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 Two criticisms which are frequently advanced to counter observations of the generation of 
excess enthalpy in the cathodic polarisations of Pd-based electrodes in D2O-based electrolytes (e.g. 
see (1), (2)) are usually based on the assertion that the isoperibolic calorimeters used in these 
studies are imprecise and inaccurate. Furthermore, any excess enthalpy generation is then attributed 
to the reduction of electrogenerated oxygen although such assertions have not been accompanied by 
appropriate measurements. There is naturally a link between these two assertions. 

The first step in the development of any investigative methodology should be the 
determination of the relevant �instrument functions� of the instrumentation used, here the 
isoperibolic calorimeter illustrated in Fig. 1. 

 
Fig 1. The Isoperibolic Calorimetric Cell. 

 

 



 We note the following key features of this design: 
(i) heat transfer is controlled by radiation across the vacuum gap, this heat transfer being 

predominantly due to the lower, unsilvered parts of the cells. The heat transfer is 
therefore given by the product of the Stefan-Boltzmann coefficient and the radiant 
surface area as has been confirmed in numerous studies. Departures from the predicted 
value must therefore indicate malfunctions of the cells (e.g. �softening� of the vacuum) 
and/or mistakes in the data analyses. 

(ii) as heat transfer is due to radiation across the gap, the thermal impedance has no 
�memory�. It is therefore possible to examine the non-steady state behaviour of the 
systems especially the response to calibration pulses supplied by the Joule resistive 
heaters. It is evident that this crucially important design criterion has not been understood 
by the many critics of �Cold Fusion� (e.g. see (3)). 

(iii) the long and narrow design of the calorimeters ensures that the contents are well mixed 
by the gas sparging induced by gas evolution at the anodes and cathodes. The radial and 
axial mixing times of the system (as revealed by tracer experiments) are ~3s and ~20s 
whereas the thermal relaxation time of the ICARUS-2 cell investigated in the present 
paper is ~5000s1,2. 

(iv) in view of (iii) the contents of the calorimeter have always been at a uniform 
temperature. 

(v) equally, the heat sinks (water baths) surrounding the calorimeters have always been at an 
uniform temperature. This has been ensured by using a combined rejection of heat to the 
surrounding ambient room temperature coupled to thermostatic control of the water 
baths. The room temperature has been itself controlled using two independent 
temperature controllers operated in parallel. The overall system therefore used two 
thermal impedances operated in series. 

(vi) the cells have always been operated in the �open mode� i.e. the products of electrolysis 
have been vented to the ambient.3 N.M.R. measurements confirmed that this strategy 
(imposing continuous isotopic separation of H) ensured the maintenance of the initial 
isotopic composition of the electrolyte. 

(vii) the use of 0.1M LiOD/D2Ο ensured that there were no parasitic reactions(other than  
     the reduction of electrogenerated oxygen) which could affect the thermal balances of  
     the system. 
(viii) the volumes of the gases evolved agreed to within ~1% of those calculated assuming 
     100% Faradaic efficiency of the electrolytic reactions provided we neglected the initial 
      parts of the measurement sequences during which there is charging of Pd-based  
      electrodes by hydrogen isotopes. The volume of D2Ο required to maintain the levels 
      of electrolyte in the cells also agreed with those calculated by Faraday�s Laws. There is 
      therefore no possibility of invoking the large-scale recombination of the evolved gases  
      to explain excess enthalpy generation. 
(ix) measurements of the cell and calibration currents, of the cell and bath temperatures and 
      of the cell potentials and potentials across the resistive calibration heaters were made 

                                                 
1  The differential equation representing the model of the calorimeter is non-linear and inhomogeneous (see equations 
A.1 and A.2 of the Appendix). The estimate of a �thermal relaxation time� is therefore approximate. 
2  The calorimeters used in the initial studies (1), (2) had heat transfer coefficients which exceeded the product of the 
Stefan-Boltzmann coefficient and the radiant surface area and this was attributed to conduction across the vacuum gap 
due to inadequate evacuation of the cells. It was not clear therefore whether the system should have been modelled as 
being �pseudo-radiative� or �pseudo-conductive� (depending on whether the conductive or radiative contribution was 
neglected ; for an alternative strategy see (4), (5)). The thermal relaxation time of these cells was ~3000s. 
3  It should be noted that this strategy avoids the introduction of large localised and fluctuating sources of heat in the 
gas spaces (which is a characteristic of cells fitted with catalytic recombiners). 

