Observation of Nuclear Transmutation Reactions induced by D₂ Gas Permeation through Pd Complexes <u>Yasuhiro Iwamura¹</u>, Takehiko Itoh¹, Mitsuru Sakano¹, Noriko Yamazaki¹, Shizuma Kuribayashi¹, Yasuko Terada² and Testuya Ishikawa³ and Jirohta Kasagi⁴ ¹Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd. ²Japan Synchrotron Radiation Research Institute ³Coherent X-ray Optics Laboratory, SPring-8/RIKEN ⁴Laboratory for Nuclear Science, Tohoku University ICCF-11, Marseilles, France, October31-November5, 2004 #### **Contents** - 1. Introduction - 2. Experimental method and Results so far - 3. Experimental Results and Discussion - 3-1 Transmutation of ¹³⁷Ba and ¹³⁸Ba into ¹⁴⁹Sm and ¹⁵⁰Sm - : Mass distribution of Sm depending on the given mass distribution of Ba - 3-2 Pr confirmation by XRF and experiments for *in-situ* measurement at SPring-8 - 3-3 Consideration on the role of CaO layer - 4. Concluding Remarks #### Features of the Present Method #### D₂ gas permeation through the Pd complex #### Fabrication of Pd Complex MITSUBISHI HEAVY INDUSTRIES, LTD. ADVANCED TECHNOLOGY RESEARCH CENTER ### Schematic View of the Experimental Apparatus Apparatus #### Photograph of the Experimental Setup #### Decrease of Cs and Emergence of Pr #### Identification of Pr by TOF-SIMS TOF-SIMS device (TRIFT™ ;ULVAC-PHI) #### Decrease of Sr and Emergence of Mo ### Relation of Isotopic Composition between Sr and Mo. MITSUBISHI HEAVY IN #### **Recent Results Part 1** ### Transmutation of ¹³⁸Ba into ¹⁵⁰Sm and ¹³⁷Ba into ¹⁴⁹Sm ### Transmutation of Ba into Sm; Natural Ba ### Schematic View of the Ex-situ Measurement Apparatus Bishi HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER #### XPS Spectra for detected Sm #### **Full Spectrum** #### Sm Natural Abundance | - | MITSUBISHI | HEAVY | INDUSTRIES | ITD | |---|----------------|-----------|---------------|-----| | | MI I JODIJIII | - | HIDOSIKIL | | | | ADVANCED TECHN | OLOGY RES | SEARCH CENTER | | | ¹⁴⁴ Sm | ¹⁴⁷ Sm | ¹⁴⁸ Sm | ¹⁴⁹ Sm | ¹⁵⁰ Sm | ¹⁵² Sm | ¹⁵⁴ Sm | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | 3.2% | 15.1 | 11.3 | 13.8 | 7.5% | 26.6 | 22.5 | | | % | % | % | | % | % | ### SIMS Spectra for Given and Detected Elements #### **Examination of Molecular Ions** | 4 | MITSUBISHI | HEAVY | INDUSTRIES | , LTD. | |---|----------------|-----------|--------------|--------| | | ADVANCED TECHN | OLOGY RES | EARCH CENTER | | | Pd | Pd ⁴⁰ Ca | |-----------|---------------------| | 102(1%) | 142 | | 104 (11%) | 144 | | 105 (22%) | 145 | | 106 (27%) | 146 | | 108 (26%) | 148 | | 110 (12%) | 150 | | Ba | Ba ¹⁶ O | |---------------|--------------------| | 130(0.1%) | 146 | | 132(0.1%) | 148 | | 134(2.4%) | 150 | | 135(6.6%) | 151 | | 136(7.8%) | 152 | | 137 | 153 | | (138/3/19)7%) | 154 | No Molecular Ions for 149. ¹¹⁰Pd(12%)Ca and ¹³⁴Ba(2.4%)O for mass150, however their effects should be lower than ¹⁰⁶Pd(27%)Ca and ¹³⁸Ba(71.7%)O #### Transmutation of Natural Ba into Sm - XPS analysis showed Sm signal. - SIMS analysis showed the increase of mass 150. - Natural Sm isotopic distribution did not match with SIMS mass data. - These facts strongly suggests that ¹⁵⁰Sm exists on the Pd complex after D₂ gas