tahedron's edges and one-sixth of all nuclei placed in the oc
tahedron vertices should be attributed to the nuclear system 
of the E-cell. The corresponding atomic electrons should be 
attributed to the electron system of the E-cell. Thus, we must 
attribute to the boundary of the E-cell the positive charge of 
four atom A nuclei. We assume that this charge is uniformly 
distributed along the sphere's surface, while the charge of Ne 
electrons is continuously distributed in the E-cell volume. The 
total n,umber of electrons in the E-cell Ne is equal to 5Z + 6 
before and immediately after the E-cell formation. This num
ber is equal to 4Z + 6 long after the E-cell formation, when 
the surplus electrons leave the E-cell. We use the shell model 
in Sec. III to investigate the evolution of the E-cell. 

Now we determine the qualitative characteristics of the 
processes that develop in the E-cell. In this section, we use 
simple models to obtain the obvious results. In the following 
sections (see also Refs. 22 through 28), we use stricter mod
els for the quantitative description of the E-cell phenomena. 

11.B. Trapped Electrons in the E-Cell 

Let us consider the confinement of the surplus electrons 
in the E-cell. A naive estimate using the ratio Rcf v (where 
v = 108 cm/s is the electron velocity) gives the stay time of 
electrons in the E-cell, T == 10- 12 s. There is a possibility of 
increasing the time by using some features of electron/atom 
interaction in a defect cell. This assumption stems from nu
merous experimental results on trapped electrons in crystal
line media (see, e.g., the review in Ref. 31). An analogous 
estimation for thermal electrons gives T = 10-11 s. In fact, 
the average existence of the trapped electrons in a defect cell 
is several microseconds. Some theoretical models have been 
applied to explain the stability of trapped electrons.32-34 The 
electron is assumed to be located at the center of a spherical 
cavity, and it interacts with the surrounding atoms. The vari
ation method was applied to the total energy E, of the sys
tem to obtain the minimum energy. Some amount of energy 
would be expended when the electron leaves the cavity. This 
is because when the electron leaves the cell, it attaches to one 
of the boundary atoms. The transformation of this atom into 
a negative ion is accompanied by an increase in the total en
ergy E, of the system. The difference in total energy between 
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the initial (the electron in the cell) and the intervening (the 
electron attached to a boundary atom) states can be inter
preted as the height [E] of the potential barrier for a surplus 
electron in the cell. The calculations are detailed in Refs. 32, 
33, and 34. The results of this approach generally explain the 
experimental facts quite well. 

For our purposes, we can estimate a value of [El for a 
LiH crystal by using the T-F model (see Refs. 35, 36, and 37 
and Appendix A) for the description of lithium atoms (total 
energy is Ea) and negative ions Li - (total energy is Ed, 
which have a size R0 in a crystal. In accordance with data 
listed in Ref. 29, Ro = 1.5 A under normal conditions. The 
height of the potential barrier [El = 6 eV in this case. For 
boron [R0 = 0.9 A (Ref. 29)], the corresponding result is 
[El = 11 eV. To solve the problem of confinement of the sur
plus electrons in the E-cell, we must compare the value of [El 
with the average energy (E) = l6Z413 eV of electrons that 
remain in the E-cell after the fission of a central nucleus. We 
see that the value of [E] is small for the confinement of the 
surplus electrons in the E-cell in the crystal under normal con
ditions. For instance, for lithium, (E) = 60 eV; for boron, 
(E) = 140 eV. 

To confine the surplus electrons in the E-cell, we must 
rely on the fact that the value of [El increases with pressure 
P in a crystal. We demonstrate this by the following method. 
Let us determine the values of Ea and E; for atoms and neg
ative ions compressed to size R0 (which corresponds to size 
X0 = R0/a in Hartree units). Simultaneously, we determine 
the pressure needed for this compression. Considering X0 as 
a variable parameter, we immediately derive the dependence 
of [El = E; - Ea on pressure P. The results of these calcu
lations are shown in Table I. We see that to confine the sur
plus electrons in the E-cell, the pressure in the LiH crystal 
must be >40 to 50 Mbar. For boron, this value is 300 to 400 
Mbar. 

Of course, we must consider these results as estimations 
only. They show a general tendency- the height of the bar
rier [El increases with an increase in pressure P. A special, 
more careful consideration is needed to quantitatively deter
mine the pressure needed for the confinement of the surplus 
electrons in the E-cell. 

11.C. Simple Model of the Electrical Potential Distribution 

Let us consider the possible shape of the electrical poten
tial distribution in the E-cell. The total potential 'P is the sum 
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of the potentials 'Pe created by the electrons and 'Pn created 
by the nuclei. We calculate these potentials within the frame
work of the shell model of the E-cell. 

We assume that the electrons are distributed uniformly in 
the E-cell volume, and the hydrogen nuclei are initially placed 
on the boundary sphere. The electron density is n = 3Nel 
41rR�. 

Before the E-cell formation, the potentials 'Pe and 'Pn are 
equal: 

and 
'Pn = Zelr + (4Z + 6)e!Rc 

The total potential (p = rlRc) is 
rp = (el2Rc) • [2Zlp - (7Z + 6) + (5Z + 6)p2 ] 

The dependence of rp on p (for Z = 3) is depicted by curve l 
of Fig. 3. 

Immediately after the E-cell formation, the total poten
tial is 

rp = (e/2Rc) • [ -(7Z + 6) + (5Z + 6)p 2
] 

This dependence is depicted by curve 2 of Fig. 3. We see that 
close to the E-cell boundary, a change in potential creates an 
electrical field that draws the positively charged hydrogen nu
clei to the center of the E-cell. 

Let us suppose that one of the hydrogen nuclei is dis
placed into the center of the E-cell. Then, the total poten
tial is 

rp = (e/2Rc) • [ 2/p - (7Z + 6) + (5Z + 6)p 2
] 

This dependence is depicted by curve 3 of Fig. 3. 
If the surplus electrons leave the E-cell, the total poten

tial is 
rp = (elRc) • [ lip - 2(Z + 2) + (2Z + 3)p2 ] 

This dependence is depicted by curve 4 of Fig. 3. 
By analyzing the depicted results, we can draw the follow

ing conclusions: 
l. The screening of the electrical field of the positive 

charge placed at the E-cell center is described by the specific 
expression 

t.p(r) = ( elr) • ( I  - r/R0) , 
where we assume r «  Re. 

TABLE I 
Energy Characteristics of Neutral Atoms and Negative Ions Compressed by Pressure P in the Megabar Range 

Z = 3 Z = 5 

R p Ea E; [El p Ea E; [El 
X (A) (Mbar) (eV) (eV) (eV) (Mbar) (eV) (eV) (eV) 

1 .0 0.53 143.0 -267 - 180 87. l 307.0 -893 -783 110.0 
1 .2 0.64 46.7 -289 -232 56.8 98.6 - 941 -869 70.7 
1.4 0.74 17.3 - 300 -261 39.2 36.2 -963 -916 48. 1 
1.6 0.85 6.98 - 306 - 278 28.3 14.6 -976 -942 34.4 
1 .8 0.95 3.00 - 309 - 288 21. l  6.32 -982 -958 25. 1 
2.0 1 .06 1 .33 -3 1 1 -294 16.2 2.88 -986 - 967 19. 1 
2.2 1. 16 0.46 -313 -302 11.1  1.35 -988 -972 1 5.6 
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Fig. 3 .  Potential distributions in the E-cell at different stages o f  
E-cell evolution (the model of a uniform electron density). 
Curves I and 4 show potential distributions in the neutral 
E-cell (curve I corresponds to the cell before fission of the 
central nucleus, and curve 4 corresponds to the last stages 
of E-cell evolution). Curves 2 and 3 correspond to the 
charged E-cell (curve 2 corresponds to the E-cell immedi
ately after the E-cell formation, and curve 3 corresponds to 
the E-cell after the displacement of a hydrogen nucleus into 
the center). 

2. Within th_e framework of these assumptions, the 
screening length R0 is determined by R0 = RclZeff• where 
Zeff = (7 Z + 8)/2 if the surplus electrons are confined in the 
E-cell and Zeff = 2(Z + 2) if the surplus electrons leave the 
E-cell. 

3. The screening length Ro in the E-cell depends on the 
electron density more strongly ( Ro oc n -113 ) than the screen
ing length within the Fermi approximation [see Eq. (4)) . 

These results were obtained by assuming a uniform dis
tribution of the electron density in the E-cell. These results 
are very important. In the following, they are defined more 
accurately by various methods (see Secs. IV and V). 

11.D. Dynamic Effects in a Compressed Cell 

The quick transformation of a normal cell of a crystalline 
lattice into an E-cell is accompanied by some dynamic effects 
that strongly reduce the distances between the hydrogen nu
clei. We explain this assertion by the next example. 

Let us consider a simple model of a linear crystal that 
consists of four nuclei. Each of the two middle nuclei has an 
electrical charge e; each of the two outer nuclei has charge Ze. 
Some force F compresses the crystal to size D by acting on 
the boundary nuclei. We assume that the distance between the 
middle nuclei is d. The potential energy (in appropriate units) 
of this system U(D,d ) is 

U(D,d ) = 8ZDl(D2 
- d 2 ) + Z2/D + lid + FD (5) 
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The requirement to minimize U gives us the following expres
sions for equilibrium values Deq and deq : 

Deq 
= Yeq ·F 112 and deq = Yeq

·F 112 • 

The values of Yeq and Yeq are given in Table II. 
Let us assume that our crystal was formed from a crys

tal of five nuclei that was transformed by the fast removal of 
the central nucleus (with an electrical charge Ze). In the five
nuclei crystal, the initial equilibrium values of D and d are 

D;n = Y;n ·F 112 and d ;n = Y;n ·F 112 . (6) 
The values of Y;n and Yin are given in Table II. 

After removal of the central nucleus, Din and d ;n char
acterize the initial positions of the nuclei in the four-nuclei 
crystal. The initial nuclear potential energy U;n is determined 
by Eq. (5), where D = D;n and d = d in • We define U;n = 
A(Z)F 112 . The values of A are given in Table II . 

After the formation of the four-nuclei crystal, the nuclei 
start moving from the initial position [Eq. (6)). The condition 
U(D, d )  = U;n determines the curve d =  d (D) that bounds 
the area available for moving. The function d (D) has a min
imum, which is determined by dmin = YminF112 . The values 
of Ymin are given in Table II. The value of dmin determines 
the minimal distance between the two middle nuclei. The 
deqldmin ratio (see Table II) does not depend on force F and 
can be considered as a universal measure of the gain result
ing from the dynamic effects. According to the data in Ta
ble II, we can strongly (by two to eight times) reduce the 
internuclear separation by using the dynamic effects. 

Recall that the transformation of a normal cell of a crys
talline lattice into an E-cell is the result of neutron capture by 
the nucleus of an atom of metal. The reaction products leave 
the cell in ==10-17  s, which is much shorter than the period 
of the oscillations of the nucleus in a crystalline lattice; there
fore, the fast removal of a nucleus is performed. 

