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A new model describing the transfer of neutrons to and 
from nuclei embedded in a lattice was recently proposed. The 
coupling between the nuclei and lattice phonons is now ex­
plored, focusing on the question of whether it is possible 
under any conditions for anomalously large energy transfer 
to or from the lattice to occur during a neutron transfer 
reaction. 

By studying the gamma line shape, no anomalies are ex­
pected for a ground-state lattice or for a thermal lattice. Un­
der certain conditions, the frequency of a phonon mode can 
be shifted significantly in a neutron transfer reaction; pho­
nons initially present in that mode are shifted in frequency 
during the reaction. This effect produces an anomalous en­
ergy shift in the event that the mode is initially strongly 
excited. 

I. INTRODUCTION 

In two previous papers, 1
•

2 we formulated a theory that 
describes neutron capture and neutron ionization from nu­
clei embedded in a lattice. The seminal treatments of this 
basic problem are due to Lamb,3

•
4 and much use has been 

made of the model following the discovery of the Mossbauer 
effect.5 Much more use of Lamb's theory has been made for 
resonant transitions than for gamma emission due to neutron 
capture; as presented, Lamb's theory is actually deficient for 
describing neutron capture in that effects associated with the 
recoil of the neutron during the capture process are not in­
cluded. Although the literature is replete with theory papers 
containing formulations, calculations, discussions, and re­
views of resonant processes that are really quite sophisticated, 
little effort appears to have been devoted to the capture 
problem. 

The model we developed has improved on Lamb's work 
by including, at least formally, all recoil effects associated 
with the neutron and with the lattice. In the process, we de­
veloped phonon operators that describe two primary effects 
beyond the primary exp(ik · R) neutron recoil term: (a) a large 
effect that accounts for the change in the lattice mode defi-
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nitions in the before and after lattice states (we term this 
effect a Duschinsky effect following nomenclature from an 
analogous effect that occurs in electronic transitions in poly­
atomic molecules) and (b) a rather weak effect due ultimately 
to a microscopic difference between the initial and final nu­
clei center-of-mass positions. 

In this technical note, we focus on the primary Duschinsky 
term to gain an understanding of phonon generation in the 
presence of "mismatched" initial- and final-state lattices. The 
higher order non-Duschinsky effects are neglected in this 
technical note. It can be arranged for the recoil due to the 
neutron and gamma ray to cancel through a suitable choice 
of experimental setup, specifically one that collects measure­
ments only for collinear neutron and gamma momenta of 
equal magnitude; this would have the effect of isolating 
Duschinsky effects from other recoil effects. In our earlier 
works, we considered this sort of experimental arrangement 
to discuss the possible observation of Duschinsky and non­
Duschinsky effects for the model problem of neutron capture 
on H2. 

A primary motivation for the research described in this 
and in previous works has been to explore possible theoret­
ical explanations for some of the anomalous effects that have 
been observed in deuterated metals. In this work, we begin 
to address what is probably the key issue facing any model 
that seeks to address the reported anomalies, specifically the 
possibility of the transfer of significant energy between the 
lattice on the macroscopic scale and nuclear constituents on 
the microscopic scale. 

The energy spacing between the nuclear energy levels that 
would be involved in neutron ionization is multiple mega­
electron-volts, assuming that the nucleus is initially in the 
ground state. The lattice phonon modes are of low energy, 
typically on the order of tens of milli-electron-volts. Coupling 
of energy between the nucleus and the lattice then requires a 
mechanism capable of transferring an astonishingly large 
amount of energy between nucleons and the lattice. 

Large numbers of phonons can of course be transferred 
to a lattice; a lattice that is struck with a hammer can absorb 
a large number of phonons, but this involves a transfer of en­
ergy that starts and finishes in small sub-electron-volt-sized 
quanta. A fast mega-electron-volt particle that slows down in 
a lattice transfers a large amount of energy, but once again, 
the actual transfer is done essentially through a sequence 
of interactions, each of which results in the generation of a 
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small number of phonons. Transferring energy a few pho­
nons at a time to ionize a neutron does not work since there 
are not enough intermediate nuclear states; the theory for 
such processes gives transition probabilities on the order of 
(Hifl !lE)2n, which is vanishingly small unless the coupling 
matrix element Hi/ is on the order of !lE. The coupling of a 
nucleus and the surrounding lattice is very weak, and the 
transition probability for processes involving the sequential 
generation of small numbers of phonons can simply be taken 
to be zero. 

Nevertheless, the lattice does possess states that can be 
resonant with the nuclear states, and all that is lacking is a 
matrix element with which to couple them nonperturbatively. 
Currently, no mechanisms are known that can do the job, 
and no new mechanisms have been anticipated that would 
ever do it under any circumstances. 