 



      every 300s4 
(x) three calorimetric cells were maintained in each thermostat tank. 
(xi) in view of the small extent of the head spaces (which contained no exposed bare metal 

parts), the systems could be operated in absolute safety. 
 
 
Measurements and Interpretation. 
 
 Fig. 2 gives a plot of the �raw data� (the cell temperature and input enthalpy for days 9 and 
10 of the measurement cycles) carried out on a Pt cathode (φ = 1mm, ℓ = 2cm). These time series 
show small decreases with time following each perturbation due to the increase of the electrolyte 
concentration caused by the progressive electrolysis. In turn, this leads to a decrease in the enthalpy 
input and hence the cell temperature. 
 

 
 
Fig 2. Plot of the "raw data" for days 9 and 10 of the "blank experiment". Pt cathode (φ = 1mm, ℓ = 
2cm) polarised at 0.2A in 01 M LiOD/D2O. Estimates of the pseudo-radiative lower bound heat 
transfer coefficient, (kR�)1, and of the pseudo-radiative true heat transfer coefficient, (kR�)2, can be 
made near the end of the calibration period at t=t2. 
 
 Two times are of special interest; t = t1 the start of the calibration period and t = t2 the end of 
this period. The times t = 0 following the �topping up� of the cell after the previous measurement 
cycle and t = T the end of this cycle are of lesser interest (see further below). Estimates of the 
pseudo-radiative lower bound heat transfer coefficient, (kR�)1, and of the pseudo-radiative true heat 
transfer coefficient, (kR�)2, can be made near t = t2, equations A.4 and A.6 in the Appendix. In the 
first of these estimates, we assume that there is no generation of excess enthalpy, hence the 

                                                 
4 A limit on the rate of data acquisition is set by the time lags induced by the thin glass shields surrounding the 
thermistors, ~10s.(see also further below). Furthermore, it would be possible to exceed this rate of data acquisition if 
the  time lags in the glass shields were taken into account. 

 



designation �lower bound�; the presence of any known source of excess enthalpy would increase 
the enthalpy input and hence decrease the heat transfer coefficient. In the evaluation of (kR�)2 we 
also have to estimate the input power and cell temperature which would have been reached in the 
absence of the heater calibration. This can be done by interpolating the time series for the regions t 
< t1 and t2 < t < T. The reason for stipulating t1 = 12 hours, t2 = 24 hours and T = 48 hours will be 
self-evident. Contraction of these times to say t1 = 6 hours, t2 = 12 hours and T = 24 hours 
inevitably lowers the precision of (kR�)1 and accuracy of (kR�)2  but, unfortunately such contractions 
have been the norm in most investigations carried out by other research groups. 
 The values of these �robust� estimates (made from A3 sized plots of the �raw data�) are 
shown in Columns 2 and 3 of Table 1 for a series of 7 measurement cycles. These were the first 
estimates which were made (hence their designation) and were used as starting values for more 
precise and accurate evaluations using non-linear regression5.  It is important that (kR�)1 and (kR�)2 
are respectively the least precise and accurate estimates of the heat transfer coefficient which we 
can make from the data. They are also subject to errors due to the refilling of the cells to make up 
for losses in D2O due to electrolysis (see further below). 
 The next stage of the analysis is the evaluation of the differential lower bound heat transfer 
coefficient, (kR�)11, throughout the time range of the measurement cycle. The subscript 11 here 
denotes that we are evaluating a differential coefficient and that we are considering a lower bound 
value. We have always used a second order central difference in the differentials of the 
temperature-time series. Fig. 3 shows the 11-point means,  of (kR�)11 and the further 6-point 
means, , of  for days 1 and 2 of the measurement cycles (there was no calibration of the 
system during this time). 