11.E. Qualitative Conclusions 

The combination of the results of a consideration of sep
arate phenomena in the E-cell allows us to draw a number of 
qualitative conclusions: 

1. Immediately after the transformation of a normal cell 
of a crystalline lattice into an E-cell, the free-electron density 
in this cell increases. 

2. If a crystal is compressed by a pressure P that is in the 
megabar range, a potential barrier exists on the boundary of 
the E-cell that confines the surplus electrons inside the E-cell. 
The efficiency of the confinement of the surplus electrons in
creases with the increase of the pressure in a crystal. 

TABLE II 
Values of Various Parameters 

z Yeq Yeq Y;n Yin A Ymin deqldmin 

1 3.6 1.3 4.9 2.5 7 .7  0.63 2.07 
2 5.0 1.5 7.6 3.9 1 1.0 0.45 3.32 
3 6.2 1.6 10.0 5.2 14.0 0.35 4.70 
4 7.4 1.8 12.0 6.4 17.0 0.29 6.21 
5 8.5 1.9 15.0 7.6 20.0 0.24 7.87 
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3. The screening of the Coulomb potential of a positive 
charge in the E-cell differs from the usual screening both by 
the space distribution of the potential and by the dependence 
of parameters of screening on the electron density. 

4. The dynamic effects, accompanied by the quick trans
formation of a normal cell of a crystalline lattice into an 
E-cell, create conditions for a strong reduction of the inter
nuclear separation. 

Let us give a more precise definition of these qualitative 
assertions. We must investigate more realistic models. This in
vestigation would allow us to obtain quantitative estimations 
of the effects and (what is more important) to determine 
methods to intensify these effects. It is possible to reduce the 
pressure requirements needed to enhance the fusion rate 
through these investigations. 

Ill. GENERAL PICTURE OF THE EVOLUTION OF THE E-CELL: 
SIZE, STRUCTURE, AND ENERGY VARIATIONS 

It is complicated to make a general investigation of the 
electron-nuclear system of an E-cell. The problem may be 
simplified by setting limited goals such as the following: 

l. estimation of the energy characteristics of the process 
that accompanies the evolution of the E-cell 

2. determination of the character and directions of 
changes to the size of the E-cell 

3. estimation of the possibility of various configurations 
of the hydrogen atoms in the E-cell. 

We can use the shell model (see Sec. II.A) of the E-cell 
within the T-F approximation framework (see Appendix A). 
The main judgments on the processes of E-cell evolution are 
based on investigations of the energy variations. We assume 
that the direction of the changes in the E-cell parameters is 
determined by the requirements to minimize the total energy 
of the electron-nuclear system (see also Refs. 25 and 27). The 
basic equations for the determination of the energy variations 
are given in Appendix A. 

We assume that the electrical charge of hydrogen nuclei 
is uniformly distributed along the surface of an inner sphere 
of radius Rs (Xs = Rsla in Hartree units). We use the follow
ing designations: the electrical charge at the center of the 
E-cell is Z0 (in Hartree units); at the inner shell, it is Zs ; and 
at the boundary sphere, it is Ze. The total number Ne of elec
trons in the E-cell is equal to 5Z + 6 before and immediately 
after the E-cell formation, and it is equal to 4Z + 6 much lon
ger after the E-cell formation, when the surplus electrons 
leave the E-cell. The value of Zs is equal to 6 before and im
mediately after the E-cell formation. Later on, the displace
ment of some of the hydrogen nuclei into the E-cell center is 
possible. The total charge dZ  of the E-cell is equal to (Z0 + 
Zs + Ze) - Ne. We consider sets of parameters Z0 , Zs , and 
Ne that are of the most interest in our investigations. These 
sets are listed in Table III. 

Ill.A. Compressibility of the E-Cell 
Let us consider, for example, the E-cell before the fission 

of the central nucleus. The total energy of the electron
nuclear system of the E-cell is a function of the following pa
rameters: the cell radius Xe, the radius of the inner hydrogen 
shell Xs, and the nuclear charge of the metal atoms Z (all pa
rameters are in Hartree units). The energy varies if we vary 

FUSION TECHNOLOGY VOL. 23 JULY 1993 

Zo Zs 

z 6 
0 6 

1 5 
2 4 

1 5 
2 4 

Fedorovich FUSION IN CRYSTAL HYDRIDES 

TABLE III 
Charges in the Various Parts of the E-Cell 

at Different Stages of E-Cell Evolution 

Ne Stage of E-Cell Evolution 

5Z + 6 Before central nucleus fission 
5Z + 6 Immediately after E-cell formation 

5Z + 6 

J 
After the displacement of one or 

5Z + 6 two hydrogen nuclei into the center; 
surplus electrons are in the E-cell. 

4Z + 6 

J 
After the displacement of hydrogen 

4Z + 6 nuclei into the center; surplus 
electrons leave the E-cell. 

the radius X5 (both Xe and Z are constant). For example, at 
Xe = 5 and Z = 3, the value of total energy is minimal if 
Xs = 3.9. We can assume that this value of X5 determines the 
equilibrium position of the inner hydrogen shell in a normal 
cell of the crystalline LiH lattice. The corresponding value of 
£101 is === - 168 eV. The pressure that is needed to compress a 
cell to size Xe varies with X5 in the same manner as the en
ergy. If X5 = 3.9, then P === 2.24 Mbar. These data describe 
the equilibrium cell with the chosen parameters Z and Xe. 
For different Xs values, the corresponding values of £1 = 
min [E101 (X5 )] and pressure P are listed in Table IV (we as
sume Z = 3). 

Note that the pressure needed to compress a cell to size 
Xe is near the pressure Pe needed to confine Ne electrons in
side a sphere with radius Xe. The values of Pe are deter
mined by Eq. (A.9), and they are also shown in Table IV. 
The data in Table IV show that P < 1 Mbar (in Hartree units, 
If) <  0.04) if Xe > 6. The value of If) ===  0.04 is within the accu
racy range of our calculations. We may assume that Xe = 6 
(Re = 3.2 A) characterizes a compressed cell in a crystalline 
LiH lattice. The crystalline lattice constant L (coupled with R, 
by L = Re 1r 113 , see Sec. II.A) is equal to 4.5 A if Re = 3.2 A. 
This value of L is near the actual value of the crystalline lat
tice constant, L = 4.1  A, for LiH (Ref. 29). 

X 

3.0 
3.5 
4 .0 
4.5 
5.0 
5 .5 
6.0 
6.5 

TABLE IV 
Total Energy of the E-Cell Under Pressure P 

in the Megabar Range 

�c p Pe El 
(A) (Mbar) (Mbar) (eV) 

1.59 27.9 26.4 55.4 
1.85 12.8 11.6 -44.2 
2. 12 6.57 5.65 - 104.0 
2.38 3.69 2.97 - 143.0 
2.65 2.24 1.65 - 168.0 
2. 91 1.44 0.96 - 185.0 
3. 1 7  0.98 0.58 - 197.0 
3.44 0.68 0.36 -205.0 
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The value of Xe decreases if pressure P in the crystal in
creases. For example, according to Table IV, to compress a 
cell to a size Xe = 4.0, a pressure P = 6.6 Mbar is necessary. 
Let us note that the results in Table IV are in good agreement 
with the results of calculations of the sizes of separate atoms, 
given in Sec. 11.B. Indeed, the size of the E-cell Le (deter
mined in conformity with the definition of the E-cell: it is 
the distance from the center to an angular point of the oc
tahedron) is equal to the crystalline lattice constant L in a 
cubic lattice. We can determine the value of Le by the obvi
ous equation, Le = 2· [R0(Z) + R0(Z = I )] .  According to 
the data collected in Table I, the value of R0 (Z = 3) is equal 
to 0.85 A if P = 1 Mbar. Supposing that R0 (Z = 1) = 0.5 A, 
we conclude that Le = 2.7 A; correspondingly, Re = 1.85 A 
and Xe = 3.5. The latter is close to the Xe = 4 that is cited in 
Table IV. 

111.B. Energy Characteristics of the E-Cell Evolution 

Let us consider the structure of the E-cell immediately 
after its formation. If we assume that electrons are confined 
in the E-cell, we should choose the following set of param
eters: Z0 = 0, Zs = 6, and dZ = Z. In this case, as well as 
in one considered earlier, there is an equilibrium radius Xs 

of the inner hydrogen shell. The corresponding values of 
E1 = min[E101(Xs)] and pressure P on the boundary of the 
E-cell are given in Table V for various values of the E-cell 
radius Xe . 

Let us compare these results with the data given in Ta
ble IV. We see that the removal of the central nucleus causes 
an increase in pressure P on the boundary of the E-cell. In 
other words, the E-cell starts to dilate immediately after its 
formation. It is important to note that the removal of the 
central nucleus causes an increase in the total energy of the 
electron-nuclear system of the E-cell. The value oE of this in
crease is =200 eV, which is close to the total energy of the 
electron shells of the destroyed central atom. It is quite nat
ural that the destruction of the central atom leads to an en
ergy transfer from the electron shell to the electron-nuclear 
system of the E-cell. Let us also note that the equilibrium ra
dius of the inner hydrogen shell decreases in comparison with 
that in a normal cell. In other words,.the displacement of the 
hydrogen nuclei to the center of the E-cell leads to an energy 

TABLE V 
Energy Characteristics of the E-Cell in LiH at Different 

Stages of E-Cell Evolution When the Surplus 
Electrons Remain in the E-Cell 

Z0 = 0  20 = 1 20 = 2 

R p E, p E, p E, 
X (A) (Mbar) (eV) (Mbar) (eV) (Mbar) (eV) 

3 .0 1 . 59 32.4 44 1.6 3 1 . 5  400.9 30.9 303. 1 
3.5 1 .85 14.8 309.0 1 4.4 272.9 14.2 18 1 .5  
4 .0 2. 1 2  7 .50 224.5 7.26 1 91.7 7.22 104.7 
4.5 2.38 4 .09 167.0 3.97 1 36.8 3.85 53.74 
5.0 2.65 2.39 1 26.9 2.31  98.28 2. 17 1 8. 17 
5.5 2.91 1.46 97.37 1.4 1 70.58 1.38 -7.38 
6.0 3. 17 0.95 66.68 0.90 49.77 0.87 -26. 1 
6.5 3.44 0 .69 47.0 1 0.60 33.99 0.56 -40.3 

448 

gain in the electron-nuclear system of the E-cell. This gain in
creases if one of the hydrogen nuclei transfers to the center 
of the E-cell. This situation is described by the following set 
of parameters: Z0 = 1, Zs = 5, and dZ = Z. The correspond
ing results are listed in Table V. We see that such a reconstruc
tion of the inner structure of the E-cell also leads to an energy 
gain. The value of this gain is 30 to 40 eV (depending on the 
pressure in the crystal). We may suppose that the energy gain 
transforms to the kinetic energy of the hydrogen nuclei. 

The same effect (a decrease in the total energy of the 
electron-nuclear system of the E-cell) accompanies the dis
placement of the following hydrogen nucleus to the center. 
This situation is described by the following set of parameters: 
Z0 = 2, Zs = 4, and dZ = Z. The results are given in Table V. 