We have found an interesting new mechanism that ap­
pears to be capable of anomalously large energy transfer dur­
ing a neutron transfer reaction. It is known that, under 
certain conditions, the addition of a single neutron to a lat­
tice can result in significant frequency shifts of three phonon 
modes. In the case of a perfect crystal initial lattice, the 
shifted modes are generally local modes; in the case of a lat­
tice with impurities, the shifted modes may be resonance con­
tinuum modes. If such a mode is significantly excited prior 
to a neutron transfer reaction, anomalous energy exchange 
with the lattice will occur during the reaction as the phonons 
shift frequency. 

II. LINE SHAPES AND PHONON GENERATION 

The central issue we are concerned with involves the 
transfer of energy between a lattice and a nucleus. In our pre­
vious works, we analyzed in some detail the lattice effects as­
sociated with neutron transfer reactions as they appear in the 
interaction Hamiltonian, and we obtained explicit operators 
that describe the coupling. If energy is exchanged between nu­
cleons and the lattice, the effect should manifest itself 
through modifications in the line shape. Our focus in this sec­
tion is therefore directed to a brief review of the line shape 
for the neutron capture process. 

The line shape for neutron capture is 

W(E) _ � � g(lalll<Wllexp[i(kp - knl·R,Jexp(-iSvllla 1>1 2 

a � [£- Eo - .:iE(a,/3)]
2 + � (lif)

2 ' 

where 
(I) 

(a) = set of lattice quantum numbers = initial lattice 
state 

I {3) = final lattice state 

g ( I a I) = probability that the lattice is in the initial lattice 
state 

E = emitted gamma energy 
£0 = resonance energy 
hf= homogeneous line width. 

As discussed in our earlier technical notes in this series, 
two distinct effects are accounted for explicitly in this line 
shape expression. Well known is the primary recoil effect that 
appears in this formula explicitly through exp[i(kp-kn) ·R;). 
In the following sections, we focus on the limit that kp = kn 
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to simplify our analysis of matrix elements of the Duschinsky 
operator. It is instructive to briefly consider the coupling of 
energy through recoil before proceeding. 

Phonon generation through recoil alone in the absence of 
the Duschinsky operator in this application corresponds 
rather well to the non-Mossbauer part of the line shape in 
conventional resonance emission. For thermal lattices, the 
phonon generation due to the gamma recoil is quite well 
known, and the line shape may exhibit identifiable features 
due to phonon generation. The gamma energy for neutron 
capture on a proton is 2.225 MeV, which is an order of mag­
nitude greater than for Mossbauer resonance lines, which fa­
vors phonon generation. Additionally, the resulting deuteron 
is relatively light, which also favors phonon generation. Nev­
ertheless, the total energy transfer is on the atomic scale, and 
the transfer of a mega-electron-volt quantum is precluded by 
direct calculation: Transferring the energy a few phonons at 
a time is exponentially inhibited by factors on the order of 
(H013! !lE)2n ; transferring the energy nonperturbatively by 
considering high-order terms in the interaction Hamiltonian 
ultimately leads to the conclusion that the initial proton must 
have multi-mega-electron-volt initial kinetic energy for sub­
stantial energy transfer to occur. 

It can be imagined that there might be some way in which 
the lattice can respond collectively to the recoil operator to 
be able to accept an anomalously large amount of energy. We 
investigated this possibility by examining the coupling into a 
subset of the phonon modes; it can be shown that for a mac­
roscopic lattice, the coupling to any single mode is quite weak, 
so that the maximum amount of energy that can be coupled 
nonperturbatively is on the atomic scale. The recoil term 
could be made to be very strong if the initial neutron momen­
tum is taken to correspond to mega-electron-volt-level kinetic 
energy. In this case, the transfer of energy to the lattice can 
be at the mega-electron-volt level, but a very large number of 
final states result, rendering the overall process irreversible. 

As a result, we conclude that the primary recoil operator 
is simply incapable of mediating the transfer of significant 
(mega-electron-volt-level) energy to the lattice, in the absence 
of relative kinetic energy that is on the order of mega-elec­
tron-volts. These arguments do not apply to the Duschinsky 
operator, the analysis of which is the subject of the remain­
der of this technical note. 

The Duschinsky operator is most cleanly studied in the 
absence of primary recoil effects, and we therefore limit our­
selves to the special case of equal photon and neutron mo­
mentum (kp = kn)- In this limit, the line shape is 

W(E) _LL g([a})i((f3}1exp(-iSv)l(a})l 2 (
2) 

0 13 [£ -£0 - !lE(a,{3)) 2 + ¼ (hf)2 

The Duschinsky operator in general translates and rotates the 
phonon mode amplitudes6•7 

exp(-iSv)'l'(q) = 'IF(A·q + b) (3) 

to satisfy the constraint that the nuclear center-of-mass po­
sitions remain invariant during a reaction even though the 
phonon modes are altered. 