                                                 
5  In the original investigation (1), (2), (kR�)2 was estimated near t = t1, in an attempt to eliminate one of the required 
interpolations. Although this procedure was explained in (2) (as was the subsequent application of non-linear 
regression, further explained in (6)), the basis of our estimates was clearly not understood e.g. see (7). 
 As we could not make the non-linear regression procedure �user friendly� with the computing power available 
to us in 1992, we based all further analyses on the application of linear regression (further explained in (8)). This was 
also the basis of the statistical treatments incorporated into the ICARUS-1 and ICARUS-2 packages (9) and is the 
methodology which we have adopted in all our investigations since October 1989. 

 



 



 
 We can use these coefficients in several ways to assess the performance of the 
instrumentation. Thus we can estimate a value of the true heat transfer coefficient from the mean of 
the values in Column 3, Table 1, or else, we can assume that this coefficient varies in the same way 
with time as does the lower bound value, Fig. 36.  We can then evaluate the differential rates of 
excess enthalpy generation using  
 
       differential rate of excess enthalpy generation = [(kR�)2 - (kR�)11] ƒ1 (θ)                 (1) 
 
       where   ƒ1 (θ) = (cell temperature)4 - (bath temperature)4                                       (2) 
 
(see also Appendix A). Fig. 4 gives the upper and lower tail distributions for Days 3-16 of the data 
sets (~4000 measurements) using the second set of assumptions i.e. allowing for the variation of 
(kR�)2  with time. We can see that the data are consistent with a normal distribution of errors (due 
principally to errors in the temperature measurements) on which is superimposed a small steady 
state rate of excess enthalpy production (due to the reduction of electrogenerated oxygen and which 
accounts for the positive deviations of the plots from those for a purely normal distribution of errors 
especially in the region of the upper tail distribution). 

 
 
 
Fig 4. The upper and lower tail distributions of the differential rates of excess enthalpy generation 
for days 3-16 of the measurement cycles,  ; comparison with a normal distribution of errors,  . 
 
 
 We can also evaluate the corresponding rates of excess enthalpy production in a variety of 
ways. The methodology which we adopted in 1991-93 (and which we have also used here) is to 
evaluate the total excess enthalpy as a function of time and then to divide the relevant excess 

 

                                                 
6 A better assumption is to base this variation on the integral heat transfer coefficient, (kR�)21, Fig. 6; see further below. 



enthalpy by the time elapsed since the start of the measurement cycles (here t = 0 at the start of Day 
3). The results for the two limiting sets of assumptions (i.e. allowing for the variation of (kR�)2 with 
time or else using the single value of (kR�)2 at t = 86,400s) are given in Figs. 5A and B. We can see 
that the effects of the random variations in the differential lower bound heat transfer coefficient, 
Fig. 3, are gradually suppressed with increasing time, the rate approaching ~ 1.1mW. The 
significance of this value is discussed below. At the same time, we can see that the magnitudes of 
the excess rates given in Figs. 5A and B are affected by the assumptions made about the time 
dependence of the true heat transfer coefficient and that the evaluation requires very long 
integration intervals in order to reduce the effects of random errors to acceptable levels.7 
 

 
Fig 5A. The differential rates of excess enthalpy generation calculated with a true heat transfer 
coefficient varying with time, . The figure also shows rates calculated using the integral value of 
the heat transfer coefficient , see Table 2 below. 
 

                                                 
7  The evaluations carried out in 1991-93 were restricted to the first measurement cycle (with allowance for the 
variation of the true heat transfer coefficient with time as in Fig. 5A). This led to the erroneous conclusions that the 
accuracy of (kR�)2 was about one order of magnitude below the precision of (kR�)1 and that the rates of excess enthalpy 
production were about one tenth of the rate which could be attributed to the reduction of electrogenerated oxygen (in 
turn attributed to a degassing of this species from the solution adjacent to the cathode by the electrogenerated bubbles 
of deuterium). In fact, the accuracy of (kR�)2  must be comparable to the precision of (kR�)1.  

 



 
Fig 5B. the differential rates of excess enthalpy generation calculated using a single value of the 
true heat transfer coefficient at t= 86,400s, . The figure also shows rates Collated using the 
integral value of the heat transfer coefficients, , see Table 2 below. 
 