If surplus electrons leave the E-cell, the pressure and the 
total energy of the electron-nuclear system of the E-cell de
crease. The corresponding results are collected in Table VI. 
Note that the movements of hydrogen nuclei inside the neutral 
( dZ = 0) E-cell lead to a pressure decrease to values smaller 
than the initial ones. This means that the E-cell reduces to a 
fraction of its former size. The volume of the E-cell can be 
reduced by half of its initial value. 

111.C. Some Results 

The results of our consideration allow us to come to the 
following conclusions: 

1. We can estimate the size of a normal cell as the sum of 
the sizes of atoms that form the crystal. 

2. The pressure P needed to compress the E-cell to a size 
Re is near the pressure Pe in a degenerated electron gas of 
density n = 3Nel41rR�. The values of P and Pe vary propor
tionally to each other when the E-cell size varies. 

3. Immediately after the transformation of a normal cell 
of a crystalline lattice into an E-cell, the pressure on its 
boundary increases by half of the initial value, and the total 
energy of the electron-nuclear system also increases. The 
value of this increase is near the value of the total energy of 
the electron shells of the destroyed central atom. 

4. After the formation of the E-cell, hydrogen nuclei start 
moving to the E-cell center. The displacement of hydrogen 

TABLE VI 
Energy Characteristics of the E-Cell in LiH at Different 

Stages of E-Cell Evolution After the Surplus 
Electrons Have Left the E-Cell 

20 = 0 Zo = 1 Zo = 2  

R p E, p E, p E, 
X (A) (Mbar) (eV) (Mbar) (eV) (Mbar) (eV) 

3.0 1.59 23.2 287. 1 22.4 247.3 2 1 .9 1 50.8 
3.5 1 .85 10.4 192.8 10.0 1 57.5 9.89 67.0 
4.0 2 . 12  5.22 1 33.7 5.0 1 10 1 . 5  4.98 1 5 .2 
4.5 2.38 2 .81 94 .0 1 2.69 64.20 2.54 - 1 8.3 
5 .0 2.65 1 .62 66.78 1. 54 38.56 1 . 5 1  -4 1 .2 
5.5 2.91 0.97 47.01 0.93 20.5 1  0.89 -57 . 1  
6.0 3. 17 0.71 33.88 0. 59 7 . 1 95 0.55 -68.5 
6.5 3.44 0.5 1  17.0 1 0.38 -2.67 0.34 -76.7 
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nuclei is accompanied by an energy gain of tens of electron 
volts per nucleus. This energy transforms into the kinetic en
ergy of the hydrogen nucleus movement. 

5. If surplus electrons leave the E-cell, the volume of the 
E-cell may be reduced by half of its initial value. 

These are the main features of the E-cell evolution 
process. 

IV. HYDROGEN NUCLEAR DYNAMICS IN THE E-CELL: 
THE DISCRETE MODEL 

One of the problems we face in investigating the E-cell is 
the description of the interaction of the compressed atoms. 
We should choose a pairwise interaction from among a great 
many interacting atoms. This problem is not yet solved rig
orously within the framework of many-body theory. There
fore, we confine ourselves to an approximation where only 
pairwise interactions are taken into account. 

Let us choose a pair of interacting atoms in our system. 
The other atoms of the system compress each atom of the 
chosen pair. The key idea is to model this effect by consid
ering this pair of atoms in a free-electron gas of density n de
termined by pressure P in the crystal according to Eq. (A.9). 
Within the framework of this approximation, each atom of 
the chosen pair is compressed by the pressure of electrons, 
which imitate the influence of the rest of the atoms of the ini
tial system. 

Thus, we reduce the problem of describing the interaction 
between a number of squeezed atoms in the crystal to the 
problem of describing the pairwise interaction of atoms in the 
free-electron gas. It is important to note that the proposed 
model reflects the real situation in the E-cell, in which the 
pressure is a result of the collective action of all electrons (see 
Sec. III.A). 

IV.A. Atoms in a Free-Electron Background 

It is interesting for subsequent consideration to determine 
the total energy E1 of atoms that are in the electron gas. The 
value of E1 is determined by the integral in Eq. (A. 12). The 
results for the various elements are given in Table VII. We see 
that the total energy E1 of atoms increases with an increase 

TABLE VII 
Total Energy (eV) of Atoms in a Free-Electron 
Background with Density 91 Under Pressure P 

P (Mbar) 

1 .0 3.0 5 .0 10.0 30.0 

� 

0.03 1 0.056 0 .073 0. 100 0.200 

Z = 1 -22.47 -21 .8 1  -21 .3 1  -20.39 -17.82 
2 -96.96 -95.86 -95.22 -93.54 -89. 17  
3 -23 1 .9 -230.6 -229.5 -227.3 -22 1 .4 
4 -432.7 -43 1 .3 -429.8 -427.3 -420 . 1  
5 -703.9 -702.2 . -700.5 -697.7 -689.6 
6 - 1049.0 - 1047.0 - 1045.0 - 1042.0 - 1032.0 
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in the electron pressure P. This dependence is weak; e.g . ,  if 
pressure varies 30 times (correspondingly, the density varies 
10 times), the total energy varies less than one-tenth of its 
value. The reason for this is the weak dependence of the in
ner atomic structure on the external conditions, just as energy 
(both potential and kinetic) is mainly connected with the in
ner electrons. 

Let us compare the data in Table VII with the results of 
calculations of the total energy of separated atoms in Sec. II .B 
(see Table I). We see that the absolute values of E1 in Ta
ble VII are lower than those in Table I, but the variations of 
£1 are the same within the framework of both models. 

IV.B. Atomic Interaction in the E-Cell 

Let us consider the problem of the pairwise interaction of 
two atoms of nuclear charges Z1 and Z2 that are in the free
electron gas. We can neglect the comparatively weak quan
tum effects that are responsible for binding atoms into a 
molecule, because the E-cell phenomena start when the dis
tances between nuclei become smaller than the atomic size. 

In this case, the interaction is determined by the Coulomb 
repulsion of the nuclei and the variations of the total energy 
of the electron system. To determine the latter, one should 
first solve the equation for the electrical potential ,p(r) : 

/J.,p = 41re [n  - n0 - Z1 o(r - ri ) - Z2o(r - r2)l . (7) 
The electron density n is related to the potential \0 by 

31r2h3n = I P 1 + [2me ( ,p  - ,p0)] 112 l 3 , 

where 
p 1 = me 2/1rh , 

\Oo = (Po - pi )2/2me , 
and 

Po = (31r2h 3 no) I/3 

After ,p(r) and n (r) are determined, one should calculate the 
total energy of the electrons by using Eq. (A. 12), in which 

<Pn = eZ1 l l r - r1 I  + eZ2/ l r - r2 1 , 

The sum 

(8) 

U( Zi , Z2 ; r) = E1( Z1 , Z2 ; r) + e2Z 1 Z2/r , (9) 

where £1 (Z1 , Z2 ; r) is the total energy of the electron system 
of two atoms with nuclear charges Z1 and Z2 separated by 
distance r, determines the total energy of the electron-nuclear 
system. The latter varies with variations of the internuclear 
distance r. Equation (9) plays the role of the effective poten
tial of the pairwise interaction of the chosen atoms in the 
E-cell. 

This is a very complicated method. The main difficulty 
of this method is connected with the necessity of integrating 
a nonlinear two-dimensional elliptical equation, Eq. (7). This 
problem is solved numerically. An example of the results is 
given in Fig. 4. We see the equipotential lines of the electri
cal potential of two atoms with nuclear charges Z 1 = I and 
Z2 = 3 separated by distance X = 1. The pressure of the elec
tron gas is 10 Mbar. In this case, the total energy of the elec
tron systems of the two atoms is approximately -325 eV. 

Having chosen parameters Z1 , Z2 , and P, we can deter
mine the dependence of U on X by this method. However, 
the use of this method requires long calculations, and it is thus 
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Fig. 4. Equipotential lines of the electrical field near the two atoms 
(hydrogen and lithium), spaced X = 1 apart, in the electron 
background with electron density 7/ = 0. 1 .  The electron den
sity and the pressure of the electron gas (P = 10 Mbar) cor
respond to the ones of interest in the E-cell investigations. 

inconvenient for the investigation of the nuclear dynamics in 
the E-cell. For our purposes, it is necessary to find a more op
erative approximate method. We use an interpolation of the 
dependence of U on r. 

Several conditions determine the form of the functional 
dependence of U on r. The total energy of the electron sys
tem of two atoms with nuclear charges Z1 and Z2 separated 
by distance r is E, (Z1 , Z2 ; r) .  Two values of this function are 
known from the results of the investigation of one atom in 
the electron gas (see Sec. IV.A). These are 

Eo = E, (Z1 , Z2 ; r  = 0) = Ea (Zi + Z2) 

and 

E"" = E, (Zi , Z2 ; r -+  oo) = Ea (Z1) + Ea (Z2) .  

When r increases, the value of E, (Z1 , Z2; r) decreases from 
£0 to E"" . I f  r » Ra , this decrease goes according to the 
rule E, oc-Z1 Z2/r because of the last term in the integrand, 
Eq. (A. 1 2). If r = Ra, the results of numerical calculations 
are in good agreement with the interpolation: 

The condition E, (Z1 , Z2 ; r -+ 0) -+ E0 determines the 
value of Q: 

Q = (Eo - E"")l"'A 

Since the total energy of interaction U(r) [see Eq. (9)] must 
decrease (when r increases) faster than 1/r, it determines the 
value of "'A :  

( 10) 

The values of £0 and E"" are given in Table VII .  The re
sulting values of the effective screening parameters (S = "'Aa 
in Hartree units) are given in Table VIII. They correspond to 
the interaction of the hydrogen atom with the atoms of ele-
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TABLE VIII 
Effective Screening Parameter S for the Interaction 

of the Hydrogen Atom with Atoms of Elements 
of Ordering Number Z 

P (Mbar) 

1 .0 3.0 5.0 10.0 30.0 

IJl 

0,03 1 0.056 0.073 0. 100 0.200 

Z = l 1 .9 1  1 .92 1 .92 1 .94 1 .96 
3 2 . 19  2 . 19  2. 1 9  2.20 2.22 
5 2.37 2.37 2.38 2.38 2.39 

ments of ordering number Z. The resulting dependence of in
teraction energy U on distance r has the form 

U(Z1 , Z2 ; r) = Z1 Z2e2 exp ( -"'Ar)/r , ( 1 1) 
where "'A is determined by Eq. ( 10). 