This model as written is rather general, and there exists 
considerable literature on line shapes produced with various 
Duschinsky operators. 

In the solid-state literature, the earliest model of pho­
non generation accompanying an electronic transition in an 
F-center was the single-configurational-coordinate (SCC) 
model.8-10 The electronic transition is assumed to cause a 
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shift in the equilibrium lattice positions while maintaining the 
phonon mode frequencies. Using the notation of Refs. 8, 9, and 
10, the sec model corresponds mathematically to the Duschin­
sky transformation in which a single mode is translated 

exp(-iSv)'IJr(q) = 'IJr(q + imt.qm), (4) 
but where no rotation occurs. 

This model was improved by Huang and Rhys, 11 who in­
cluded translations in a large number of optical phonon 
modes with identical frequencies; we would write this model 
as 

(5) 

This type of model, and the extension to include phonon 
modes of differing frequencies, has been widely used in the 
solid-state literature to describe phonon generation for radi­
ative and nonradiative electronic transitions in solids. 12-19 

The inclusion of frequency shifts in the modes would cor -
respond to a Duschinsky operator that translates and scales as 

exp(-iSv)'IJr(q) = '\Jr(D·q + b) (6) 

where D is a diagonal matrix. In the analysis of multiphonon 
decay of molecules, a number of analyses have appeared that 
correspond to this kind of Duschinsky transformation (see 
Refs. 20 through 24). 

To date, we have not found works in the solid-state lit­
erature in which both translations and nontrivial rotations 
have been considered. In the literature on polyatomic mole­
cules, analyses appear that include the full Duschinsky oper­
ator with rotation and translation: 

exp(-iSv)'1r(q) = v(A·q + b). (7) 

One of the most interesting papers is by Sharp and Rosen­
stock,25 who present a generating function method for the 
evaluation of matrix elements of the Duschinsky operator. 
There is considerable literature on the computation of such 
matrix elements (see Refs. 26 through 33), including the ap­
plication of rather sophisticated operator techniques to the 
calculation of Duschinsky translated and scaled harmonic 
oscillator wave functions. 34

-
37 

Our initial naive proposal38 for a coupling mechanism in 
the case of coherent neutron transfer reactions concerned a 
model analogous to the sec lattice model mentioned earlier. 
We argued in Refs. l and 2 that no translation occurs to 
within an excellent approximation since an isotopic change 
is not expected to modify the electronic configurations signif­
icantly; our initial proposal was in error in this aspect. Even 
if a translation did occur, the model would still be deficient 
because it is unlikely that a sufficiently large translation to 
produce mega-electron-volt-level potential energy changes. 

The Duschinsky transformation that is correct for neu­
tron transfer reactions is of the form 

Hagelstein NEUTRON TRANSFER REACTIONS 

extend the analyses done in other fields to the case of pho­
non generation associated with neutron capture, but to date, 
we have not found any papers where this has been done. 

Ill. PROPERTIES OF THE DUSCHINSKY OPERATOR 

The line shape for neutron capture in the recoil-free limit 
is determined by the matrix elements of the Duschinsky op­
erator between different lattice states. Duschinsky matrix el­
ements appear in the computation of oscillator strengths for 
electronic transitions in polyatomic molecules, and rather so­
phisticated numerical techniques have been developed to eval­
uate them. An alternate set of techniques has been developed 
for the equivalent lattice problem. In Sec. IV, we describe a 
method for evaluating the Duschinsky matrix element appro­
priate for a highly nonthermal lattice. The technique relies 
heavily on properties of the Duschinsky operator, which pro­
vides us with motivation to briefly review the Duschinsky op­
erator in this section. 

The Duschinsky matrix element we require may be writ­
ten as follows: 

M1; = J '1rj(q) exp(-iSv)'1r;(q) dq , (9) 

where the phonon mode amplitudes have been collected to­
gether to form a very long vector q = Lim lmQm • We recall 
that the phonon mode amplitudes describe the center-of-mass 
positions of the atomic nuclei through 

(10) 
m 

Because of the mass change at a lattice site that accompanies 
a neutron transfer reaction, the initial and final lattice modes 
are not the same. Although the neutron transfer reaction ap­
proximately preserves the center-of-mass locations, the fact 
that the initial and final lattice modes do not agree implies the 
presence of a nontrivial transition operator. This is similar to 
the situation in polyatomic molecules, where an electronic 
transition alters the force constant, which changes the before 
and after mode definitions. 

