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Low temperature nuclear
activity in solids

The recent phase of attention was stimulated
by two publications in 1989:

Fleischmann and PonsFleischmann and Pons::
Principal claim is excess heat from Pd cathodePrincipal claim is excess heat from Pd cathode
electrolyzed in heavy waterelectrolyzed in heavy water

JonesJones et alet al::
Neutrons claimed as evidence of lowNeutrons claimed as evidence of low--level ddlevel dd--fusionfusion
reactions from Ti cathode electrolyzed in heavy waterreactions from Ti cathode electrolyzed in heavy water



Hypothesis 1Hypothesis 1

“There is an unexpected and unexplained source of 
heat in the D/Pd System that may be observed when
Deuterium is loaded electrochemically into the
Palladium Lattice, to a sufficient degree.”

Experiments:
•D/Pd Loading studies (R/R°, interfacial Z).

- Electrochemical Impedance (kinetics & mechanism)
- Resistance Ratio (extent of loading)

•Calorimetry
- first principles closed-cell, mass-flow calorimeter,
- > 98% heat recovery
- absolute accuracy < ±0.4%
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Loading and Temperature coefficient (2)Loading and Temperature coefficient (2)
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Requirements of a (CF) Calorimeter
(1989)

Conceptually simple system based on first principles

Maintain control of operating parameters (including TCell)

On-line monitoring of all relevant variables including D/Pd

Multiply redundant measurement of parameters
critical to calorimetry

Accommodate large dynamic range of Pin and Pout (0.1 - 100W)

Closed and isolated electrochemical system to retain all products

High accuracy and precision (< 1 ppt)

Known sources of systematic error yield conservative estimates
of output heat



Flow Calorimetry (1989):
Advantages

All the heat evolved by electrochemical cell is absorbed by the
heat transfer fluid

Control temperature of electrochemical cell by controlling heat
transfer fluid flow rate and temperature

Can accommodate large inputs of electrochemical power and
large dynamic range of heat input and output

Calibration not required



Flow Calorimetry (1989):
Potential Problems

Flow rate must be measured on-line for high accuracy

Calibration desirable for high accuracy

Flow streamlining at points of temperature measurement can
lead to errors

Heat Relationships
Pheater + Pelectrochem = (Cp m/t + k') out - Tin)
Cp = heat capacity of heat transfer fluid
m/t = mass flow rate
k' = effective heat loss constant
in and Tout are inlet and outlet sensor temperatures
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First 25 Electrolyte: T P Max. I: Min. Max. Expt Init. PXS InputOutput-Input
Pd l d A mM Conc. Add. °C (psi) A / cm2 R/R° D/Pd (h) (h) (W) % MJ MJ % eV #

Differential Calorimeter(High pressure, Low temperature) 2.2 Years Pd atom
P1a AECL 5.0 0.7 11 217 LiOD 1.0 none 7 650 7.5 0.68 1.20 1+ 696 369 1.8 52% 3.4 0.07 2.1% 3.4 5
P1b * 5.0 0.7 11 4E-4 LiOD 1.0 none 7 650 7.5 0.68 Cu Substr. 696 299 0.2 7% 0.01 4.E+05 2
P2 Series (High pressure flow Calorimeter)

P2 Engel. 4.5 0.3 4.2 36 LiOD 1.0 none 4 1000 2.1 0.50 1.65 0.95 1393 504 2.0 53% 50 1.07 2.1% 310 4
P3 Engel. 4.5 0.3 4.2 36 LiOD 1.0 none 4 1000 1.5 0.35 1.70 0.90 1250 18
P7 Engel. 4.5 0.3 4.2 36 LiOD 1.0 none 8 1000 1.1 0.26 Contact Prob. 145 2.1

P10 Engel. 4.5 0.3 4.2 36 LiOD 1.0 none 35 900 0.2 0.05 Contact Prob. 18 0.3
P11 Engel. 4.5 0.3 4.2 36 LiOD 1.0 none 35 1050 5.0 1.18 1.65 0.95 85 1.2
P4 Series (Medium Pressure)

