Observation of Nuclear Transmutation Reactions induced by D₂ Gas Permeation through Pd Complexes

<u>Yasuhiro Iwamura¹</u>, Takehiko Itoh¹, Mitsuru Sakano¹, Noriko Yamazaki¹, Shizuma Kuribayashi¹, Yasuko Terada² and Testuya Ishikawa³ and Jirohta Kasagi⁴

¹Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd.

²Japan Synchrotron Radiation Research Institute

³Coherent X-ray Optics Laboratory, SPring-8/RIKEN

⁴Laboratory for Nuclear Science, Tohoku University

ICCF-11, Marseilles, France, October31-November5, 2004

Contents

- 1. Introduction
- 2. Experimental method and Results so far
- 3. Experimental Results and Discussion
 - 3-1 Transmutation of ¹³⁷Ba and ¹³⁸Ba into ¹⁴⁹Sm and ¹⁵⁰Sm
 - : Mass distribution of Sm depending on the given mass distribution of Ba
 - 3-2 Pr confirmation by XRF and experiments for *in-situ* measurement at SPring-8
 - 3-3 Consideration on the role of CaO layer
- 4. Concluding Remarks

Features of the Present Method

D₂ gas permeation through the Pd complex

Fabrication of Pd Complex

MITSUBISHI HEAVY INDUSTRIES, LTD.
ADVANCED TECHNOLOGY RESEARCH CENTER

Schematic View of the Experimental Apparatus Apparatus

Photograph of the Experimental Setup

Decrease of Cs and Emergence of Pr

Identification of Pr by TOF-SIMS

TOF-SIMS device (TRIFT™ ;ULVAC-PHI)

Decrease of Sr and Emergence of Mo

Relation of Isotopic Composition between Sr and Mo. MITSUBISHI HEAVY IN

Recent Results Part 1

Transmutation of ¹³⁸Ba into ¹⁵⁰Sm and ¹³⁷Ba into ¹⁴⁹Sm

Transmutation of Ba into Sm; Natural Ba

Schematic View of the Ex-situ Measurement Apparatus Bishi HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER

XPS Spectra for detected Sm

Full Spectrum

Sm Natural Abundance

-	MITSUBISHI	HEAVY	INDUSTRIES	ITD
	MI I JODIJIII	-	HIDOSIKIL	
	ADVANCED TECHN	OLOGY RES	SEARCH CENTER	

¹⁴⁴ Sm	¹⁴⁷ Sm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵² Sm	¹⁵⁴ Sm
3.2%	15.1	11.3	13.8	7.5%	26.6	22.5
	%	%	%		%	%

SIMS Spectra for Given and Detected Elements

Examination of Molecular Ions

4	MITSUBISHI	HEAVY	INDUSTRIES	, LTD.
	ADVANCED TECHN	OLOGY RES	EARCH CENTER	

Pd	Pd ⁴⁰ Ca
102(1%)	142
104 (11%)	144
105 (22%)	145
106 (27%)	146
108 (26%)	148
110 (12%)	150

Ba	Ba ¹⁶ O
130(0.1%)	146
132(0.1%)	148
134(2.4%)	150
135(6.6%)	151
136(7.8%)	152
137	153
(138/3/19)7%)	154

No Molecular Ions for 149.

¹¹⁰Pd(12%)Ca and ¹³⁴Ba(2.4%)O for mass150, however their effects should be lower than ¹⁰⁶Pd(27%)Ca and ¹³⁸Ba(71.7%)O

Transmutation of Natural Ba into Sm

- XPS analysis showed Sm signal.
- SIMS analysis showed the increase of mass 150.
- Natural Sm isotopic distribution did not match with SIMS mass data.
- These facts strongly suggests that ¹⁵⁰Sm exists on the Pd complex after D₂ gas permeation.

Transmutation of Ba into Sm; mass 137 Enriched Batsubishi Heavy Industries, Ltd.

SIMS Spectra for #1Experiment

SIMS Spectra for #2 Experiment

Transmutation of ¹³⁷Ba into Sm

- SIMS analysis showed the increase of mass 149.
- Natural Sm isotopic distribution did not match with SIMS mass data.
- XPS analysis showed very weak Sm spectra. Now we are trying to obtain clear XPS signals.
- These facts suggests that ¹⁴⁹Sm exists on the Pd complex if we consider that Sm spectra were obtained by XPS using natural Ba.

Mass Correlation between Given and Detected Elements Subishi Heavy INDUSTRIES, LTD.

The Aim of Ba Transmutation Experiments AMITSUBISHI HEA

$$^{137}_{56}Ba \xrightarrow{6d(3\alpha)}_{62}Sm^{4}$$

Experimental Results

¹⁴⁹Sm is a Mossbauer Isotope

Excitation Energy: 22.5keV

If we measure the Mossbauer effect of ¹⁴⁹Sm, we will obtain clear evidence of generation of ¹⁴⁹Sm.

And the information on the ultra fine structure relating to the electronic state and phonon of the generated ¹⁴⁹Sm will be obtained.

Recent Results Part 2

Pr Confirmation by XRF and Experiments for in-situ Measurement at SPring-8

Identification of Pr by X-ray Fluorescence

Detection of Pr using SOR X-ray at Spring-8, Harima, Japan (FG1, FG2: Signals from Samples after D2 Permeation

BG: Signals from the sample before Permeation)

Experimental Set-up for in-situ Measurement located at SPring-8 Manual Set-up for in-situ Advanced Technical Set-up for in-situ

Photograph of the Experimental Set-up **MITSUBISHI HEAVY ADVANCED TECHNOLOGY BES

An Example of Pr Detection by the Experiments at SPring-8 ISHI HEAVY INDUSTRIES, LTI

Recent Results Part 3

Measurement and Experiments relating to the role of CaO

TEM Photograph of the Pd Complex

Depth Profile of Cs and Pr by TOF-SIMS

Depth Profile of Cs and Pr by XPS(1)

D⁺ Ion Bombardment Experiment Performed at Tohoku University HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER

D+ Ion beam bombardment on metal target

Experimental Apparatus

Deuterium Density measured by D⁺ Ion Bombardment Experiment industries, ltd.

MgO cannot work instead of CaO

No Pr; Two cases out of two experiments.

ICP-MS measurements show no Pr(<0.01ng).

D₂ gas Flow rate enough(2-3sccm)

Almost every time Pr were detected.

More than 60 cases.

Consideration on the Role of CaO

- Increase of Deuterium Density?
- Modify the Electronic State of Surface Pd?

Depth Profile Measurement of D By a Resonance Nuclear Reaction

$$_{3}^{7}Li(_{1}^{2}d,\gamma)_{4}^{9}Be$$

Concluding Remarks

- 1. Transmutations of Ba into Sm were observed both when natural Ba was applied to the Pd complex samples, and when mass-137-enriched Ba (monoisotopic Ba) was applied. The mass distribution of Sm that we obtained depended on the starting isotopic distribution of Ba.
- 2. One of our experimental apparatus was carried to SPring-8 to perform an in-situ measurement. We obtained some Pr signals by the X-ray Fluorescence method.
- 3. According to a D⁺ ion beam bombardment experiment performed at Tohoku University, the deuterium density of our Pd complex indicated one order larger than normal Pd.