The Duschinsky operator satisfies 
exp(-iSv)'1r;(q) = '1r;(A·q + b) , (11) 

where the matrix A and the vector b constitute the transfor­
mation required to preserve the center-of-mass locations ex­
actly. The individual matrix and vector components can be 
computed from the displacement vectors Um(}) and their ad­
joints. Consider initial and final lattice center-of-mass posi­
tions given by 

R1 = Rr + � u;,{>(j)q;,{> (12) 
m 

exp(-iSv)'IJr(q) = 'lr(A·q), (8) and 
where only a rotation occurs. Although the analysis of ma­
trix elements for such a system constitutes a subset of the gen­
eral transformations studied in the polyatomic molecule 
literature, similar analyses in the solid-state literature do not 
generally appear. An exception to this is in the Mossbauer lit­
erature, where discussions of this problem have been given in 
Refs. 39 through 42. For resonant absorption or emission, the 
mass shift is quite small; hence, the new effects described in 
this work do not occur. The Duschinsky transformation ma­
trix associated with an isotope shift in a lattice has been stud­
ied and is well known.43

-
45 It would seem to be natural to 
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(13) 
m 

The initial-state lattice mode amplitudes q;,{> can be ex­
pressed in terms of the final lattice mode amplitudes q;,(> 
through 

q;,{> = � � [v;,{>(j)] r ·u;,(.>(j)q;,(.>(j) 
j m' 

+ � [v/,;>(j)] r , (RJ.f - RJ·;) , (14) 
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where vmU) is the adjoint displacement vector to um(j). If 
we assume that the equilibrium lattice positions do not change 
following a transfer reaction, then it follows that b = 0. The 
Duschinsky transformation matrix is 

(15) 
j 

The inverse of the Duschinsky transformation matrix can 
be obtained similarly, starting with 

q;,f> = � � [v;,f>(j) ]7•u!:)(j) q;,;J(j) , (16) 
j m' 

which leads to 

A;;,'.m ' = � [v;,f>(j) ]7•u!:\j) . 
j 

(17) 

There exists an intimate relationship between the 
Duschinsky matrix and its inverse, which is of interest to us 
in the next section. We have used the biorthogonality of the 
displacement vectors and their adjoints as 

(18) 
j 

The displacement vectors satisfy 

�M1u�(j) ·Um,U) = Mom.m ' , 
j 

(19) 

where Mis a mass that is artificially associated with the pho­
non modes. In the more conventional quantization of the 
phonons, modes and operators are constructed that do not 
require the introduction of an artificial mass. We used this 
approach in our work to be able to use q and p for position 
and momentum of the quantized oscillators. It follows that 
the adjoint vectors are related to the displacement vectors by 

( ") lt11 ( ") Vm J = M Um J (20) 

The expressions for the Duschinsky matrix and the trans­
pose of its inverse may be compared and found to be prac­
tically equal to each other. The transpose of the inverse is 

[A- 1 ]�.m' = � [v,V,\j) ]7•u!: >u) ' (21) 
j 

which may be rewritten as 
MU> 

[A- 1]7 , = "" -1
-. [v (i)(1") ]7 •u (.()(J') . (22) m,m � 

M
(I) m m 

J j 
The nuclear masses are identical in the initial lattice and the 
final-state lattice at all sites except where the neutron trans­
fer occurs. As a result, we may recast this as 

[A- 1 ]�.m' = � [v!: >U) ]7•u,\f,l(j) 
j 

+ [ ��: - l] [v!: )(0) ]7 -u,\f,l(O) ' (23) 

where we have identified the site at which the transfer takes 
place as m = 0. 

The Duschinsky matrix A and the transpose of the inverse 
are seen to differ only by a single term, which is proportional 
to the square of the displacement vector at the site of the 
transfer. This term is of order 0(1/N) for most continuum 
modes and is larger only for localized modes and resonance 
modes. 
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IV. MATRIX ELEMENTS OF THE OUSCHINSKY OPERATOR 

The technique we have used to obtain approximations for 
the Duschinsky matrix element are most closely related to the 
generating function method of Sharp and Rosenstock. In our 
version of the method, we exploit the observation that the 
Duschinsky operator is essentially a rotation in a high-dimen­
sional space. The transformation of the ground state yields 
states that are not very much different from the ground state. 
The explicit evaluation of the transformation of excited states 
can largely be avoided by bringing the creation operators 
through the Duschinsky operator; the resulting analysis is 
then concerned with a study of the algebra associated with the 
computation of 

exp(-iSv) F(q,p) �[O] = f(q,p)exp(-iSv) �[O] , (24) 
where �[0 ] is the phonon ground state. The initial state in 
this case would be constructed from the ground state by the 
operation of the creation and annihilation operators included 
in the operator function F(q,p) : 

'Y; = F(q,p)�[0] (25) 

After passing F(q,p) through the Duschinsky operator, the 
transformed version ofit,f(q,p), is produced, ultimately leav­
ing the Duschinsky operator to operate on the ground state. 