 
 The difficulties with the use of the differential heat transfer coefficient are avoided by using 
appropriate integral coefficients. We can distinguish two principal types denoted by the symbols 
(kR�)i,j,l where i = 2 signifies backward integration (i.e. typically starting from t = T, t = t2 or t = t1), 
i= 3 signifies forward integration (starting typically from t = 0, t = t1 or t = t2), j = 5,6,7 or 8 denotes 
the regions adjacent to t = 0, t = t1 or t = t2 or a combination of the regions adjacent to t = t1 and       
t = t2 and l = 1 signifies �lower bound� while l = 2 signifies �true�. In this scheme of description      
i = 1 stands for �differential� while omission of the central subscript, j, denotes that we are 
considering the whole measurement cycle 0<t<T. We can evidently base the evaluations on many 
versions of the heat transfer coefficient (which are all, of course, related to each other) so that it is 
necessary to standardise on the usage of a sensible subset of these coefficients. 
 Fig. 6 gives a comparison of the integral coefficients (kR�)21 (see equation A.8) and (kR�)31 
(see equation A.9) with (kR�)11. It can be seen that if we exclude the first ~100 data points adjacent 
to t = T in the evaluation of (kR�)21 and the first ~100 data points adjacent to t = 0 in the evaluation 
of (kR�)31 (time zones in which the benefits of the integral procedure are established), the variability 
of (kR�)21 and (kR�)31 is actually much smaller than that of (kR�)11. 
 
The interrelation of these coefficients can be understood as follows: 
 
the variation of (kR�)11 with time can be represented to the first order by 
 
                                         (kR�)11 = (kR�)o

11 (1 - γt)                                                                 (3) 
 
where  (kR�)o

11 is the value of (kR�)11 at t = 0. If the time dependence of the heat transfer coefficients 
is included in the differential equation (A.1) representing the calorimeter, we obtain for example, 
equation (A.13). If we now regard �1(θ) as being constant throughout a measurement cycle (which 

 



is a rough approximation for the case of the �lower bound heat transfer coefficients� in the absence 
of a calibration pulse) we obtain  
 
                                   (kR�)21 = (kR�)o

21[1+ γ(T - t)]  (A.14) 
                                                                       2 
and 
                                   (kR�)31 = (kR�)o

31[1 - γt ]                                                                        (A.15) 
                                                                     2 
where (kR�)o

21 and (kR�)o
31 are respectively the values of (kR�)2 and (kR�)31 at t = T and t = 0. It 

follows that the slopes of the plots of (kR�)21 and (kR�)31 versus time are roughly one half of the 
corresponding plot of (kR�)11 and hence those for  and  as is shown by Fig. 6. 

 

Fig. 6. Comparison of the variation with time of the integral heat transfer coefficients, (kR�)31 

and  (kR�)21 x,  , with the differential lower bound heat transfer coefficient,  . Days 1 

and 2 of the measurement cycles. 

 
 An alternative approach towards the evaluation of accurate values of the heat transfer 
coefficients can be based on the application of equations such as (A.8), (A.9), (A.11) and (A.12). 
Such evaluations give (kR�)o

i,j,l, which are the intercepts at the chosen origins of the absissae of 
CpMd(∆θ)/dt, (note that these intercepts are independent of the value of CpM); the water 
equivalents are derived from the slopes of the plots. 
 Figs. 7A,7B and 8 illustrate the determination of (kR�)o

261  and (kR�)o
262 with the start and 

end of the integration procedures being set at t = t2 and t = t1, (for Figs. 7A and 8) and t = T and t = 
t1, for Fig. 7B. It should be noted that the origin for the plots in Figs. 7A and 8 is well-defined near t 
= t2 (where d∆θ/dt ~ 0) which is the point in time at which we require the heat transfer coefficients. 
The small values of the absissae  should be especially noted as should the degradation of the 
performance when setting the origin at t = T (Fig. 7B) compared to t = t2 (Fig. 7A) The evaluation 
of these heat transfer coefficients became one of the targets of the ICARUS procedures; the values 
determined for these sets of measurements are listed in Columns 4-7 of Table 1. The values of 

 



(kR�)o
261 determined in this way, Column 4 of Table 1, are somewhat larger than the values of 

(kR�)21 determined at the same point in time listed in Column 8. This is expected as the 
extrapolations determine (kR�)11 at t = t2 (rather than (kR�)21). We would expect that the means of 
(kR�)o

261 and (kR�)o
262 (Columns 4 and 6 of Table 1) to be close to the means of (kR�)1 and (kR�)2 

(Columns 2 and 3 of Table 1). Table 1 shows that this is indeed the case. 