permeation. ### Transmutation of Ba into Sm; mass 137 Enriched Batsubishi Heavy Industries, Ltd. #### SIMS Spectra for #1Experiment #### SIMS Spectra for #2 Experiment #### Transmutation of ¹³⁷Ba into Sm - SIMS analysis showed the increase of mass 149. - Natural Sm isotopic distribution did not match with SIMS mass data. - XPS analysis showed very weak Sm spectra. Now we are trying to obtain clear XPS signals. - These facts suggests that ¹⁴⁹Sm exists on the Pd complex if we consider that Sm spectra were obtained by XPS using natural Ba. ### Mass Correlation between Given and Detected Elements Subishi Heavy INDUSTRIES, LTD. ### The Aim of Ba Transmutation Experiments AMITSUBISHI HEA $$^{137}_{56}Ba \xrightarrow{6d(3\alpha)}_{62}Sm^{4}$$ **Experimental Results** ¹⁴⁹Sm is a Mossbauer Isotope Excitation Energy: 22.5keV If we measure the Mossbauer effect of ¹⁴⁹Sm, we will obtain clear evidence of generation of ¹⁴⁹Sm. And the information on the ultra fine structure relating to the electronic state and phonon of the generated ¹⁴⁹Sm will be obtained. #### **Recent Results Part 2** Pr Confirmation by XRF and Experiments for in-situ Measurement at SPring-8 ### Identification of Pr by X-ray Fluorescence Detection of Pr using SOR X-ray at Spring-8, Harima, Japan (FG1, FG2: Signals from Samples after D2 Permeation BG: Signals from the sample before Permeation) ### Experimental Set-up for in-situ Measurement located at SPring-8 Manual Set-up for in-situ Advanced Technical Set-up for in-situ ### Photograph of the Experimental Set-up **MITSUBISHI HEAVY ADVANCED TECHNOLOGY BES ### An Example of Pr Detection by the Experiments at SPring-8 ISHI HEAVY INDUSTRIES, LTI #### **Recent Results Part 3** ## Measurement and Experiments relating to the role of CaO #### TEM Photograph of the Pd Complex ### Depth Profile of Cs and Pr by TOF-SIMS #### Depth Profile of Cs and Pr by XPS(1) ### D⁺ Ion Bombardment Experiment Performed at Tohoku University HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER D+ Ion beam bombardment on metal target Experimental Apparatus ### Deuterium Density measured by D⁺ Ion Bombardment Experiment industries, ltd. #### MgO cannot work instead of CaO No Pr; Two cases out of two experiments. ICP-MS measurements show no Pr(<0.01ng). D₂ gas Flow rate enough(2-3sccm) Almost every time Pr were detected. More than 60 cases. #### Consideration on the Role of CaO - Increase of Deuterium Density? - Modify the Electronic State of Surface Pd? Depth Profile Measurement of D By a Resonance Nuclear Reaction $$_{3}^{7}Li(_{1}^{2}d,\gamma)_{4}^{9}Be$$ #### **Concluding Remarks** - 1. Transmutations of Ba into Sm were observed both when natural Ba was applied to the Pd complex samples, and when mass-137-enriched Ba (monoisotopic Ba) was applied. The mass distribution of Sm that we obtained depended on the starting isotopic distribution of Ba. - 2. One of our experimental apparatus was carried to SPring-8 to perform an in-situ measurement. We obtained some Pr signals by the X-ray Fluorescence method. - 3. According to a D⁺ ion beam bombardment experiment performed at Tohoku University, the deuterium density of our Pd complex indicated one order larger than normal Pd.