The Duschinsky matrix element given by 

Mfl = J '1rj(q) exp(-iSv) 'Y;(q) dq (26) 

can then be evaluated by summing over intermediate states 
produced by the Duschinsky operator : 

Mfl = � J '1rj(q)f(q,p) 'Y1(q) dq 

x J '1ri(q) exp(-iSv) �[O] dq (27) 

Since the Duschinsky transformation of the ground state pro­
duces only rather wea)c excitation, the summation over inter­
mediate states ir1 will include relatively few terms of low 
excitation. 

The ground state of the lattice is a multidimensional 
Gaussian, which may be written for the initial state as 

[ 'If' 
]
M/2 

�;[0 ] = detG; 
exp(-qT•G;•q/2) . (28) 

The operation of the Duschinsky operator on the ground 
state can be computed directly to give 

[ 
-

]
M/2 • " T T exp(-iSv) �;[O] = -- exp(-q ·A ·G;·A·q/2) . 

detG; 
(29) 

This can be rewritten as 

exp(-iSv) �;[O] = exp[-q7
• (A7 ·G;·A -G;) •q/2 ]�;[0 ] 

(30) 

In a real lattice, the Duschinsky operator does not actually 
do very much to the ground state. The exponential appear­
ing in Eq. (18) will, to lowest order, leave the ground state un­
perturbed (which will be the case with probability on the 
order of a half) and generate pairs of phonons to first order. 
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For the purposes of the discussion to follow, we will be sat­
isfied that little in the way of unexpected anomalies occurs at 
this step of the analysis. 

We next consider the case of an excited initial state. The 
simplest possible excitation is an initial state in which one 
phonon has been added to one mode, which can be specified 
as 

(3 1) 
where ol is a creation operator for mode m. The Duschinsky 
operator applied to this initial state requires the evaluation of 

exp(-iSv)ir;(q) = exp(-iSv)ol<I>; [OJ . (32) 
The creation operator ol can be expressed in terms of the 
mode amplitude qm and the mode momentum Pm through 

(
M )112 ( 1 )112 

al = 2�
m qm - i 2Mnwm 

Pm ' (33) 

where wm is the frequency of mode m. The mass M is the 
mass associated with the phonon mode, which is an artifact 
of the way in which we have described the phonons as dis­
cussed in Sec. I I I .  

I t  is  convenient to recast the creation operator in terms 
of vectors; we define two vectors 

and 

• 
(

Mwm
)
I/2 

g = lm --2n 

( J )112 
h = im 2Mnwm 

then it follows that 
ol = g·q - ih·p 

(34) 

(35) 

(36) 
The action of the Duschinsky transformation on the excited 
initial state can now be expressed algebraically to give 
exp( -iSv)ol<l>; [0] = (g·A·q - ih·B·p) exp( -iSv)<l>; [0] . 

(37) 
In this result, we have used the explicit Duschinsky transfor­
mation of q as well as the analog transformation of p, which 
scales differently. It may be demonstrated explicitly that 

B = [AT ] - 1 . (38) 
From the discussion in Sec. I I I ,  we note that B differs from 
A by terms that are generally quite small. 

It is of interest to examine the Duschinsky transformation 
of a highly excited lattice state; for the sake of simplicity, we 
select 

(39) 
Following the previous discussion, the Duschinsky transfor­
mation of this state is 
exp( -iSv)'Y;(q) = (g • A·q - ih • B ·p)nmexp(-iSv)<l>; [0] 

(40) 
Matrix elements of the Duschinsky operator can then be eval­
uated using 

Mif = � J irj(q)(g • A ·q - ih • B·ptm v1(q) dq 

x J iri(q) exp( -iSv)<l>; [0] dq (41) 
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The first integral in this formula can be recast in terms of cre­
ation and annihilation operators to give 

J irj(q)(g • A ·q - ih • B·p)nm v1(q) dq 

= J irj(q) [ � � [ (::J
12

Am,m ' + ( :: r
2

Bm ,m •] ol, 

+ � [ ( ::J
12 

Am ,m ' - ( :: r
2 

Bm,m ·] llmr
m 

X '1r1(q) dq . (42) 
If the number of modes were small and if nm were also 
small, then it would be practical to simply multiply out the 
creation and annihilation operators and obtain an evaluation 
of the individual final-state matrix elements by simply pick­
ing off the associated expansion coefficients .  