IV.C. Description of the Hydrogen Nuclear Dynamics 

Let us consider the dynamics of hydrogen nuclei in the 
E-cell, taking into account only the pairwise interaction that 
is described by the interpolating formula, Eq. ( 1 1). As in 
Secs. I I  and I I I, we examine the E-cell in a cubic crystalline 
structure of an NaCl-type lattice. Let us introduce the Car
tesian coordinates (x1 , x2 , x3 ) in the E-cell. We locate the 
origin of the coordinates in the E-cell center and orient axis 
x1 (j = 1 ,2, 3) toward the octahedron vertices (see Fig. 2). 
The positions of the boundary metal atoms are determined by 
radius vectors r; (i = 1 ,2, . . .  , 1 8). Introducing the standard 
notation X1 for the E-cell size along the} axis, we assume that 
X2 = X3 = Y always (but X1 = X can differ from Y) . The 
hydrogen atoms are located at symmetrical points x1 = ±X/2 
before and immediately after the E-cell formation. For s;m
metry reasons, we conclude that these atoms move symmet
rically along the corresponding axes. 

Let us consider the motion of the hydrogen atom, de
noted by I on Fig. 2. Its trajectory is described by the func
tion x( t ) .  The dynamical equation for x( t )  is 

where 

VI 18 
M d 2xldt2 = � Fj + � G; + J ,  

}=II i= I  

( 12) 

Fj ( j  = II, . . .  , VI) = hydrogen-hydrogen interaction 
forces acting on atom I 

G; ( i  = 1, . . .  , 1 8) = forces of the interaction of hydro
gen atom I with the boundary 
metal atoms 

f = force of the interaction of hydro
gen atom I with the remaining at
oms of the crystalline lattice. 

All the forces are potential, and the values of Fj and G; are 
determined from Eq. ( 1 1). For example, 

Fm = e2 exp ( -2"'Ax) ( l  + 2"'Ax)/4x2 , ( 1 3) 
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where X is the screening parameter of the Coulomb interac
tion of hydrogen nuclei. Since the movements of atoms II, 
IV, V, and VI are symmetrical, the corresponding total force 
can be written as 

Fu + F1v + Fv + Fv1 = 4e1 exp( -Xr)( l + Xr)xlr3 

(14) 
where 

r = [x1( t )  + y2( t )] 
y( t )  = coordinate of one of the atoms II, IV, V, or VI. 

The forces G;(x) can be written by analogy with Eq. (14). It 
is very difficult to determine the value off by a direct sum
mation of the forces acting on atom I from the rest of the at
oms of the lattice. We are rescued from this difficulty in the 
following way. Let us note that before the fission of the cen
tral nucleus, atom I was at the point x = X/2 in an equilib
rium state. We denote j(x = X/2) = -'T and have 

'T = [ � 0 + f G; + Go] , 
j=II i=I x=X/1 

(15) 

where G0 is the force of interaction between hydrogen atom I 
and the central metal atom. It is obvious thatf(x = -X/2) = 
'T andf(x = 0) = 0. We can interpolate the dependence off 
on x by the functionf(x) = -2'T x/X or, in potential form, 

f(x) = -a v1ax and V(x) = 'Tx1/X . 
Taking into account all of these considerations, we can write 
Eq. (12) as follows: 

( 16) 

where we introduce the potential of the movement along the 
x 1 axis: 

Ux = e1 [ exp( -2Ax)/4x + 4 exp( -Xr)/r 

+ Z J1 exp( -AR;)IR;] + 'Tx1/X , ( 17) 

where 
A = screening parameter of the Coulomb interaction of 

the hydrogen nucleus with metal nuclei 
R; = distance between hydrogen atom I and metal atom i. 
Such considerations for x1 and x3 give us an analogous 

dynamic equation that describes the movement of one of the 
atoms II, IV, V, or VI in Fig. 2. Introducing the notation 
y( t )  for the coordinate of one of these atoms, we have the 
dynamic equation M d1yldt1 = -auy1ay , ( 18) 
where we introduce the potential of a movement along the X2 

(or x3 ) axis: 

Uy = e1 [ exp( -2Xy)/4y + 4 exp( -Xr)/r 

+ exp( - ,fi.Xy)/,fi.y + Z � exp( -AR;)IR;] 

+ gy1;y . ( 19) 
The value of factor g is determined similarly to the determi
nation of factor 'T from the condition of the equilibrium of 
atoms before the fission of the central nucleus. 
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Comparing the dynamic equation, Eq. ( 16), and the po
tential, Eq. ( 17), with Eqs. (18) and ( 19), we can interpret all 
these equations as the dynamic problem for one pseudopar
ticle that moves in two-dimensional (x,y) space. This pseudo
particle has nonisotropic mass (M for a movement along the 
x axis and 2M for a movement along the y axis) and moves 
in the potential field U(x,y)  of the form 

U(x,y) = e1 [ exp( -2Xx)/4x + 4 exp( -Xr) lr 

where 

+ exp( -2Xy)/2y + ,fi exp ( - ,fi.Xy)/y 

+ Z 
;
� [exp( -XR;)IR; + 2 exp( -AR;)IR; ] J 

+ 29y2/ Y  + 'Tx2/X , (20) 

R; = Ix - r; ! and R; = IY - r; I 
The importance of such an interpretation of the dynamic 
equations, Eqs. ( 16) and ( 18), is the possibility of determin
ing the classical distance R0 of the closest approach of the 
hydrogen nuclei. The area that is accessible for the motion of 
the pseudoparticle is bounded by the equipotential line that 
passes through the initial point (x = X/2, y = Y/2). The min
imal distance R0 of the points of this equipotential line from 
the y axis is unknown. 

IV.O. Reduction of X 
The movement of the pseudoparticle reduces to one di

mension if it is clear a priori that x ( t )  = y ( t )  is true. This 
is the case in the LiH E-cell if the pressure in the crystal is 
near zero. In this case, X = Y = 8.5 (in Hartree units), and 
potential U depends on x (or y) only. This function is shown 
in Fig. 5 (curve 1). It is assumed that s = Xa = 1.9 and S = 
Aa = 2.2 in accordance with the results listed in Table VIII 
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Fig. 5 .  E-cell potential well for one-dimensional movement of the 
pseudoparticle. Curves 1 ,  2, and 3 correspond to E-cells 
under pressures of I ,  30, and 300 Mbar, respectively. 
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for 9? == 0.03. The horizontal dotted line in Fig. 5 corresponds 
to the initial energy level. As can be seen, the minimal pos
sible distance between hydrogen nuclei is characterized by 
Xm == 1 . 8, which is of no interest in the current context. 

We can reduce Xm by the isotropic compression of a 
crystal. Curves 2 and 3 in Fig. 5 represent the dependence of 
U on x for P == 30 and 300 Mbar, respectively. We see that the 
decrease in Xm is small. Even if Xe == 3.5 (P == 300 Mbar), 
we have Xm == 0. 7 ;  this is also of no interest . To obtain the 
desired values Xm < 0.1, one must achieve a compression of 
> 1000 times, which is practically impossible. 

It is more interesting to consider the nonisotropic com
pression of a crystalline lattice. Let us consider the compres
sion of the crystal along one of the axes by a pressure P == 
30 Mbar. We assume that the volume of the E-cell reduces in 
the same way as in the case of an isotropic compression: i.e., 
to X1X2X3 == 140. The sizes X2 and X3 are the same as in an 
uncompressed crystal (X2 == X3 == 8.5); hence, X1 == 2. In 
this case, the motion of the pseudoparticle is two-dimensional, 
and the potential energy U becomes a function of two vari
ables: U == U (x, y).  This function is shown in Fig. 6. The ini
tially single potential well of the E-cell is divided into two 
parts that are separated by the potential barrier. The origin 
of the latter is connected with the influence of boundary 
atoms, denoted by 4 and 1 6  in Fig. 2. These atoms push out 
hydrogen atom II from the segment of the y axis near the 
point y == Y/2. The same effect is caused by atom pairs (3, 15), 
(5,7), and (2, 14). The equipotential lines are depicted in 
Fig. 7 .  The most interesting region is near the boundary 
where x == 0. 

In the case of nonisotropic compression, the accessible 
(along the x axis) region is bounded by min( X) == 0.1 1 ,  which 
is of much more interest than the case of isotropic compres
sion. We can reduce the value of min (X)  by using the hypo-

u \ 

Fig. 6. E-cell potential well for two-dimensional movement of the 
pseudoparticle. The potential barrier divides the well into 
two parts. In the most favorable case, the pseudoparticle 
begins its movement from this barrier. 
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Fig. 7. Equipotential lines of the effective potential well of the 
E-cell for two dimensional movement of the pseudoparticle. 
The initial position of the pseudoparticle is marked by the 
plus sign. 

thetical HeH crystal (with a cubic crystalline lattice) for the 
formation of the E-cell; there is a possibility of greater com
pression of the HeH by the same amount of pressure. 

We see a strong reduction of the distance of the closest 
approach of the hydrogen nuclei in the case of isotropic com
pression of a crystalline lattice. The physical reason for this 
is easy to understand. In the case of nonisotropic compression 
of a crystal, there is essential growth of the initial potential 
energy of interatomic interactions. The motion of the hydro
gen nuclei in the E-cell is a collective phenomenon. The initial 
potential energy of six hydrogen nuclei can transform into the 
kinetic energy of two hydrogen nuclei in some phases of a 
collective motion. The possibility of approaching to distance 
Xm == 0. l 1 corresponds to a kinetic energy Em == 9 (all in Har
tree units). In usual units, Rm = 0.06 A and Em = 250 eV. 

IV.E. Estimation for W 

The estimations of the distance Rm of the closest ap
proach of the hydrogen nuclei and the corresponding energy 
Em allow us to calculate the value of W, which determines 
the tunneling probability (see Sec. I). We assume that the 
value of )\ is 1 .9, and we obtain the following estimations for 
W in LiH crystal: 

1 .  uncompressed crystal: W = 230 

2. crystal isotropically compressed by a pressure of 30 
Mbar: W =  120 

3. crystal nonisotropically compressed by a pressure of 
30 Mbar: W = 44. 

In a hypothetical cubic HeH crystal, nonisotropically com
pressed by a pressure of 30 Mbar, W = 30. 
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IV.F. Main Results 

The results of the foregoing consideration allow us to 
draw the following conclusions: 

I .  It is possible to use the approximation of pairwise in
teraction of two atoms in the free-electron gas to investigate 
interactions in a polyatomic system. The electron density 
must be chosen so that the pressure in the gas coincides with 
the pressure in the initial system. 

2. Within the framework of the T-F model, the param
eter of the screening of the Coulomb interaction of hydrogen 
nuclei with atoms has the value S = 1.9 to 2.4 (in Hartree 
units). It varies weakly with pressure variations in the system. 

3. By itself, a pressure increase in a crystal exerts a weak 
influence on the tunneling probability of hydrogen nuclei. In 
the case of nonisotropic compression, the energy of hydro
gen nuclear collisions can be :::::0.25 keV if the pressure in the 
crystal is in the megabar range. 

4. The effect of nonisotropic compression of a crystal can 
make detectable the nuclear fusion reaction in a compressed 
crystalline hydride. 

