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Abstract 

We present a set of calorimetric data obtained with Fleischmann-Pons type cells, working in a novel electrostatic configuration aimed 
at achieving high deuterium loading. The analysis of such data, which includes an eight day run with a “blank” cell (Pt cathode), shows 
that: (a) the heat dissipation of the cells depends strongly on the physical processes occurring at the cathode; (b) the continuing calibration 
with periodic heat pulses yields accurate estimates of the excess enthalpies generated in the cells; (c) very high excess power densities are 
observed in the cells electrolyzing D,O with Pd cathodes. 

Key~~rd.\c Fleischmann-Pons ceils; Calorimetry 

1. Introduction 

Six years after the announcement [ 1,2] on 23 March 
1989 of the discovery of “anomalous” excess heat pro- 
duction in the electrolysis of heavy water with a Pd 
cathode, there are still doubts in the scientific community 
that the observations by FIeischmann and Pons (FP) might 
reflect some kind of artefact. For this reason, in spite of 
the large number of confirmations that the FP protocols do 
reproduce the original observations (see, for instance, the 
four volumes of the Proceedings of the first four Intema- 
tional Conferences on Cold Fusion), cold fusion (CF) is 
still essentially ignored by the scientific community. 

In this paper we develop methods of analysis for FP-type 
cells - cells electrolyzing heavy water with LiOD as 
electrolyte and a cathode of Pt (blank cells) or Pd (which 
we may call “black” cells) - with the aim of checking 
some subtle aspects of FP calorimetry [3], related to the 
peculiar behaviour that “black” cells exhibit when they 
are driven towards boiling point. 

These methods are illustrated with some data from 
experiments described in detail elsewhere (to be published). 
As already implied in the title, the cells of our experiments 
(a schematic drawing of which is shown in Fig. 1) differ 
from the well-known FP cells in that they exploit an 
unusual electrostatic configuration which, as we shall see, 
provides an efficient source of excess enthalpy. 

Before going into the necessary details, we will first 
briefly comment on the advantages for the detection of CF 
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of using the experimental strategy followed by FP. This 
version of isoperibolic calorimetry, using periodic low- 
power heat pulses and temperature readings inside the 
cells, in our opmlon gives a calorimetric methodology that 
interferes very little with the CF phenomena, placing in 
particular no constraint upon the variation of the cell 
temperature. This latter aspect should not be underesti- 
mated for, as pointed out by FP since 1991, the process, 
whatever it is (and here we are being particularly non-com- 
mittal for we want this paper to be essentially experimen- 
tal; naturally we have some pretty good ideas (see Refs. 
[5,6]) as to what is causing CF) that causes the CF 
phenomena is sensitive to small temperature changes. Such 
“positive feedback” as Fleischmann likes to describe it 
may, if the calorimetric analysis is not designed to take 
this into account, completely obscure. indeed wipe out, a 
correct determination of the excess enthalpy evolved in the 
system. Furthermore, isoperibolic calorimetry allows us to 
work with a cell heat transfer coefficient that might change 
with time (provided its time variation over a heat pulse 
period is, within the experimental uncertainties, negligible). 
Such a possibility (within the strategy of “laissez-faire” 
that we adopt as far as the cells are concerned) is indeed a 
very likely one, for in the presence of high excess power 
densities localized in some regions of the Pd cathodes, 
such as one expects when CF phenomena occur, one must 
not be surprised if dissipation phenomena change, and with 
them the heat transfer coefficients that embody them ther- 
modynamically. 
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One should bear in mind that by the generic term of 
“dissipation phenomena” we wish to indicate a set of 
physio-chemical processes that are related to the onset of 
CF phenomena, of which at present we have unfortunately 
no relevant information. 

This paper is organized as follows: after a brief descrip- 
tion of the geometry of the cells we recall the theoretical 
background which is the basis of the analysis that we carry 
out in the following section; finally a brief discussion of 
the results will conclude the paper. 

2. The calorimetric equation 

The physical system under analysis is an isoperibolic 
calorimeter, consisting of an open cylindrical cell, at a 
temperature T,(t), surrounded by a water bath maintained 
at a constant temperature Tb. 