 
Fig 7A. Evaluation of (kR�)º261 and CpM for Days 9 and 10 of the measurement cycles. Origin of 
the integrations set at t=t2. 

 
Fig 7B. Evaluation of (kR�)º261 and CpM for Days 9 and 10 of the measurement cycles. Origin of the 
integrations set at t=T. 
 

 



 

 
Fig 8. Evaluation of (kR�)º262 and CpM for Days 9 and 10 of the measurement cycles. Origin of the 
integrations set at t=t2. 
 
 Columns 9-12 of Table 1 list the values of (kR�)o

361 and (kR�)o
362 (and the associated values 

of the water equivalents and statistics) based on the forward integration of the data from t = t1. Such 
evaluations are unsatisfactory from several points of view. In the first place, the origin of the plots 
required for the derivation of these coefficients is not well defined (d∆θ/dt ≠ 0 as t → t1); secondly, 
the range of the extrapolations is too long; thirdly, the values of the absissae are large and 
comparable to the ordinates. It is not surprising therefore that the determination of the heat transfer 
coefficients using these particular procedures fails (see Columns 9-12 of  Table 1). It was pointed 
out that evaluations near the end of the calibration pulse would be more satisfactory than those 
close to the start of this pulse, t = t1, as can be seen from a comparison of Columns 13-16 with 9-12 
of Table 1. As the time at which the derived heat transfer coefficients might apply was uncertain, 
the procedures based on the forward integration of the data sets was excluded from the ICARUS 
Systems8. However, the evaluation of  (kR�)31 near t = t2, Column 17 of Table 1, was included to 
serve as a check on the procedures. 
 It is important to point out a major limitation of these analyses. It can be seen that the time-
dependence of the evaluated coefficients (e.g. see Figs. 3 and 6) is entirely in accord with the 
expected behaviour, equations (A.1) and (A.2). It was therefore hoped that the derived values of 
CpM could be used to provide the minor corrections to the level of the electrolyte to allow the 
presentation of the derived heat transfer coefficients on a single plot versus the electrolyte content 
of the cells. However, this objective could never be realised. The water equivalents are derived 
from the slopes of the plots such as those in Figs. 7A-8. Inevitably, this introduces errors into the 
estimates of CpM and the accuracy of the heat transfer coefficients is insufficient to allow the 

                                                 
8  However, we believe that the evaluations carried out by the group at the New Hydrogen Energy Laboratories have 
been based on such forward integrations.  

 



correction of the heat transfer coefficients for changes in the electrolyte level between successive 
measurement cycles.9 
 In the full text of the paper dealing with this subject (10) we have covered additionally; 
 
(i) the response of the system following the �topping up� of the cells to make up for losses of D2O 

due to electrolysis in the previous measurement cycle (rather than the responses due to the 
calibration pulse). We have shown that the heat transfer coefficients (kR�)o

251 and (kR�)o
252 have 

only limited accuracy using the methodology as currently developed; however, this approach 
requires further investigation; 

(ii)  the evaluation of (kR�)o
271; however, the determination of the heat transfer coefficient at t = T 

was not of any particular significance and this particular evaluation was not included in the data 
evaluation package (9); 