There is an interesting feature to be noted from this for­
mula: The initial nm phonon state Duschinsky-transforms to 
create final states with nm or fewer phonons distributed over 
a potentially large number of modes. The Duschinsky oper­
ator can generate only a relatively small number of phonons 
due completely to the contribution of the second integral in 
Eq. (41) ;  much more important is the ability of the operator 
to take phonons that are initially present and to exchange 
them for final-state phonons of different energies . Con­
siderable leverage is potentially available in the event that 
initial-state modes can be found that Duschinsky-transform 
to form modes with disparate final-state energies. 

V. SHIFTED GAUSSIAN LINE SHAPE MODEL 

The detailed analysis of the neutron capture line shape 
that results from the model is, in general, a complicated mat­
ter. Under normal circumstances, the Duschinsky operator 
contributes a small amount of broadening and a small net 
shift to the line profile. The transformation between initial 
lattice modes and final lattice modes conserves energy to 
O ( 1/N) for nearly all modes, and the spread in energy of the 
final-state modes to which a single initial-state mode couples 
is generally on the order of O( 1/../Fi). 

We argued in Sec. IV that an initial lattice in the ground 
state leads to no anomalies in the neutron capture line shape. 
This argument ultimately leads to the conclusion that no 
anomalies occur for a thermal initial state either. It is possi­
ble to obtain accurate low-temperature shift and width pa­
rameters for a thermal lattice directly from the phonon-mode 
displacement vectors in the special case where either the ini­
tial state or final state is a perfect crystal; we describe the re­
sults of such a calculation elsewhere. It is also possible to use 
moment methods developed for the calculation of the second­
order Doppler shift of Mossbauer lines for the neutron cap­
ture problem. 

Since neither ground state nor thermal lattices yield 
anomalies in the neutron capture line shape and since we are 
interested in this work specifically in lattice conditions that 
might result in anomalies, we defer a detailed analysis of 
ground state and thermal systems until later. Instead, we fo­
cus on highly excited nonthermal lattice states to establish 
that anomalies are possible, at least mathematically. 

An initial lattice phonon mode that Duschinsky-trans­
forms to final lattice modes of significantly different mode 
frequency is of particular interest in this discussion. For 
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example, a PdD lattice that contains a single tritium substi­
tuted for a deuteron (at which site the neutron ionization is 
assumed to take place) possesses three local modes with a fre­
quency lower than that of all optical continuum modes. If the 
neutron is ionized from the tritium nucleus, the local modes 
disappear. Whatever phonons were initially in the local 
modes become transformed into continuum modes at a 
higher frequency, with an associated net change in energy on 
the order of nhA.w, where n is the number of high-frequency 
initial phonons and where Aw is the average frequency shift. 
The frequency shift for this particular example has been com­
puted and is equal to 3. 1 x 10 1 1  Hz (the shift for high­
frequency localized modes in the vicinity of a proton is much 
smaller, < 109 Hz). 

It might be possible to begin arranging for an anomaly by 
putting a large number of phonons into the localized mode 
and then watching the capture line shift as high-frequency lo­
calized phonons are exchanged for lower frequency contin­
uum phonons. The net shift will be proportional to the 
number of phonons initially present in the localized mode; 
unfortunately, the maximum number of phonons that can be 
put into a localized mode before the mode goes nonlinear is 
relatively small. It does not seem likely that a shift of more 
than a few electron-volts could be arranged in this manner. 

We conclude from this discussion that it is not possible 
to couple significant energy either to or from a lattice in 
which either the initial or final state is a perfect PdD crystal 
and no net recoil is present . The continuum modes can hold 
a very large number of phonons, but the associated frequency 
shifts on a neutron transfer are small. The localized modes 
have a large frequency shift but cannot be excited sufficiently 
strongly to produce much of an effect. 

It is possible to arrange for continuum phonon modes to 
exist that have the property that the frequency shift of the 
transformed modes is large; such modes would give rise to 
very substantial anomalies if highly excited. If a PdD lattice 
were loaded with a small number of tritium nuclei, then an 
impurity band would form near the frequency of the local­
ized modes. When a neutron transfer occurs, three of the 
modes jump the gap between the deuterium modes and the 
tritium modes. These modes are proper continuum modes 
(with a localized component) and can be excited to contain 
a very large number of phonons. 