Since the calorimeter is at constant pressure, the rele- 
vant thermodynamic potential is the enthalpy H 

dH=dV+PdV (1) 

Defining SQ as the heat flowing from the calorimeter to 
the bath and dW,,, as the external work done on the 
calorimeter, the first principle of thermodynamics reads 

dH=dW,,,-6Q (2) 

The enthaipy sources inside the calorimeter are: 
* the electric power producing electrolysis, whose rate 

is we,(f); 
* the heat calibration pulse, with rate h(t); 
* any excess enthalpy production, whose rate we call 

w,(r). 
In this way, for the external work we may write 

dW,,,=w,,(r) dt+h(r) dt+w,(r) dt (3) 

thermistors 

quartz 
support rod 

.- ~. 

Fig. I. A schematic drawing of the cell (diameter approximately 5 cm, height approximately 28 cm) used to collect the data analyzed in this paper. On the 
left the elicoidal Pd (Pt for the blank run) cathode (diameter 50 km, I= 250 cm) and the Pt anode (diameter 250 km) are shown, together with their quartz 
supports. On the right the spatial configuration of the PTIOO thermistors array and the resistance heater used to calibrate the cell are shown. 



As for SQ, we assume 
flows to the bath, so 
expression 

that all the heat leaving the cell 
that we may write the general 

(4) 

Introducing the quantity k.T(t) = T,(t) - T, we write, 
without loss of generality 

f(T,,T,,r) =q,,(AT,T,,r)AT (5) 

which defines the “heat transfer coefficient” ahr that 
contains all the non-trivial dependence of the heat transfer 
function on the temperatures as well as on time. 

At the starting time t, the calorimeter contains m, 
moles of electrolyte at a temperature T, and with an 
enthalpy content H,. Any subsequent variation of the 
enthalpy content of the calorimeter is concomitant with the 
following processes: 

. temperature variations, which are recorded by a ther- 
mistor inside the cell; 

* variations in the content of the cell. 
There are three processes that change the content of the 

calorimeter. 
(1) 

(2) 

(3) 

Decomposition of the electrolyte 

D,O + D, + ?02 (6) 

This process is due to electrolysis and. perhaps, also 
to soft X-ray emission that may accompany the 
process of production of excess power. The gases 
leave the calorimeter and their enthalpy is lost. 
Evaporation/boiling of the electrolyte. The gas 
stream leaves the calorimeter and its enthalpy is 
lost. 
Addition of D,O to the calorimeter to replace losses 
due to (1). 

The molar rates for the three processes above are 
indicated by Ijz& t), k,(t) and ril,( t). 

The variation in enthalpy content is written as the 
following sum 

dH=dH,+dH,+dH,+dH, (7) 

where (for an explanation of the symbols see Appendix B) 
(3 

(ii> 

dH, is the enthalpy variation of the calorimeter 

dffc = ~W’,.D~O dT 9 (8) 

where m(t) is the molar content of the calorimeter 
at the generic time t (including both the equivalent 
masses of the electrolyte and of the solid structure 
of the calorimeter); 
d H,, is the enthalpy variation caused by the de- 
composition of tijld( t)d t moles of D,O into Ijl& t)dt 
moles of D, and iriz&r)dt moles of 0,; according 
to this we write 

d&i = (Qd + [ Cp.DZ + iCp.0, - C,.D~O] AU r)> 

xr&( t) dt (9) 

(iii) d He is the enthalpy variation due to the evapora- 
tion/boiling 

dff, = {L&O + [ cp.DZO.pas - qLDzO] 4 f,} 

x+.(t) dr (10) 

(iv) dH, is the enthalpy variation due to the refill of 
the electrolyte; if the liquid flowing into the 
calorimeter has a constant temperature T, (in our 
experiments, the refilling system is at the same 
temperature of the bath so that T, = T,> one can 
write 

dHa = Cp.D20 (T, - T,)ti,( t) dr 

=c p.D,Ow-+ T,- r,>$l(t) dt (1’) 

The final equation that embodies all the above contribu- 
tions is then 

dH = m(f)C,,DZod(AT) 

+rk,( r)( T, - q)} dt 

+W)(Qd + [Cp.~> + tC,,o:]W)) 

+ %( t>{ &I20 + Cp.D,O.#w} dt (12) 

where all the terms following the first are to appear in the 
right-hand side of an energy balance equation describing 
the dissipated energy. 