V. THE QUANTUM-MECHANICAL SCREENING OF 
THE COULOMB POTENTIAL IN THE E-CELL 

The T-F model is suitable for a description of atoms with 
a large ordering number Z. The use of this model for an in
vestigation of the hydrogen atom can furnish improper re
sults. These results can be wrong in principle if we consider 
the hydrogen atom in the E-cell. If the screening of the Cou
lomb potential of a proton is effective enough, the width of 
the potential well becomes insufficient for the existence of an 
electron coupled state. In this case, there is an interaction of 
free electrons with a proton that is not described within the 
T-F model. It is advisable to use a strict quantum-mechanical 
approach for the description of electrons near hydrogen nuclei. 

The main difficulties of solving the problem of quantum 
screening by low-energy electrons are connected with self
consistent quantum-mechanical calculations of the electron 
density and of the form of the potential near the positive 
charge in the electron background. In addition, it is still im
portant to investigate the screening effects in the case when 
free electrons are characterized by a continuous distribution 
in the energy. In this case, we need to determine the screen
ing as an integral (over all spectral intervals) effect. 

The mathematical formulation of this problem is given in 
Appendix B (see also Ref. 28). We use the long-wave approx
imation; i.e., we assume that the electron wavelength is large 
enough for comparison with the radius of interaction. This 
approximation is more justified when the screening is more 
effective. Practically, this approximation reduces to neglect
ing all partial amplitude perturbations with nonzero angular 
momenta. We can assume that the results obtained with this 
approximation provide a lower estimation of the screening 
parameter. 

In this section, we consider the problem of quantum
mechanical screening of the Coulomb potential as applied to 
the E-cell phenomena. 

V.A. Screening in the E-Cell 

The main equation of the theory of the quantum
mechanical screening (in view of the finiteness of the average 
energy of electrons) has the form: 
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d 2Uldx2 = 81r17 exp(-KX) [Ws + (Ws - We) IKX] IK 
(in Hartree units) , (21) 

where 
U = modified electrical potential [U  = r - rp(r)le] 

11 = density of electron background ( 17 = n0/N0 ) 

K = value of the average wave number of the electrons 
Ws , We

= functions that determine the perturbations of 
the electron density. 

The r�al perturbation of the electron density on is determined 
via Ws and We by 

where 

and 

9l(x) = 2 - exp(-KX) · [Ws + (W5 - Wc} IKx]IK (22) 
The functions Ws and We are determined by 
d 2Wsldx2 - (K 2 - 2Ulx)Ws + 2Ush(Kx)lx = 0 (23a) 

d 2Weldx2 - ( K 2 - 2Ulx)We + 2UKch(KX) = 2K 2Ws . (23b) 
Let us consider the screening effects in the E-cell within 

the shell model framework. We assume that there is one hy
drogen nucleus at the center of the E-cell. The other five 
hydrogen nuclei are displaced on the inner shell with radius 
Xs = Xe/2. The surplus electrons leave the E-cell. This situ
ation is described by the following set of parameters: Z0 = l, 
Zs = 5, Ze = 4Z, and dZ = 0. The boundary conditions for 
the modified electrical potential are 

U(x = 0) = l , 
(U)x=Xs 

= 0 , 
(d UldX)x=Xs = Z5/X5 , 

U(x = Xe ) = 0 
and 

(24) 
The average density 17 of the electron gas is determined by 
the condition of the neutrality of the E-cell as a whole: T/ = 
3 ( Ze + 1)  /41rX;. For a perturbation of the electron density, 
this condition has the form 

(25) 

This equation together with the obvious equation W5(X = 0) = 
We(X = 0) = 0 are additional conditions that determine the 
solution of Eq. (23). It is convenient to convert the differential 
equation, Eq. (21), and the boundary conditions, Eq. (24), 
into an integral equation: 

U(x) = Un (X) - 41r17 [ X l
Xc 

dx' x'9l(x' ) 

+ L
x 

dx' x'29l(x' ) ]  , (26) 

where we use the abbreviation (the potential of nuclei) 

if X < Xs / 
if X > Xs J 
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We solve the problem, Eqs . (21), (23), (24), and (25), of the 
self-consistent distribution of the electrical field and elec
tron density by iteration. First, we choose an appropriate 
test function U(x) . In the first approximation, we solve the 
Eqs. (23) and (25) for W5 (X) and Wc (X). By inserting the 
first-order solution W5 (X) and Wc (X) into Eq. (26), we obtain 
the second-order solution U(x),  etc. 

The result is shown in Fig. 8 (curves 3 and 6). We see that 
the electrical potential is equal to zero at a distance X0 = 

0.25 (in Hartree units) from the central hyqrogen nucleus. For 
comparison, two other results derived from models earlier 
discussed are also plotted in the same figure. We see that the 
quantum-mechanical effects are of importance in the E-cell 
phenomena investigations. 

V.B. Role of the Average Energy of Electrons 
The results of a more detailed analysis of the quantum

mechanical screening effects show that if the average wave 
number of the electrons increases, the electron density at the 
E-cell center increases, and thus, the screening also increases. 
The physical reason for this is easy to understand. If the elec
tron's momentum increases, the uncertainty of its position de
creases. Hence, the distance of the closest approach of 
electrons to a nucleus decreases. This effect is exactly oppo
site to the decrease in the Debye screening parameter with an 
increase in temperature. 

Immediately after the transformation of a normal cell of 
a crystalline lattice into an E-cell, free electrons form the elec
tronic shell of the destroyed metal atom. The average energy 
(£) of the free electrons in the E-cell is - 16Z413 eV per elec
tron (see Sec. 11 .B). For instance, for lithium, (E)  = 60 eV; 

4 

-o., 
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::s -5. 

-10 8 

- 1  0 
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\ 
\ 

5 . .  , ........  

10  20 
10  

Fig. 8 .  Modified potential U(x) distributions in the E-cell. Curves 
1 and 4 correspond to a uniform electron density (curve I 
is the modified potential of the central hydrogen nucleus 
with one "distributed" electron, and curve 4 is the total 
modified potential of the electron-nuclear system of the 
E-cell). Curves 2 and 5 correspond to the electron density 
within the T-F model framework; curves 3 and 6 are deter
mined within the L W approximation. It is assumed that 
K :::  2.5. 
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for boron, (E)  = 140 eV. The average wave numbers K that 
correspond to these energies are =2 to 3. A further increase 
in screening of the Coulomb potential can be connected with 
an increase in an average electron's energy in the E-cell. One 
possible path to this increase is the use of heavy elements as 
the hydride base. The average energy of the electrons that re
main in the E-cell after the central nucleus fission is =260 eV 
for 170, for example. This corresponds to e = IO and K = 

14. In this case, calculations of the screening effects give us 
X0 = 0. 1 .  The case of chief industrial importance is the use 
of elements with Z � 92. In this case, an average energy 8 � 
250 corresponds to X0 = 0.025. 

It is clear that the electron temperature can be differen
tiated from the lattice temperature for only a short time. The 
question of how long a high electron temperature, which is 
needed for the effective screening of the Coulomb potential 
in the E-cell, can be maintained must be considered together 
with other analogous problems, such as how long the con
finement of the surplus electrons exists, how long the hydro
gen nuclei energy can be conserved, etc. These questions are 
of great importance for a separate investigation. 

V.C. Qualitative Conclusions 

The results of the consideration of quantum-mechanical 
screening effects allow us to draw the following conclusions: 

I .  The use of the long-wave approximation to determine 
wave functions of free electrons is adequate for the descrip
tion of actual phenomena in the central regions of the E-cell. 

2. The screening law in the E-cell differs from the Fermi 
law that is usually used in solid-state theory. There are dif
ferences both in the functional dependence of the potential 
on the distance and in the dependence of the screening pa
rameter on the electron density. 

3. The effects of quantum-mechanical screening can be 
important for the significant growth of the tunneling prob
ability of hydrogen nuclei if the electron's energy is suffi
ciently large. 

VI. THE SUMMARY EFFECT 

Two main effects can significantly increase the tunneling 
probability of hydrogen nuclei in the E-cell. The first is the 
growth of the potential energy of interatomic interactions as 
a consequence of nonisotropic compression of a crystal . The 
initial potential energy of six hydrogen nuclei can be trans
formed into the kinetic energy of two hydrogen nuclei in 
some phases of the collective motion of hydrogen nuclei in 
the E-cell. The second effect is a significant increase in the 
screening of the Coulomb interaction of hydrogen nuclei in 
the E-cell .  

These two effects act independently; hence, their influ
ences are summed. We can use Eq. (I) to estimate the total 
effect. Assuming that e = 9 (see Sec. IV) and X0 = 0.25 (see 
Sec. V), we obtain W = 33 for the T + D reaction. 

A comparison of these estimations with the critical val
ues of W (see Sec. I) shows that there is a real possibility of 
creating the conditions for the effective enhancement of the 
nuclear fusion rate. Thus, we can obtain a detectable yield of 
neutrons as a result of cold nuclear fusion in a solid. 

It is clear that there are many effects besides the ones con
sidered here. Some of these effects are unfavorable: the loss 
of energy and electrons from the E-cell, the reconstruction of 
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the crystalline lattice under high compression, the contamination of the hydride by the products of nuclear reactions, etc. However, the existence of some favorable effects is also possible: the formation of quasi-molecular structures25 in the E-cell and Bose-condensation phenomenon in a nonuniform field.27 
VII. CONCLUDING REMARKS The conclusions resulting from the consideration of separate E-cell phenomena are listed in the corresponding sections of this technical note. It is expedient to discuss the conclusions as a whole. The main result is the exposure of the existence of a new physical object called the E-cell. In the E-cell, there are physical phenomena, each of which contributes to an increase in the nuclear fusion reaction rate. The combination of these phenomena makes it possible to obtain a detectable yield of neutrons as a result of cold nuclear fusion in a solid. These conclusions are the result of a theoretical consideration of the possible phenomena in the E-cell, and for this reason, they have a rather speculative character. We may develop more exact models and improve the corresponding methods. However, the results would not be more reliable than those described herein. The only way to confirm or to disprove our conclusions is to execute special-purpose experiments. We may say that the potentialities of the theory are exhausted now. The theoretical approach has given us the leading considerations. The rest is a matter of experimental physics. 