(iii) assessments of the errors in the various evaluations of the heat transfer coefficients. It was  
     shown that the assessment of errors in the integral heat transfer coefficients can become  
     limited by the cut-off limit of the interpretation i.e. if the errors are less than ±0.00001x109  
     (kR�).10 
 In common with other investigations (e.g. see (2), (8)) it was observed that the relevant 
standard deviations are so small that it should be possible to make thermal balances to within 
0.1mW for a typical input of 1W. The analysis presented here shows that such balances should be 
made using the integral heat transfer coefficients (kR�)22 estimated at t = 0. Table 2 illustrates such a 
calculation made using the seven applicable measurement cycles. The rate of excess enthalpy 
generation shown in Column 8 is 0.0011W and these rates are also shown in Figs. 5A and B in 
comparison with those calculated  using the differential heat transfer coefficients (kR�)12. These 
rates, are approximately equal to the rates which may be calculated for the reduction of 
electrogenerated oxygen present in the cell (compare (12)). It will be clear that we must regard 
these rates as being constant during each measurement cycle, an assumption which is evidently 
justified. The data shown in Column 8 of Table 2 confirm that such rates can be estimated to within 
±0.0001W which requires that the accuracy of the true integral heat transfer coefficient must be 
nearly equal to the precision of the lower bound values i.e. that the errors are ±0.01%. 

                                                 
9  A level controller was added to the ICARUS-2 instrumentation and it was estimated that this would reduce the errors 
in the heat transfer coefficients to ± 0.04%. However, these level controllers were never used. Level controllers for the 
water baths surrounding the calorimeters were also never constructed. The ICARUS-2 system was also designed to use 
the cell currents to drive the calibration heaters (so as to remove all possibility of errors introduced by differences in the 
power outputs delivered to the cell and calibration heaters). However, this modification of the experiment was never 
used. 
10  It was noted that the individual values of the integral heat transfer coefficients are not statistically independent as the 
process of integration uses all the preceding values of the raw data. A method of avoiding this difficulty by sectioning 
the data sets was illustrated (10). 

 



 
 
 
Discussion 
 
 The material presented in this paper shows that exact data analyses should be based on  the 
evaluation of the true integral heat transfer coefficient, (kR�)22 coupled to the integral lower bound 
heat transfer coefficient, (kR�)21. Accurate and precise estimates of these coefficients can be 
obtained from (kR�)o

262 and (kR�)o
261, the values which apply to the calibration period t1< t < t2. The 

procedure which has been illustrated here was part of that incorporated into the ICARUS-System 
methodology (9). 
 The accuracy of (kR�)22 and the precision of  (kR�)21 are very nearly equal with errors of   
~ ± 0.01%. Such errors can in fact be estimated from  the errors in the temperature measurements 
coupled to the averaging procedures described in this paper. The precision and accuracy which can 
be achieved should be compared to the rather wild statements which have been made in the 
literature about the accuracy of this type of instrumentation. Such statements can be seen to be the 
outcome of inadequate experiments coupled to inadequate and incomplete interpretations. 
 It will be seen that the application of the integral heat transfer coefficients requires that the 
rates of any excess enthalpy generation be constant in time. In turn, this requires that the 
experiments be carried out using  suitable �blank systems�. If the rates of excess enthalpy 
generation vary with time, we will inevitably conclude that the instrumentation has enhanced errors. 
Moreover, such a conclusion will apply to any calorimetric system which we might propose. The 
lack of execution of �blank experiments� is undoubtedly a contributory factor to the confusing 
statements which have been made in the literature. 
 The wild statements which have been made in the literature extend also to the effects of the 
reduction of electrogenerated oxygen. These rates can be estimated perfectly adequately by carrying 
out  suitable �blank experiments�. We note that if the precision and accuracy of the instrumentation 
is lowered to say ±1%, it will then be impossible to measure such rates; equally, it will be 
impossible to monitor the build-up of excess enthalpy generation until this has reached specific 
rates in the range 0.1-1Wcm-3.  Such deficiencies are no doubt at the root of many of the further 
confusing results and statements which have been made in the literature. In this connection we note 
that correctly designed isoperibolic calorimeters should be classified as �ideal reactors� using the 
nomenclature of Chemical Reaction Engineering (13). While it would be possible to design other 

 



types of reactor (such as flow reactors) to satisfy the criteria of �ideal plug flow�, such research has 
only recently been initiated (14). Existing designs fall under the heading of �dispersive plug flow� 
and such designs are undoubtedly non-ideal. 
 We observe also that the calibration of the cells could be based equally well on the 
determination of the lower bound heat transfer coefficients for suitable �blank experiments�. The 
use of such coefficients in the data analysis for Pd-based cathodes in D2O-based electrolytes would 
then automatically discriminate against the contribution of the reduction of electrogenerated oxygen 
to the total rates of excess enthalpy generation. 
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Appendix  
 