P4 Engel. 5.0 0.3 4.7 40 LiOD 0.1 none 15 100 2.4 0.51 1.80 0.80 1165 17
P5 Engel. 5.0 0.3 4.7 40 Li2SO4 0.5 none 16 100 4.0 0.85 1.70 0.90 287 4.1
P6 Engel. 5.0 0.3 4.7 40 Li2SO4 0.5 As2O3 8 100 2.7 0.57 1.70 0.90 649 9.3
P8 Engel. 3.0 0.3 2.8 24 LiOD 0.1 none 15 100 1.8 0.64 1.65 0.95 186 2.7
P9 Engel. 3.0 0.3 2.8 24 LiOD 1.0 none 35 50 1.5 0.53 1.65 0.95 597 22

P12 Series (Al & Si)
P12 Engel. 3.0 0.3 2.8 24 LiOD 1.0 4He,Al 30 50 2.5 0.88 1.55 0.98 1631 316 1.0 10% 59 0.80 1.4% 346 4
P13 Engel. 3.0 0.3 2.8 24 LiOH 1.0 Al 30 50 2.5 0.88 1.1* 0.98 815 12
P14 Engel. 3.0 0.3 2.8 24 LiOD 1.0 3He,Al 30 50 2.5 0.88 1.60 0.94 692 184 0.5 5% 10 0.20 2.0% 84 2
P15 Engel. 3.0 0.3 2.8 24 LiOD 1.0 Al 35 40 2.5 0.88 1.58 0.97 1104 684 2.4 24% 40 0.55 1.4% 238 3
P16 Engel. 3.0 0.3 2.8 24 LiOD 1.0 3He,Al 35 40 2.5 0.88 1.70 0.90 1104 948 0.4 4% 40 0.10 0.2% 42 4
P17 Engel. 3.0 0.3 2.8 24 LiOD 1.0 Si 29 40 1.1 0.39 1.29 1+ 1202 1040 0.2 2% 13 0.10 0.7% 42 2
P18 Engel. 3.0 0.3 2.8 24 LiOD 1.0 35 40 Failed early due to electrical contact
P20 Engel. 3.0 0.3 2.8 24 LiOD 1.0 Al 35 40 2.0 0.71 1.55 0.98 954 650 0.3 2% 17 0.16 1.0% 71 3
P19 Series (Boron) Outlet; 2 RTD & 2 thermistors B effect, multi-humped R response
P19 Engel. 3.0 0.3 2.8 24 LiOD 1.0 B 35 40 1.9 0.67 1.45 0.99 1287 261 0.9 340% 23 0.41 1.8% 180 4
P21 Engel. 3.0 0.3 2.8 24 LiOD 1.0 B 30 40 2.0 0.71 1.60 0.94 764 390 0.6 6% 14 0.04 0.3% 17 2
P22 Engel. 3.0 0.3 2.8 24 LiOD 1.0 B 30 40 2.0 0.71 1.30 1+ 1480 378 0.1 30% 21 0.27 1.3% 119 3*
C Series (Large Area) Last event terminated by H2O addition *
C1 JM 30 0.1 9.4 27 LiOD 1.0 Al 30 50 7.2 0.76 1.65 0.93 866 390 1.4 3% 49 1.12 2.3% 437 1
C2 JM foil 25 µm 60 3 LiOD 1.0 Al 30 50 7.2 0.12 1.60 0.94 356 190 3.0 10% 14 0.56 3.9% 2076 1

SRISRI
FirstFirst
2525



Excess PowerExcess Power vsvs. Maximum Loading (1). Maximum Loading (1)
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Excess PowerExcess Power vsvs. Maximum Loading (2). Maximum Loading (2)
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Excess PowerExcess Power vsvs. Palladium Source. Palladium Source
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P13/14P13/14 Simultaneous Series Operation ofSimultaneous Series Operation of
Light & Heavy Water Cells;Light & Heavy Water Cells;
Excess Power & Current Density vs. TimeExcess Power & Current Density vs. Time

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

430 454 478 502 526 550 574 598 622

I (A/cm^2) Pxs D2O (W) Pxs H2O (W)