APPENDIX A 

THE T-F MODEL IN THE E-CELL INVESTIGATION The basic equations of the T-F statistical model are as follows26,J5-37 : 1 .  The electron density n at a point r is related to the maximum possible momentum p at that point by 37r2n = (plh)3 . (A. I )  2. The maximum possible momentum p depends on the electrical potential ,p as follows: p2/2m - pe2/h 2 - e,p = const , (A.2) where the second term on the left side of the equation takes the exchange effects into account. 3. The electrostatic Poisson equation for the potential U has the following form: 
ll,p = 41r [en - � e;o(r - r;)] . (A.3) 

Using the freedom of choice of the potential zero level, we can exploit the "shift" potential ip and set the constant on the right side of Eq. (A.2) to -me4/211"2h 2
. We solve the resulting equation as follows: 

p = me2/1rh + (2meip) 112 . (A.4) Substituting Eq. (A.4) for Eq. (A. 1 )  and using the resulting expression for Eq. (A.3), we obtain the equation for <ji ( r) only: 
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(A.5) This equation is used to consider the parameters of the compressed neutral atoms and the charged negative ions (Sec. II). This equation is also used to investigate, within the shell model framework, the E-cell structure (Sec. III). These cases differ by the boundary conditions at the E-cell central point ( r  = 0) and on the boundary surface. In the first case (consideration of atoms and ions), we have ip(r -+  0) -+ eZ/r. The variations of the potential ,p near the outer boundary of atoms correspond to the escape from the neutral system: (dipldr),=R = (dq,ldr),=R = 0 Near the outer boundary of negative ions, we have (d,j!ldr),=R = (dq,/dr),=R = e/R2 We do not know the value of the shift potential ,j; on the outer boundary of our system. This value is determined in the process of solving the corresponding problem. We can determine the connection between q, and ,j; by 

f ,j;(r) - ,j;(r  = R0) in the case of neutral atoms ,p(r) = ,j;(r) - ,j;(r  = R;) - elR; in the case of negative ions In the investigation of the E-cell as a whole, the different boundary conditions correspond to the different stages of E-cell evolution. For example, there can be a different number Z0 of electrical charges at the E-cell center: Before the E-cell formation, Z0 = Z; immediately after, Z0 = 0. Some of the hydrogen nuclei that belong to the E-cell system can get to the central volume of the E-cell in the course of E-cell evolution. Outside this volume, we can determine a potential ,j;, using Eq. (A.6) with the changing Z -+  Z0 , where the value of Z0 can vary from 0 to 6. The outer boundary of the E-cell, within the shell model framework, is a uniformly charged sphere (total charge is Z0 = 4Z) , and it determines the jump of a derivative dq,ldr on the boundary: (d,p/dr),=Rc = (d(f)ldr),=Rc+O - (dl{)ldr),=Rc-0 = -4eZ/R� Before the fission of the central nucleus, the cell is neutral; hence, 
and (dl{)ldr),=Rc-o = 4eZ/R� If surplus electrons are confined in the E-cell, the total E-cell charge is Z, and we have (dq,/dr),=Rc+O = eZIR'?, and (dq,ldr),=Rc-o = 5eZ/R� The derivative (dl{)ldr),=Rc-O returns to the initial value in Eq. (A.7) during these stages of E-cell evolution, when surplus electrons leave the E-cell. 
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The boundary value of the shift potential ip(r  = Re) is 
determined in the process of solving the corresponding prob
lem. We can determine the connection between cp and ip by 

if surplus electrons are confined in the E-cell 
cp(r) === [ 

ip(r) - ip(r = Re) - eZIRe 

ip(r) - ip(r = Re) 
if surplus electrons leave the E-cell . 

When we investigate the E-cell inner structure within the 
shell model framework (see Sec. III), we assume that the hy
drogen nuclear charge is distributed uniformly on a spherical 
surface (called the hydrogen shell) of radius Rs (Rs < Re) .  
The summary charge Zs of  these nuclei i s  equal to  6e before 
and immediately after the E-cell formation. During E-cell 
evolution, some of these nuclei may move to the E-cell cen
ter. If the number of displaced nuclei is Z0 , then the charge 
of the hydrogen shell is e ( 6 - Z0) .  It is convenient to solve 
the differential Eq. (A.5) within two regions: 0 < r < Rs and 
Rs < r < Re . On the boundary r = Rs, the conditions for po
tential are 

[ 'Plr=Rs 
= 0 and [d,pldr] r=Rs 

= -eZslR; . 
Let us <;onsider the energy characteristics of atoms, ions, 

and the E-cell as a whole. The importance of this consider
ation is determined by the following circumstance. By calcu
lating the energy of different configurations of a considered 
system, we can predict the direction of the evolution of this 
system. This evolution is direct to the configuration with the 
minimum total energy £101 • The value of £101 is the sum of 
four components35

: 

1 .  The kinetic energy of electrons: In the degenerated 
electron gas, an average kinetic energy (£) is related to the 
maximum momentum p of electrons by (£) === 3p2/ 10m. 
Hence, the kinetic energy of the electron system is determined 
by the integral 

Ekin = (3/ lOm) • J np 2 dv 

= J p 5 dv/ (10m11'2h 3) 

=:: J [ :: + (2meip) 112r dv/ ( 10m71'2h 3) .  

2. The potential energy of electrons: According to the 
common rules (see, e.g., Ref. 35), the total potential cp of an 
electrical field should be divided in two parts ( cp = 'Pe + 'Pn) 
to calculate the potential energy of electrons. The part 'Pe is 
the potential of the electrons, and 'Pn is the potential of the 
nuclei. 

If we consider atoms or ions, then 'Pn ( r) === eZ/r. If we 
consider the £-cell, we must take into account the potential 
of the central nuclei 'Pno = eZ0/r, the potential of the 
charged boundary 'Phb = 4eZIRc (within the shell model 
framework), and the potential of the inner hydrogen shell: 

{ 
eZslRs if r < Rs 

'Pns = eZslr if r > Rs . 

Thus, the electrical potential of nuclei in the E-cell is the 
sum 

'Pn = 'Pno + 'Pne + 'Pns 
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The potential energy of electrons is determined by the 
integral 

Ee pot = - (e/2) • J ncpe dv - e ·  J ncpn dv 

= - (e/2) • Jn (cp + cpn) dv . (A.6) 

Let us emphasize that we must use the true (not shift) po
tential ,p in these calculations. 

3. The change-exchange energy: The addition to the en
ergy of the E-cell electron subsystem, accounting for the 
change-exchange effects, is determined (see, e.g., Ref. 23) by 
the integral 

Eex = (3e2/47rlz) • J np dv 

=== (e2/47r 3!z 4) . J P4 dv 

=== (e2/47r3 Fz4) • J [ :: + (2meip) 112r dv 

4. The potential energy of the Coulomb interaction of nu
clei: We take into account the potential energy of the Cou
lomb interaction of nuclei with electrons in Eq. (A.6). Hence, 
the addition to the potential energy of the E-cell electron
nuclear system is the energy of the Coulomb interaction of 
nuclei: 

En pot = e2 (ZoZslRs + ZoZelRc + ZsZclRc) 
The total energy of the electron-nuclear system is thus 

Ew, = Ekin + Eex + Ee pot + En pot 
This value can vary during E-cell evolution. The differ

ences 0£1 of the values of £101 that characterize different 
stages of E-cell evolution can contribute to the kinetic energy 
of hydrogen nuclei. Hence, we may consider the value of oE1 

as an estimation of the hydrogen nuclei collision energy. Dur
ing the late stages of E-cell evolution, the hydrogen nuclear 
kinetic energy transfers from the E-cell electron-nuclear sys
tem to the crystalline lattice. 

The determination of the energy components of the elec
tron-nuclear system allows us to determine the pressure P 
necessary to compress the considered system to the set size. 

We can use the theorem of virial (see Ref. 35) if we con
sider squeezed atoms or ions. In these cases, we have 

P = (2Ekin + Eex + Eepot)/3 V,,, ; . (A.7} 
If we consider the E-cell as a whole, we must take into ac

count the existence of nuclei in the volume and on the bor
der of the E-cell. Within the shell model framework, the 
variations of the nuclear potential energy comply with the 
conditions of the theorem of virial; hence, we have an ana
log of Eq. (A.7): 

P = (2Ekin + Eex + Ee pot + En pot)/3 Vc , (A.8} 
where Vc is the volume of the E-cell. Within the shell model 
framework, 

Vc. = 411'R�/3 
In Sec. IV, we investigate the E-cell phenomena within 

the discrete model framework. We exploit the energy charac
teristics of atoms in a free-electron gas of density n0 . Atoms 
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are compressed by the pressure that is created in the gas. The 
pressure P is related to electron density n0 by 

P = (h2 )213h2nf315m - (3hr) 113e2nf314 . (A.9) 
The first term on the right side of the equation is the usual 
term38 for degenerated electron gas; the second term is an 
addition that takes the exchange effects into account.39 

The potential variations at point r are determined by the 
amount by which the electrqn density exceeds its background 
value: 

Al{) = 41Te(n  - n0) 
The determination in Eq. (A. I )  of the electron density n 

via the maximal momentum p is true in the considered case, 
but the relation between p and ,p is determined by 

( p  - P, >2 - ( Po - pi )2 = 2me,p . 
According to this equation, if I{) ---+  0, p ---+  p0 , where p0 is re
lated to n0 by Eq. (A. I )  and p 1 = me2hrh. 

In the case of an atom in electron gas, the relation be
tween the shift potential ip and the .true potential ,p is clear 
a priori: 

ip - ,p = (Po - P1 >212me . 
The equation for ij;(r) has the form 

Aip = 
471" 

3 
• ([p 1 + (2meip) 112 ] 3 - pJ I hh 

Boundary conditions for ij; have the form 
ip(r---+ 0) ---+ eZ/r , 

ip(r = Ra ) = ( Po - Pi )2/2me , 
and 

(dipldr),=Ra 
= 0 (A. 1 1) 

The solution of the boundary problem in Eqs. (A. I 0) 
and (A. 1 1) determines the structure of an atom in the free
electron gas. 

As in the investigations of the E-cell evolution, the analy
sis of the variation in atomic energy in the considered case 
gives us important information about the E-cell phenomena 
(see Sec. IV). 

The total energy of the electron system of an atom in 
free-electron gas is determined by the integral 

Ee ,01 = J ((3/ 10m) (np2 
- noP6 ) - (3e2!41Th) (np - noPo) 

- (e/2) [ (n  + n0),p + ( n - no)<Pn l l  d v  . (A. I2) 

The first two terms in the braces are the kinetic and ex
change energies of electrons with the deduction of the corre
sponding components of the energy of the electron gas. The 
last term is the potential energy of the electrons. The func
tion <Pn = Ze/r is the Coulomb potential of a nucleus. The 
given form of the term of a potential energy requires an 
explanation. 

It is assumed that the potential energy of electrons is the 
sum of the potential energy of additional (to background) 
electrons Epot l and the potential energy of the background 
electrons E

potZ · The density of the additional electrons is 
n - n0, and their potential energy is 
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A factor of ½ in the second term of the integrand is needed 
to eliminate repeated accounting of the energy of electron
electron interactions (see Ref. 35). This factor is unnecessary 
if we calculate the potential energy of the background elec
trons (they do not create an electrical field); therefore, 

Epo12 = -e · f no,P d v  . 

The sum Epot l + Ep012 gives us the total potential energy 
of the electrons in the form of the last term of Eq. (A. I2). 

In numerical calculations, we use the Hartree system of 
units (see Sec. II.A). Let us write the main equations of the 
T-F model in this system. 

The modified potential U is determined by U = ,prle, and 
modified shift potential i1 is determined by i1 = iprle. The 
equation for i1 has the form 

d 2Uldx2 = ax [/) +  (U/x) 112 ] 3 , (A. 13) 
where 

a =  2712/371" :::: 1.20 and /J = 1/211271" ::::  0.225 . 
The total energy of the electron system of an atom or ion 

is determined by the integral 

81 = i
Xa 

{ ak [/3 + (U/x) 112 ]5 - ae [ /3 + (U/x) 112 ] 4 

- ap
[ /J + (U/x) 112

]
3 

• [Ulx + IP(x)] lx2 dx , 
(A. 14) 

where cp = Zlx is the potential of nucleus, and the constants 
are 

ak = 27/2/571" ' 
O!e = (2/71")2 ' 

and 
O!p = 25/2/371" . 