The existence of such modes was noted previously46-49 

and is the source of interesting spectral features. That the ef­
fect is sensible can be seen through the consideration of an 
idealized example. Consider a moderately heavy metal lattice 
with a low concentration of interstitial hydrogen and deute­
rium; the frequency distribution of the phonons will include 
an acoustical branch as well as two optical branches centered 
around the hydrogen and deuterium resonant frequencies 
[wH = (K/MH ) 112 and w0 = (K/M0 ) 112 ] .  The number of 
modes in the hydrogen branch will be 3NH, and the number 
of modes in the deuterium branch will be 3N0 . If a neutron 
transfer reaction causes a deuterium to turn into a hydrogen, 
then it is clear that three phonon modes must jump the gap 
to accommodate the change. This is the essence of the pho­
non-mode "gap jumps" of interest here. 

Under these assumptions, the line shape can be crudely 
approximated by a shifted Gaussian. In the case of recoil-free 
neutron capture onto a proton embedded in a lattice with a 
very highly excited gap-jumping mode, and with all other 
modes in the ground state, the line shape is 
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where AE is the total line shift, which is due to n phonons in 
a mode that jumps the gap: 

A.E = nAE , (44)  
where E = hAw is the average jump energy. The width of the 
line is due to the spread in mode energy of the final lattice 
modes, where the contribution of each Duschinsky-trans­
formed phonon adds, in quadrature, 

( oE)2 = n ( oE )2 . (45) 
The analysis of Sec. IV may be used to demonstrate this. 

In the limit discussed earlier, the line shape is dominated by 
phonon transfer rather than by phonon generation due to the 
Duschinsky operator transforming the ground state. If we 
choose to neglect all effects of the latter type, then an approx­
imation can be arranged in which it is assumed that 

J iri(q) exp( -i.S0)t[0 ]  dq -+  o1,0 • (46) 

In this approximation, the matrix element of the Duschinsky 
operator is approximately 

Mif = J irj(q) [ ;  � [ (::J
12

Am,m · + (::}
12

Bm,m ,] a,1, 

1 
[ ( 

Wm )
112 ( Wm• )l/2 ] • 

]
nm 

X 2 Wm • Am,m ' - Wm 
Bm.m' Om • 

x t1[0 ] dq . (47) 
In the limit where the number of phonons nm in mode m is 
much less than the number of atoms in the lattice, it will 
almost never be the case that the annihilation operators in 
Eq. (47) will find a phonon to destroy. In this limit, the ma­
trix element Mif simplifies to 

Mif = J irj(q)  ( ; � [ (::J
12

Am,m ' 

+ ( :: f 
2 

Bm,m •] a,1,r
m 

t,[0) dq . (48 )  

The line shape for this idealized model is 

W(E) � 1Mif l 2 

~ f [E - Eo - AE(i,/) ]2 + ! (hr)2 
(49) 

If the Lorentzian is replaced by its Fourier representation 

L: exp(-i [E- Eo - AE(i,f) ]t/h )exp(-rl t l /2) dt 

1r2r 
= ------------,,-

[£ - Eo - AE(i,/)] 2 + ! (hr)2 ' 
(50) 

then the line shape may be rewritten as 

W(E) - L: exp [-i (E- E0) t/h ]exp(-rl t l/2) w(t ) dt , 

(51) 
where 

w(t )  = � 1 Mir l2exp[ i (E1 - E;)tlh ] . (52) 
I 

Since we have assumed that the number of phonons in 
mode m is much less than the number of atoms in the lattice, 
it follows that the creation operators in Eq. (48)  will likely op­
erate only once on the vacuum. In this limit, there are so 
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many more modes than phonons that having two phonons be 
in a single mode will occur only infrequently. As a result, the 
final states will include nearly exclusively nm phonon states, 
and the Fourier transform w ( t) may be written approxi­
mately as 

x exp [ i (Em 1 + Em2 
+ . . . Emn,,, - E;) tlh ] , (53) 

where the coefficients Cm , m ' are defined as 
1 

[ ( Wm )
112 ( Wm • )112 ] 

Cm,m ' = 

l Wm • Am, m ' + 
Wm 

Bm , m ' (54) 

This result [Eq. (53)] is approximate in that it does not cor­
rectly include contributions from states where more than 
one phonon is present in a single mode. The summations in 
Eq. (52) can be recast as 

w( t )  = [ � I Cm, m · l 2 exp [ i (Em ' - E;lnm) tlh ] r
m 

. (55) 

The salient time dependence of w( t )  can be obtained by ex­
panding the exponential to second order to give 

w ( t) = [ � I Cm, m · l 2 [ 1  + i (Em ' - E;lnm) tlh 

- � (Em , - E;lnm)2 t2/h 2 + . . .  
] 
rm 

The average energy shift per phonon is defined to be 

I; I Cm, m • l 2(Em ' - E;lnm) 
A€ = _m_· ________ _ 

We also define a second moment to be 

I; 1 Cm ,m · l
2 (Em ' - E;lnm - Ad 

cod = _
m
_· __________ _ 

I; I Cm ,m · l 2 

m' 