P13/14P13/14 Simultaneous Series OperationSimultaneous Series Operation
of Light & Heavy Water Cells;of Light & Heavy Water Cells;
Excess Power vs. Current DensityExcess Power vs. Current Density
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C1: Excess PowerC1: Excess Power vs.vs. D/PdD/Pd
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Conclusions regarding Excess HeatConclusions regarding Excess Heat
Production in Bulk Pd CathodesProduction in Bulk Pd Cathodes
Electrolytically Loaded with D:Electrolytically Loaded with D:

 Effect Evidenced on numerous occasionsEffect Evidenced on numerous occasions (>(>5050))
 TypicalTypical PPxsxs 33 -- 30%30% (±0.5%)(±0.5%) of Total Pof Total Pinin (340%)(340%)
 Up to 90Up to 90observation of excess power effectobservation of excess power effect
 Duration several hours to 1 weekDuration several hours to 1 week
 100’s to 1000’s of 100’s to 1000’s of eV’seV’s/ Pd (D) atom/ Pd (D) atom (2076)(2076)
 Sustained, unidirectional heat burst exhibit an integratedSustained, unidirectional heat burst exhibit an integrated

energy at least 10x greater than the sum of all possibleenergy at least 10x greater than the sum of all possible
chemical reactions within a closed cellchemical reactions within a closed cell

 Heat effects are observed with D, but not H, underHeat effects are observed with D, but not H, under
similar (or more extreme) conditionssimilar (or more extreme) conditions

McKubre et al,“Developpmentof Advanced Concepts…”, EPRI, TR-104195 (1994)



Necessary Conditions for Excess HeatNecessary Conditions for Excess Heat
Production in Bulk Pd CathodesProduction in Bulk Pd Cathodes
Electrolytically Loaded with D:Electrolytically Loaded with D:
 Maintain HighMaintain High AverageAverage D/Pd RatioD/Pd Ratio (Loading )(Loading )

 For times >>20For times >>20--50x50x D/DD/D (Initiation)(Initiation)
 At electrolytic i >250At electrolytic i >250--500500mAmA cmcm--22 (Activation)(Activation)
 With imposed D FluxWith imposed D Flux (Disequilibrium)(Disequilibrium)

For 1mm dia. Pd wire cathodes:For 1mm dia. Pd wire cathodes:

PPxsxs = M (x= M (x--x°)x°)22 (i(i--i°) ∂x/∂ti°) ∂x/∂t
 x°x°=0.84=0.84--0.880.88, i°, i°=350=350--425425mAmA cmcm--22, t°>200, t°>200 D/DD/D

McKubre et al,“Energy Production Processes in Deuterated Metals”, EPRI, TR-107843-V1 (1998)



Hypothesis 2Hypothesis 2

“The observed excess heat originates in a hitherto 
unexpected and presently unexplained Nuclear Effect
and that is a property of Crystalline Metals strongly
loaded with Deuterium.”
Experiments:
•2π, real time, “in situ” X-ray detector (Lockheed)
•Gamma and X-ray spectrometer (K. Wolf)
•Neutron spectrometer (K. Wolf)
•Charged particles: , p+ (MIT)
•Tritium
•Helium: 3He and 4He (Amarillo, PNNL & Clarke)

Results:
•Correlated heat and 4He.
•Evidence of Tritium.



M4: Excess Power Correlation functionM4: Excess Power Correlation function
[Closed, He[Closed, He--leak tight, Massleak tight, Mass--Flow Calorimeter, Accuracy ±0.35%]Flow Calorimeter, Accuracy ±0.35%]
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M4: Correlation of Heat with HeliumM4: Correlation of Heat with Helium
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Case cell Studies:Case cell Studies:
DD22 Gas with Pd/C CatalystGas with Pd/C Catalyst
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ExtrelExtrel QMS: resolution of DQMS: resolution of D22 && 44HeHe
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SRI Micro-Mass 5400
Noble Gas Mass Spectrometer

Specifications:
•Magnetic Sector Analyzer with 90° extended
geometry ion optics
giving a dispersion length of 54cm

•Helium Sensitivity
Isotope Faraday Channeltron Absolute resolution
4He 3ppb 2.0pptr 1.0x107 atoms*
3He 3ppb 0.05pptr 2.5x105 atoms**
* Limited by background
** May be reduced using different method