The pressure \fl is determined by the components of energy by 
lfl(X) = (28k + 8e + 8p)IX3 

The inverse function X(lfl) determines the size of an atom, 
an ion, or the E-cell as a whole as a function of the pressure 
\fl in a crystal. 

The two-point boundary problem to determine the mod
ified potential is solved by choosing the initial (for x = 0) der
ivation of the function U(x). This method is known as the 
reduction of a two-point boundary value problem to an initial
value problem (see, e.g., Ref. 40). 

Examples of the results of calculations of the structure of 
a compressed atom and ion (Z = 3) are shown in Fig. A. I .  
The dimensionless radius (atom or ion) i s  equal to 1 .5. The 
dashed lines represent the distribution of the modified shift 
potential U(x) for an atom (curve 1) and an ion (curve 2), and 
the dotted lines represent the distribution of a true modified 
potential U(x) for an atom (curve 3) and an ion (curve 4). 

The corresponding distributions of the modified dimen
sionless electron density v(x) = 4'1Tx29l(x) are shown in 
Fig. A.1 by solid lines for an atom (curve 5) and an ion 
(curve 6). In the case considered (X = 1.5), the total energy 
is equal to -304 eV for an atom and -27 1 eV for an ion. 
So, the transformation of a neutral atom into a negative ion 
requires an energy expenditure of ::::33 eV. A pressure of 
~ 1 1  Mbar is required to compress an atom to a size X = 
1.5 (Ra = 0.79 A). 
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Fig. A. I .  Potential U (curves I through 4) and density 11 (curves 5 
and 6) distributions for a lithium neutral atom (curves I ,  
3 ,  ·and 5) and negative ion (curves 2, 4, and 6). Both are 
compressed to radius X = 1 .5 (R = 0. 79 A). The neces
sary pressure is == 1 1  Mbar for an atom and ==30 Mbar 
for an ion. The total energy is approximately -304 eV 
for an atom and approximately -271 eV for an ion. 
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Fig. A.3 .  Structure of the E-cell inner area (0 :S x :5 X,) during 
various stages of E-cell evolution. The solid and dashed 
lines show the electron density and potential distribu
tions, respectively. The E-cell parameters are as follows 
(see Table III): Z0 = 0, Z, = 6, and dZ = 3 (curves I and 4); 
Z0 = I, Z, = 5, and dZ = 3 (curves 2 and 4); and 20 = I ,  
Z, = 5, and dZ = 0 (curves 3 and 6). 
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Fig. A.2. E-cell structure. The various pairs of curves (I and 4, 
2 and 5 ,  and 3 and 6) correspond to various values of 
the radius (X, = I ,  2, and 3, respectively) of the inner 
hydrogen shell. The solid lines show the modified elec
tron density, and the dashed lines show the modified 
potential distributions. The E-cell radius is Xe = 5 (Re = 

2 .65 A). 
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Fig. A.4. A comparison of the results of the E-cell structure anal
yses in two approximation frameworks. The dash-dotted 
lines show the potential distribution in the E-cell with a 
uniform electron density (see Sec. 11 .C) (curve I corre
sponds to 20 = 3, and curve 4 corresponds to Z0 = I ) .  
The dashed lines show the potential distribution in  the 
E-cell with the electron density (solid lines) determined 
within the T-F model framework (curves 2 and 3 corre
spond to 20 = 3, and curves 5 and 6 correspond to Z0 = 1) . 
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The results of the investigation of the E-cell structure 
are shown in Fig. A.2. The dashed lines represent the distri
bution of the modified potential U(x) for a normal cell of size 
Xe = 5 in a LiH crystal (Z = 3) . The corresponding distribu
tions of the modified dimensionless electron density v (x) are 
shown by solid lines. The E-cell structure (the modified po
tential distribution) is shown in Fig. A.3. Curves I ,  2, and 3 
correspond to the E-cell immediately after its formation 
(Z0 = 0, dZ = Z), after the displacement of a hydrogen nu
cleus into the E-cell center (Z0 = 1, dZ = Z), and after the 
loss of surplus electrons from the E-cell (Z0 = 1, dZ = 0) . 

For future reference, we show data on the distribution of 
the potential and electron density in the E-cell matched with 
an inner H-shell with a boundary surface. These results are 
shown in Fig. A .4. 

APPENDIX B 

QUANTUM-MECHANICAL SCREENING 

We a priori confess that the quasi-classical approximation 
is inapplicable to the problem of the Coulomb potential 
screening. Indeed, a quasi-classical wave function has an am
plitude factor p - 112 (where p is the momentum of the parti
cles), which describes the decrease in the free-electron density 
near a nucleus. It is easy to see that a strict solution of the 
quantum-mechanical problem leads us to the exactly oppo
site conclusion: There is an increase in the free-electron den
sity above the potential well. 

Let us consider the model problem of slow particle inter
action with a spherical potential well of depth U0 and radius 
R in the limiting case where the velocities of the particles are 
so small that their wavelength is large compared with radius 
R (i.e . ,  for wave vector k, kR « 1 ) , and their energy is small 
compared with the field U0 within that radius. It is known 
(see, e.g. , Ref. 1 7) that in this case, the perturbations of all 
partial amplitudes with nonzero orbital angular moments C 
are small in comparison with the perturbation of partial am
plitudes with C = 0. We can determine the wave function Vlk 
of particles outside the well by 

Vlk = sin(kr + o)lkr , 
and inside the well by 

Vlk = A sin(Kr)lkr , 
where 

k = (2mE) 112h and K = [2m (E - U0
)] 112/h . 

The boundary conditions at the point r = R determine the 
amplitude of the wave function Vlk inside the well: 

A =  ( [ 1  + tg2 (KR)] / [(K/k)2 + tg2 (KR)] l 112 

We see the increase in the density of particles at the point 
r = 0. This increase is characterized by the ratio 

a =  (AK/k)2 = { l  - [ 1  - (k/K)2 ] sin2 (KR)J - 1 

The function a (E) reaches a maximum (max{ a I = I Uo I /£) 
when KR = 1r 12. If the interacting potential is the Coulomb 
potential and the interacting particles are electrons, an in
crease of density leads to an increase in the screening effects. 

The main difficulties in solving the problem of quantum
mechanical screening by low-energy electrons are connected 
with self-consistent quantum-mechanical calculations of the 
electron density and of the form of the potential near the pos-
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itive charge in the electron background. In addition, it is still 
important to investigate the screening effects in the case when 
free electrons are characterized by a continuous distribution 
in energy. In this case, we need to determine the screening as 
an integral (over all spectral intervals) effect . 

We use the long-wave approximation; i.e. , we assume 
that the electron wavelength is large enough for comparison 
with the radius of interaction. The better this approximation 
is justified, the more effective the screening is. Practically, 
this approximation reduces to the neglect of all partial am
plitude perturbations with nonzero angular momenta. We can 
assume that the results obtained within this approximation 
framework provide a lower estimation of the screening pa
rameter. It is clear that accounting for partial waves by non
zero angular momentum can increase screening effects . 

The potential of electrical field is determined as a spher
ical symmetrical solution of Poisson's electrostatical equation: 

f:up = 41re (n - no) 
with the boundary conditions 

(B. I )  

lim [ r({J( r)] = e and lim [ r({J( r)] = 0 (B.2) 
Let us introduce the distribution function F of electrons 

on values of wave vectors k and wave functions 1h ( r) of 
electrons with this wave vector. Using these functions, we can 
determine the electron density: 

n ( r) = f
"' 

F(k)I 1fk (r)l 2 dk . 

We have the Schrodinger equation for the wave functions 
lfk ( r) :  

( 2 2me ) tlfk + k + h2 ' 'P  Vlk = 0 • (B.3) 

We choose the solution of this equation for the free elec
trons (i.e., for the case 'P = 0) in the form Vlk ( r) = 
sin( kr)/kr. So we have 

no (r) = L00 F(k)sin(kr)2/ (kr)2 dk . 

Correspondingly, we normalize the wave function 1h ( r) 
and distribution function F(k) to obtain 

Jim ( kr1h ( r)l = sin(kr + o) 

and 

L00 F(k) dk = no 

The equation for ({J(r) thus has the form 

il({J = 41re L00 F(k) [ l fk ( r)l 2 - sin(kr)2/ (kr }2 ] dk 

(B.4) 

(B.5) 

(B.6) 
The system of Eqs. (B.3) and (B.6) together with the 

boundary conditions in Eqs. (B.2) and (B.4) determine the 
self-consistent space distribution of the electrical potential 
and the electron density near the positive charge. 

It is convenient to use the dimensionless Hartree units (see 
Sec. I): 

x = rla , 
K = ka ,  
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<I> =  a,ple , 
U = X</> , 

Vk = x1h (x) , 
and 

Y/ = no/No . 
From the system of Eqs. (B.3) and (B.6), we have for the 

new unknown variable functions U and \Jk the equations 
d2Uldx2 = (41rrilx) 

· i00 f(K) [ll�( x) - sin(Kx)2/ (Kx)2 ] dK (B.7) 

and 

where the dimensionless function of distribution is normal
ized according to 

i00

f (K) dK = l 

The boundary conditions for U (x) and \Jk (x) are 
U(x = 0) = l , U(x -->  oo) --> 0 , 

and 

(B.9) 

(8. 10) 

\Jk (x = 0) = 0 , \Jk ( x --> oo) --> sin(Kx + o)/K . (B. 1 1) 
Equation (B.8) has no analytical solution in the case of an ar
bitrary dependence of U on x. The use of the numerical so
lution of Eq. (B.8) leads us to the necessity to summarize a 
large number of oscillating functions in Eq. (B.7). This can
not be done with the required accuracy. 

We can use some general results of the quantum theory 
of the potential scattering of particles (see Refs. 41 and 42). 