 It has been established that at low to intermediate cell temperatures (say 30o < θ < 80o) the 
behaviour of the calorimeters is modelled adequately by the differential equation 
 
CpM (d∆θ/dt) = [Ecell(t)-Ethermoneutral,bath]I   + Qf(t) 

change in the enthalpy content 
of the calorimeter 

enthalpy input due to 
electrolysis 

rate of excess enthalpy 
generation 

 
 
+∆QH(t-t1)-∆QH(t-t2) - (3I/4F[P/{P*-P}][Cp,D2O.g-Cp,D2O,1)∆θ+L] 

calibration pulse rate of enthalpy removal by the gas stream with 
Ethermoneutral referred to the bath temperature 

 
 

 
 

(A.1) 
 
 

 

- (kR
o)θ3

bath[1-γt] {f1(θ)/θ3
bath+ 4ϕ∆θ}] 

time dependent 
heat transfer 
coefficient 

effect of 
radiation 

effect of conduction 

With the calorimeters supplied with the ICARUS Systems, the conductive contribution to heat 
transfer is very small. This term could therefore be �lumped� into the radiative term by allowing for 
a small increase in the radiative heat transfer coefficient: 
 

Radiative heat transfer = (kR�)o[1-γt][(θbath+∆θ)4-θ4
bath]      (A.2) 

 
The values of the  pseudoradiative �heat transfer coefficient, (kR�)o[1-γt], derived are close to 

those calculated from the Stefan-Boltzmann coefficient and the radiative surface area. If the time 
dependence of the heat transfer coefficient is not included explicitly in equation (A.2) then 
 

Radiative heat transfer =  (kR�) [(θbath+∆θ)4-θ4
bath] (A.3) 

 
where the pseudoradiative heat transfer coefficient, (kR�), now shows a weak time-

dependence. 
 The simplest starting point is to assume that there is no excess enthalpy generation in the 
calorimeter and to evaluate a corresponding �differential lower bound heat transfer coefficient� at a 
time just before the end of the calibration pulse, t = t2 : 

  
(kR�)1=[(Ecell(t)-Ethermoneutral,bath)I-∆Hevap(t)-CpM(d∆θ/dt)+∆QH(t-t1)]/f1(θ)    (A.4) 

 
This was the first heat transfer coefficient used in our investigations, hence the designation 

(kR�)1. It will be apparent that the differential lower bound heat transfer coefficient (kR�)11, may be 
evaluated at other points of the measurement cycle, by changing the enthalpy input due to the 
calibration pulse to  

 
∆QH (t-t1)- ∆QH (t-t2)      (A.5) 

 

 



It is next necessary to evaluate a �true heat transfer coefficient�. The simplest procedure 
giving (kR�)2 near the end of the calibration period at t=t2 is obtained by including the calibration 
pulse 

 
(kR�)2={∆Q+[Ecell(∆θ2,t2)-Ecell(∆θ1,t2)]I-∆Hevap(∆θ2,t2) 

  
+∆Hevap(∆θ1,t2) - CpM[(d∆θ/dt)∆θ2,t2 -(d∆θ/dt)∆θ1,t2]}/f2(θ)   (A.6) 

 
where we now have 

 
f2(θ) = [θbath+(∆θ2,t2)]4-[θbath+(∆θ1,t2)]4    (A.7) 

 
It can be seen that we need to estimate the cell potential, the cell temperature and the 

differential of this temperature at the time t=t2 which would have been reached in the absence of the 
calibration pulse [see footnote (A.1)] A1 

As is explained in the main text, it is preferable to base the evaluation of the �raw data� on the 
integrals of the enthalpy input and of the temperature functions rather than to lower the precision 
and accuracy of the evaluations by using the differentials of the  inherently noisy temperature-time 
series. 
 