(56) 

(57) 

(58) 

In terms of these parameters, the Fourier transform w ( t) 
is 

w ( t )  � ( � I Cm, m ' 1
2 r

m 

X ( exp ( iA€//h) exp [ - ( oE)t 2/2h 2 Wm (59) 
After transforming to obtain W(E) and taking the limit as 
r -+ 0, we recover 

W(E) - exp [ - (E - Eo - nm Ad12nm ( Df )2 ] ,  (60) 
which agrees with our simple estimates given earlier. 

The example described here constitutes the simplest and 
perhaps cleanest example of anomalous energy exchange with 
the lattice in the case of ostensibly recoil-free (since the neu­
tron and gamma momentum are assumed to be matched) 
neutron capture. In this case, the final lattice energy is less 
than the initial lattice energy, which implies that the gamma 
is emitted at an energy that is anomalously high. The coher­
ent neutron transfer reactions that we wish to describe require 
capture energy to be ultimately taken up by the lattice, which 
means that we would like to study examples in which the 
emitted gamma energy is reduced rather than raised. The ex­
ample discussed here is useful in its simplicity but shifts in the 
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wrong direction relative to what we seek . Nevertheless, this 
example is perhaps the first theoretical demonstration of the 
ability of the Duschinsky operator to transfer an anomalous 
amount of energy during a neutron capture reaction. 

VI. SUMMARY AND CONCLUSIONS 

In this technical note, we continued our examination of 
energy transfer between nucleons and a lattice during a neu­
tron transfer reaction. Of the possible interaction mecha­
nisms, we identified the Duschinsky operator over recoil as 
having the best chance of transferring significant amounts of 
energy between the nucleons and the lattice. As a result, we 
focused on an idealized reaction in which the gamma and 
neutron momenta coincide to eliminate the primary recoil 
term. 

If energy transfer does occur, it must be reflected by 
modifications in the associated gamma line shape; our discus­
sion in this work therefore centered on the computation of 
the line profile, in search of anomalously large shifts or 
widths that would be a signature of anomalous coupling. 

We developed a variant of the Sharp and Rosenstock 
method to analyze the matrix elements of the Duschinsky op­
erator for lattice states that are highly excited in a single 
mode. Thermal lattices are not expected to show any signif­
icant anomalies in the Duschinsky matrix elements since most 
of the lattice energy is in modes that do not shift their ener­
gies appreciably under a Duschinsky transformation. 

The basic new effect that we found is the presence of 
anomalously large energy transfer in the case of a neutron 
transfer reaction, which causes a very highly excited phonon 
mode to shift its energy significantly under the Duschinsky 
transformation. Highly excited localized modes that are em­
bedded in a continuum are predicted to show the effect. The 
total energy transfer for such a reaction is on the order of 
nhAw, where n is the number of phonons present in the mode 
and where Aw is the frequency shift of the mode that occurs 
as a result of the neutron transfer reaction. 

In our original proposal of the coherent neutron transfer 
model, we speculated that the lattice could cause neutron ion­
ization by coupling lattice energy into a neutron ionization re­
action. Although the mechanism described here can couple 
a very significant amount of energy to or from the lattice 
when a neutron transfer reaction occurs, the sign of the en­
ergy transfer does not allow the proposed effect. For exam­
ple, neutron ionization is endothermic; the shift in mode 
frequencies is positive since the resulting nucleus is lighter, 
and, by the present mechanism, the lattice is capable of in­
creasing its energy during such a reaction. We have not yet 
found a way to reduce the lattice energy during neutron ion­
ization using this mechanism. 

Neutron transfer reactions could, in principle, still be vi­
able if the present mechanism were used to balance the total 
energy in the case of a second-order process where two neu­
tron transfer reactions occurred, one of them a capture and 
one an ionization. In this case, if the capture occurs first and 
energy is taken from the lattice, then the nuclear /lattice sys­
tem is off the mass shell; a subsequent neutron ionization 
with an associated energy input to the lattice could then bring 
the coupled system back into energy balance. The price to 
be paid for this off-resonant route is a factor on the order 
of I H I I AE. In future works, we shall explore this mecha­
nism further to see whether it can account for the reported 
anomalies. 
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EDITOR'S NOTE: "Coherent and Semicoherent Neutron 
Transfer Reactions I I :  Transition Operators" (Ref. 2) will be 
published in a future issue of Fusion Technology. 
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