It is convenient to convert the differential equation, 
Eq. (B.8) with the boundary condition of Eq. (B. l l), into an 
integral equation: 

K•\Jk (x) = sin (Kx) - 2 · l
00 

dy sin [K(x - y)] 

x \Jk ( y )U( y ) ly . (8. 12) 
We search for a solution of Eq. (8. 12) in the form 

K·\Jk (x) = sin(Kx) + i
x 

dy sin (Ky)l(x, y ) . (B. 1 3) 

Let us now insert Eq. (8. 1 3) into Eq. (8. 12). This yields 
an integral equation satisfied by /(x, y) : 

J 
(x+y)/2 

[ U( t ) 1 
(x-y)/2 

l(x, y )  = dt - + 2 ·  ds 
(x-y)/2 l O 

U ( t + s) 
] 

x --- /(t + s, t - s ) 
(t + s) 

(B. 14) 

Note the remarkable fact that the kernel function l(x, y )  
in Eq. (8. 1 3) does not depend on wave vector K. Hence, 
Eq. (8. 1 3) for the solution of Vk (x) can be inserted into 
Eq. (B. 7). We then have 

d2Uldx2 = (4,rrilx) • i
x 

dy l(x, y )  

x [ 2G (x, y )  + i
x 

dt l(x, t ) G ( y, t)] (8. 1 5) 
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when we use the abbreviation 

G (x, y )  = i
x 

dKf(K)sin(Kx) sin(Ky) IK 2 (8. 1 6) 

The formal solution of Eq. (8. 1 5) with the boundary con
dition in Eq. (B. IO) has the form 

U (x) = l - 8 1rri [x i00 dx' R(x') + i
x 

dx' x'R(x' )]  , 

(8. 1 7) 
where 

R(x) = ( l lx) i
x 

dy l(x, y )  

X [a (x, y) + ( D i
x 

dt l(x, t ) G (x, t ) ]  

The system of  integral equations, Eqs. (8. 14) and (8. 17), is 
in principle simpler for analysis and for a solution than the 
initial system. For example, the latter system can be solved 
(numerically at ariy rate) by iterations. In the case of an ar
bitrary spectral distribution of electrons, it is the only method 
of analysis for this problem. In some cases, however, we can 
convert the integral equations, Eqs. (8. 14) and (8. 17), into 
a system of differential equations with corresponding bound
ary conditions. Let us consider some examples. 

Note that we consider the problem within the long-wave 
approximation framework. The characteristic values of the 
wave vector of electrons K0 and of potential hole width x0 are 
small, so their product is small, too: K0x0 < l .  If K0x0 « l ,  
we can use the expansion sin (Kx) == Kx. 

Let us insert this expansion into Eq. (8. 1 6), taking into 
account the normalizing equation, Eq. (B.9). It then follows 
that 

d 2Uldx2 = 81rrilV(x) [ l  + lV(x)/2x] , (8. 1 8) 
where 

W(x) = l
x 

dy yl(x, y )  

The function IV(x) i s  the solution of  some differential 
equation. We can write this equation, noting that the kernel 
function l(x, y )  satisfies the partial differential equation, as 
follows : 

a21 a21 U(x) 
- - - + 2 - - l(x, y )  = 0 
ax2 ay2 X 

(8. 19) 

Let us multiply Eq. (8. 19) by y, integrate from y = 0 to 
y = x, and use the integration of the second term by parts. 
The result is the differential equation for the function lV(x) :  

d 2W/dx2 + 2U(x) [ l  + lV(x)/x]  = 0 

The boundary conditions for Ul(x) are 

W(x = 0) = 0 and W(x --> oo) --> 0 

(8.20) 

(8.21) 

Equations (8. 18) and (8.20) together with the boundary con
ditions in Eqs. (8. 10) and (8.21) form the boundary problem. 
The solution of the latter determines the self-consistent dis
tributions of the electrical potential and the electron density 
near a positive charge that is displaced in the free-electron 
background. 
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If we neglect the nonlinear terms in Eqs. (8.18) and 
(8.20), the solution of this boundary problem is 

U(x) = exp(-Sx) cos(Sx) 
and 

W(x) = exp ( -Sx) sin(Sx)/S2 , (8.22) 
where 

(8.23) 

To determine the role of the nonlinear terms in the sys
tem of Eqs. (8.18) and (8.20), we note that these equations 
can be considered as Euler's equations, which are determined 
as the minimum of the functional 

f = i00 dx [ �  (dUldx)2 - 27r ·11 · (dW/dx)2 

+ 81r ·71 ·U •W · ( l  + W/2x)] . (8.24) 

We search for the minimum of f using functions similar 
to Eq. (8.22) with an arbitrary parameter S. We then have 

If value of 71 is large ( 71 > 1 ) ,  the function in Eq. (8.24) 
is minimal if S = ( 41r71) 114 . This is in accordance with the 
solution of a linearized problem. If the value of 71 is small 
( 71  « 1), Eq. (8.23) is minimal if S = [(161r71/3)ln(�)] 115 . 
The boundary value of 71 is 11• = (2/7r) [( � ) ln(�)]4 = 0.Ql5. If 
the electron density is small ( ne < l 023 cm -3), then screen
ing is connected with the nonlinear terms in Eqs. (8. 18) and 
(8.20). If the density is large ( ne > 1023 cm -3), the screening 
is connected with the linear terms in Eqs. (8.18) and (8.20). 
The physical reason for this is easy to understand. If the elec
tron density is large, then the relatively small perturbations 
are enough for full screening of a positive charge. These per
turbations can be described with good accuracy by a linear 
approximation. If the electron density is small, its perturba
tions near the positive charge are great, and a linear approx
imation is insufficient for their descriptions. 

For a numerical solution of the boundary problem, it is 
convenient to convert differential equations [Eqs. (8.18) and 
(B.20)] with boundary conditions [Eqs. (B. IO) and (B. 2 1 )] 
into integral equations, which can be solved by iteration. 
Using the complete set of solutions, Eq. (8.22), of the linear
ized equations, Eqs. (8.18) and (8.20), we can write the for
mal solutions of these equations in the following form: 

U(x) = ( 1  + Q) exp( -y)cos( y) - P exp( -y)sin( y) 

+ (1) i
00 

dy' exp(- ly - y' I ) 

x [q ( y' ) sin ly - y' I - r ( y ')cos( y - y' )] 

and 

W(x) = ( 1  + Q)exp(-y) sin( y) + P exp(-y)cos (y) 

- G) i
oo 

dy' exp( - ly - y' I ) 

X [q(y' )cos( y  - y') + r(y' )sin/y - y' /J , 
(8.25) 
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where 
Y = Sx , 
S = (41r71) 114 , 

q ( y) = SW(S2W - 2U)ly 
r ( y) = SW(S2 W + 2U)ly , 

Q = -U) ioo 

dy exp ( -y) 

x [q( y) sin( y) - r( y) cos(y)] , 
and 

P =  (1)100 

dy exp (-y) 

x [q(y)cos(y) + r(y)sin(y)] 
The equations are solved by iterations. Examples of so

lutions to Eq. (8.25) are shown in Fig. B. l .  The dashed lines 
represent the space distribution of the modified potential 
U(x), and the solid lines show the modified electron density 
�(x) = 2W(x) [ l  + Wl2x] . 

Note the remarkable fact that the screening parameter de
pends on the background electron density according to 

Aq = Sia = [ 41rme 2 n0/h 2 ]  114 

This dependence differs from the dependence of the 
Fermi screening parameter that is usually used in the theory 
of solids (see, e.g., Refs. 43 and 44): 

AF = 2em 112nf6h - 1 

Let us consider the effects connected with the finiteness 
of the average electron energy. In this case, the result depends 
on the shape of the distribution function. The Fermi spec
trum is of practical interest, but the solution has serious 
mathematical difficulties in this case. 

1 1 .0 

8.6 

0 6.2 

3.8 

1 .4 

1 , • 0.20, S • 1 .  , s. • 1 .26 
2 , • 1 .00. S • 2.05. s. • 1 .88 
3 , • 5.00, S • 2 , s. • 2.82 

Fig. 8 . 1 .  Distributions of the modified electron density (solid lines) 
and electrical potential (dashed lines) near the positive 
charge. 
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It is quite acceptable to use a distribution function as 
follows : 

(B.26) 
This function is similar to the Fermi distribution in the 

range K < K.  
Let us insert Eq. (B.26) into Eq. (B. 1 6). This yields 

G (x, y) = ( ll2K2 ) • ( ( 1  + K l x - Y l ] exp [ -K l x - Y l l  
- [ 1  + K (x + y)] exp [ -K(X - y)] l 

(B.27) 
If x > y, this function has the form 

G (x, y) = K -2 exp ( -KX) [( l + KX)sh ( Ky) - Kych (q)] 
(B.28) 

Let us note that the Maxwell distribution function 
f(K) = (4K2hr 112K 3)exp [ - (KIK)2 ] 

yields a G function of the form 
G(x, y) = (2/K2)exp [ -K2(x2 + y 2)/4] sh ( k2xy/2) 

(B.29) 
Comparison of the two G functions [Eqs. (B.28) and 

(B.29)] shows that they are similar in the most important re
gion, x == y. In other words, the difference between the distri
bution function, Eq. (B.26), and the exponentially decreas
ing distributions does not lead to significant differences in the 
G functions. Therefore, we use a distribution function in the 
form of Eq. (B.26). 

Let us consider the functions 

llle (X) = L
oo 

dy l(x, y)sh (KY) 

and 

Wc (X) = K L
oo 

dy yl(x, y)ch ( Ky) 

The integral 

::S (x) = i
x 

dy l(x, y)G (x, y) 

is determined by these functions as follows: 

::S(x) = K -2 exp ( -KX) [( l + KX)llls (X) - lllc (X)] 

(B.30) 

This [see Eq. (B.20)] method yields the equations for 
U/5 (X) and lllc (X) :  

d 2U/5/dx2 - [ K2 - 2U(x)lx]U/5 (X) + 2U(x)sh ( KX)lx 
= 0  

and 

d2Wcldx2 
- [ K2 - 2U(x)lx]Wc (X) + 2KU(x)ch ( KX) 

= 2K 2W5 (X) 

Note that these equations have the form of the Schro
dinger equation. The term 2U(x)/x corresponds to the poten
tial hole, but effective energy K 2 has a sign that corresponds 
to the bound states of the electrons. Formally, it leads to an 
increase in the free-electron density near a positive charge. 
The direct consequence of this increase is the effect of screen
ing of the Coulomb potential of positive charge. According 
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Fig. 8.2. Distributions of the modified electron density (solid lines) 
and electrical potential (dashed lines) near the positive 
charge in the electron background with an average elec
tron density 11 = 1 .0 and with various values of average 
wave vector K. 

to Eq. (B. 1 5), perturbations of the electron density are deter
mined by the sum of Eq. (B.30) and the following: 

L
x 

dy l(x, y) L
x 

dt l(x, t)G(x, t) . (B.3 1) 

This nonlinear term plays an important role only in the 
case of a small electron density (11 < 0.015). If 'IJ > 0.015 (cor
respondingly, P > 0.25 Mbar), the role of Eq. (B.3 1) in the 
sum of Eq. (B. 1 5) is negligibly small. We can write, in this 
case, 

Further steps are reduced to the search for a more or less con
venient method to solve the corresponding boundary prob
lems. One such method was described earlier. 

Examples of the results are shown in Fig. B.2. The dashed 
lines represent the space distribution of the modified poten
tial U(x), and the solid lines show the modified electron den
sity W(x) = 2ll/(x) [ 1  + ll//2x] . 

Note the remarkable fact that the screening parameter in
creases if wave vector K increases. The physical reason for this 
is easy to understand. If the electron's momentum increases, 
the uncertainty of its position decreases. Hence, the distance 
of the closest approach of electrons to a nucleus decreases. 
This effect is exactly opposite to the decrease in the Debye 
screening parameter with temperature increase. 
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