 For the backward integrals starting from t ≈  T we obtain 
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while forward integration from the start of the measurement cycle 
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           The evaluation of the heat transfer coefficients applicable to particular time regions  

            (j = 5,6,7,8) simply requires changes in the lower limits of the relevant integrals. 

        

The evaluation of the �true heat transfer coefficients� requires the combination of the 

enthalpy inputs in equations (A.8) and (A.9) with the thermal inputs made at one or a series of 

                                                 
A1 This evaluation was carried out in a somewhat different manner in the initial studies (1), (2) (10) in an attempt to 
avoid the disadvantages of such interpolation procedures. The values of (kR�)11 and (kR�)2  obtained were used as 
starting values for the non-linear regression procedure used at that time (2). As we could not make this procedure �user 
friendly� with the computing power then available to us and as, more especially, the methodology which we adopted 
was evidently not understood (7). (for a further example of such misunderstanding see (3) ) we adopted the 
methodology described in the present paper. This methodology was also the basis of the ICARUS Systems (9). 

 



points. This can be carried out in a number of ways; we confine attention here to the 

procedure originally suggested in the Handbook for the ICARUS - 1 System (9). If we 

consider (kR�)362 and if we make a thermal balance just before the application of the 

calibration pulse, then if the system has relaxed adequately so that we can set d∆θ/ 0 ≈

 

0 = [Net enthalpy input (t1)][t- t1] + Qf[t- t1] � 

 (kR�)32 {[(θbath + ∆θ(t1)]4 - θ4
bath}[t- t1]  (A.10) 

  

Combination with equation (A.9) (with the appropriate change in the lower limit of 

the integration) gives 
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The corresponding equation for  (kR�)262 follows from (A.11) on replacing t1 by t2. It is 

convenient to write all the equations for the determination of the relevant heat transfer 

coefficients in the �straight line form� e.g. 
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where  (kR�)o
262 can be seen to be the value of the integral heat transfer coefficient at t 

= t2. The value of t2 should be chosen to be the mid-point of the measurement cycle as  
(kR�)o

262 is the most useful (and well defined) value of the true heat transfer coefficient. It 

should be noted that extrapolations such as (A.12) automatically remove the effects of CpM 

on the value of the derived heat transfer coefficient (a desirable feature because the water 

equivalents of the cells have the highest errors). 

The integral lower bound heat transfer coefficient,  (kR�)o
261 (equation (A.8) with T 

replaced by t2) and the integral true heat transfer coefficient , (kR�)o
262, (equation (A.12)) were 

the �target procedures� for the ICARUS -style evaluations of the experimental data (9). 

It should be noted that the definitions of the integral heat transfer coefficients given in 

this Appendix have regarded these coefficients as being constant in time whereas we would, 

 



in fact, anticipate a weak time dependence e.g. equation (A.2) or Fig. 6. This weak time-

dependence causes an equally weak time-dependence of the derived heat transfer coefficients. 

Use of the more exact equation (A.2) gives for example for the derived values of  (kR�)21 in 

(A.8) 

 

(kR�)21 =  (kR�)o
21[ l - γ(t-T) + γ f∫

t

T ∫
t

T
1(θ)dτdτ/ f∫

t

T
1(θ)dτ]  (Α.13) 

 

where (kR�)o
21 is the value of (kR�)21 at t = T. An ultimate test of the validity of the 

representation of the calorimeters by the differential equation (A.1) is therefore the question 

of whether the heat transfer can be represented by a single time-dependence coefficient, here  

(kR�)o
21. This question is discussed further in the main text. 

 

We also note that if we regard f1(θ) as being constant throughout the measurement 

cycle (which is a rough approximation for the case of the �lower bound heat transfer 

coefficients�) then (A.13) becomes 

 

(kR�)21 =  (kR�)o
21[ l + γ(T - t)/2]  (A.14) 

 

Similarly, we obtain 

 

(kR�)31 =  (kR�)o
31[ l - γt/2]  (A.15) 

 

where  (kR�)o
31 is now the value of  (kR�)31 at t = 0. It follows that the slopes of the 

plots of (kR�)21 and  (kR�)31 versus time are roughly one half of the plot of  (kR�)11 versus time 

(cf. Fig. 6) 

For a more complete discussion see (15), (16). 

 