•Metal Analyses
- still under development



Case:Case: 44HeHe vs.vs. timetime
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Case:Case: 44He and HeatHe and Heat vs.vs. timetime
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Case: “Q”Case: “Q”--ValueValue -- EnergyEnergy vs.vs. 44HeHe

y = 18.36x
R2 = 0.99

y = 18.89x
R2 = 0.95

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8
Helium Increase (ppmV)

Gradient

Differential

Gradient Q = 31±13 MeV/atom

Differential Q = 32±13 MeV/atom



Case ConclusionsCase Conclusions

Near quantitative correlation between HeatNear quantitative correlation between Heat
andand 44He production according to:He production according to:
Predicted: d + dPredicted: d + d  44He + ~24MeVHe + ~24MeV(lattice)(lattice)
Measured: Q = 31 ± 13Measured: Q = 31 ± 13 MeVMeV/atom/atom
Discrepancy may be due to solid phaseDiscrepancy may be due to solid phase
retention ofretention of 44HeHe
Substantial initiation time >> D diffusion.Substantial initiation time >> D diffusion.
Max [Max [44He]He]SampleSample / [/ [44He]He]AirAir > 2> 2



Production ofProduction of
Tritium in aTritium in a
Sealed Pd cavitySealed Pd cavity

Electrolysis

D2O

OD-
Pd
Black

e-Beam Weld

Arata/Zhang “DS” Cathode: 
6cm long, 14mm dia., 3.5mm wall

Pd
Bulk

D

0.3M LiOD

AZ1 0.3MAZ1 0.3M LiODLiOD,, AZ2 0.3MAZ2 0.3M LiOHLiOH
Cathodic Current 5Cathodic Current 5 -- 7.5A7.5A
Current Density 170Current Density 170--255mA cm255mA cm--22

PPinin 5050--317 W, Duration317 W, Duration 120120 DaysDays
PPxs,Maxxs,Max = 10 ±1.5%= 10 ±1.5%,, PPxsxs 0 ±1.5%,0 ±1.5%,

DeloadedDeloaded::
open circuit and at 2V Anodicopen circuit and at 2V Anodic
for a furtherfor a further 100100 Days.Days.





Gas SamplingGas Sampling
Method forMethod for
Sealed CathodesSealed Cathodes
[[B.B. OliverOliver, PNNL,, PNNL,
analyses performed by:analyses performed by:
B.B. OliverOliver, PNNL,, PNNL,
W. B.W. B. ClarkeClarke,,
McMaster, Ontario,McMaster, Ontario,
and byand by

V.V. ViolanteViolante, ENEA, ENEA]]



AZ1:AZ1:
MeasurementsMeasurements
ofof 33He andHe and 33HH

5 D2O
Electrolyte

4 Pd
Bulk
Section
Through
wall

3 Pd
Black

1
D2, DT, He

2
D2O, DTO

Arata/Zhang “DS” Cathode: 
6cm long, 14mm dia., 3.5mm wall

T measured as∂T measured as∂33He/∂t at He/∂t at 
McMaster in Phases 1McMaster in Phases 1--44

T measured byT measured by
scintillation at SRIscintillation at SRI
in electrolyte (Phase 5)in electrolyte (Phase 5)



ENEA/AZ1:ENEA/AZ1:
Apparatus for Gas sampling in sealedApparatus for Gas sampling in sealed
cathode Voidcathode Void



ENEA/AZ1:ENEA/AZ1:
Press andPress and
BellowsBellows



ENEA/AZ1:ENEA/AZ1:
Puncturing tip and cathodePuncturing tip and cathode

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Hardened Puncturing tool

Tip and Cathode



AZ1: Tritium ResultsAZ1: Tritium Results

5 D2O
Electrolyte

4 Pd
Bulk
Section
Through
wall

3 Pd
Black

1
D2, DT, He

2
D2O, DTO

Arata/Zhang “DS” Cathode: 
6cm long, 14mm dia., 3.5mm wall

•If Tritium was injected in a single event,
this event occurred sometime during the
period of cathodic electrolysis.

The total production of Tritium was
between 2x1015 and 5x1015 atoms.

Tritium Fractionates between the 5 Phases as follows:

0.05%0.24%0.16%97.8%1.8%
54321

Clarke, Oliver, McKubre et al, Fusion Science and Technology, Sept. (2001)



AZ1: Radial DistributionAZ1: Radial Distribution
ofof 33He andHe and 33H:H:
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AZ1: Radial Distribution ofAZ1: Radial Distribution of 33He andHe and 33HH
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Tritium ConclusionsTritium Conclusions
•Production of Tritium was between 2x1015 and 5x1015 atoms.

Modeled as a single event, this occurred during cathodic electrolysis.

There is definite evidence of excess 3He from Tritium decay of all
samples of Pd & Pd-black from the D2O experiment.

Samples of Pd taken from a similar and contemporaneous H2O
electrode show low 3He levels consistent with blank Pd.

Measurements of the 3He gradient through the 3.5mm wall of the D2O
electrode show that the 3He is the decay product of Tritium which
diffused from a source inside the electrode.

No evidence for 4He quantitatively consistent with excess heat.



(1) There ARE heat effects closely correlated to the
Loading:

- Stoichiometry of D/Pd
- Chemical Potentialof D?
- New Phase formatiion?

Initiation:
- Lattice defects (vacancies and impurities)

Stimulation:
-Electromagnetic, Acoustic, Magnetic…..
- Flux effects (D+, e-)

Summary and Conclusions (1)Summary and Conclusions (1)

Experience teaches us that:



Summary and Conclusions (2)Summary and Conclusions (2)

Experience teaches us that:

(2) There ARE (hitherto unexpected) nuclear effects:

d + d  4He + ~24 MeV (lattice)
- 3 metal-sealed cells
- 3 calorimetric methods
- electrochemical and gas loading experiments
- 4He analyses at 4 different institutions

3H production in small dimension Pd particles

Numerous other effects…...



(3) Effects ARE amenable to conventional interpretation.

Summary and Conclusions (3)Summary and Conclusions (3)

Experience teaches us that:



Backup SlidesBackup Slides



M4: The Dynamics of D FluxM4: The Dynamics of D Flux
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M4:The Dynamics of FluxM4:The Dynamics of Flux (detail)(detail)
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AZ1,2:AZ1,2: PPxsxs vsvs. P. Pinin
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The Pathway Forward:The Pathway Forward:

 PredictivePredictive TheoryTheory
––After 14 Years of Parametric Study we haveAfter 14 Years of Parametric Study we have

learned a great deallearned a great deal //// intuition and patience is thinintuition and patience is thin
 Simple demonstration of a novel effect having an

unambiguously nuclear origin::
––Results are too numerous (>3000 papers)Results are too numerous (>3000 papers)

incomplete, complicated, unexpectedincomplete, complicated, unexpected
require multirequire multi--disciplinary understandingdisciplinary understanding

 Results sufficiently substantial to allow evaluation of
potential technological consequences.

 Capable of independent replication..



Flow Calorimetry Details (1)

1. Operate calorimeter in constant power mode by adjusting
electrochemical power and calibration heater power to be a
constant sum. This maintains the calorimeter in near steady
state condition.

2. Temperature sensors initially two RTD's at inlet and
outlet, later two RTD's and two thermistors at the outlet.

RTD sensitivity ± 1 mK
Thermistor sensitivity ± 50 K

3. Flow Rate Measurement on-line, gravimetric and
volumetric



Flow Calorimetry Details (2)

4. Heat Transfer Fluid
Silicone oil: low Cp, insulating, non-corrosive

absorbs water (viscosity, Cp)
Water: lower viscosity, Cp constant and

well determined

All connections and wire feed throughs designed to eliminate
heat transfer fluid leaks.

5. All connections and wire feed throughs designed to
eliminate heat transfer fluid leaks.

6. Fluid streamlining reduced by thorough mixing of exit
stream.



Flow Calorimetry Details (3)

7. Electrical leads brought in through bottom of calorimeter
to reduce heat transfer along the wires (later labyrinth
design).

8. Calorimeter held in constant temperature bath to
minimize cooling losses and maintain them constant, also to
maintain constant inlet temperature.

9. Calorimetric parameters measured via computer
controlled multiplexer using a single calibrated DMM
(periodically interchanged).

10. Series cell operation



SRI Micro-Mass 5400
Noble Gas Mass Spectrometer

3He+/3H

HD+

H3
+

3.0218 3.02353.01603/05
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