In order to evaluate the total enthalpy variation of the 
calorimeter one must determine the rates riz,(r), riz,(t) and 
h,(t). Evidently the best way to do this would be to 
measure these three quantities. Actually, our calorimeter is 
equipped with a refilling system which maintains a con- 
stant level of electrolyte so we have 

m(t) =mo Vt (13) 

while we measure the rate h,(r) of the inflowing D,O. As 
we have not yet set up an experimental apparatus to 
measure and analyze the gas stream leaving the cell, we 
must give some theoretical estimate of the quantities riz,( t> 
and k,(t). For the decomposition process, we may write 
the general expression 

4 t> = vk,( 4 + k.( 4 (14) 

where h,,(t) is the theoretical rate of electrolysis, y its 
efficiency and ti,( t) accounts for any non-electrolytic 
process. For riz,,(t) the Faraday law tells us that 

1 4,(t) 4d t> +I,,( r) = f- - = L---.- 
N e ’ 2F 

and defining 

v,,= 2 
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the enthalpy variation for this process is 

d He, = V,, l,, d t (17) 
For the evaporation rate one has to consider two pro- 

cesses: 
* surface evaporation/boiling; 
. evaporation in the electrolysis bubbles. 

Fleischmann and Pons [3,4] evaluated the evaporation 
rate in the bubbles under the assumption that inside the 
bubble the D,O vapour is at the equilibrium pressure. If 
p(T,) is the equilibrium pressure for the vapour and p. the 
pressure at which the bubble is created (assumed to be the 
atmospheric pressure), the pressure of D, is f( p. - p(T,)) 

and that of 0, is $ p. - p(T,)). According to this, the 
D,O content of a bubble is 

P(T) 
nDzO = nb 2 

-II(Po-P(T,)) 

and finally 

P(T,) 

(18) 

ti,( r) = ~~jzd( I) 
P, 

1 _ P(C) 
(19) 

PO 

where, from the Clausius-Clapeyron equation, one has 

(20) 

Note, however, that this calculation becomes inaccurate 

when T, + L.DZO. (It is for this reason that FP time the 
evaporation of the last half of the cell content [3].) Since 
we have no simple method for determining the rate tiz,(t), 
we use the fact that due to the action of the refilling 
system 

ha{ t) - rizd( t) - rn,( t) = 0 (21) 
Then we assume that: 

* the decomposition process is only due to electroly- 
s1s; 

. the faradaic efficiency of electrolysis is effectively 
100%. 

In this way we have 

4,(r) TizJ t) = ; - 
2F (22) 

?iz,( t) = tiz,( t) - tiz,( t) (23) 
The calorimetric equation is then rewritten in the fol- 

lowing form 

dH/dt - dW,,,/dt + dQ/dt = 0 (24) 
According to our discussion ’ the explicit form of the 
calorimetric equation is then 

dAT 
%Cp.D,O - dt (t) + %(r)C,,,~o(T, - T,) 

+ %I( t> [ qdl, + glow ]AW) 

+ 4(Wp.DZogAW) + %(t)Qd + ~(WD~O 
+ we,(t) - h(t) - wx( t) + uht(AT,Tb,t)AT( t) = 0 

(25) 

which can be cast in the form 

dAT 
%Cp.D,O- dr (t) = w(r) + h(t) - a( t,T,,AT)AT( t) 

(26) 

where 

4 t) = win( t) - 4 W-,.,zoV, - T,) - &d f> Qc, 
- %( t> h&O + wx( t> (27) 

h(t) = C~Mt-LJ -w-4,i)l (28) 

a( AT,T, ,t) 
= uhr( AT.T,,t) + 4,( I)[ Cp.D2 

+ tcp.o,] + %A Wp.DzO.pas (29) 

The “dissipation coefficient” a describes the whole 
energy dissipation of the cell to the surroundings (the bath 
and the atmosphere). As for the dependence of a on the 
various quantities, we observe that: 

(1) since the temperature T, of the water bath is con- 
stant during any experiment, we can ignore the T, 
dependence of a; 

(2) the AT dependence of a is due to the fact that the 
heat transfer from the cell is dominated by conduc- 
tion and radiative processes, the radiation process 
gives the well-known (quartic) temperature depen- 
dence to a; 

(3) the explicit t dependence can be traced to the 
following facts: 

* electrolysis and evaporation contribute to the 
dissipation term, these processes not only de- 
pend on the temperature of the cell, but also 
have explicit time dependences (for instance 
due to the changes in the rate of electrolysis); 

. any (possible) dependence of the dissipation 
from the excess heat production, resulting from 
the appearance of new dissipative processes 

’ We have assumed that L,:, and Qd and the various specific heats 
do not vary with temperature. If one wishes to consider the temperature 
dependence of these quantities, the enthalpy must be written as 

H= l,;(.(T) dT 

and in this case 

. Cp.D*O is evaluated at T,, 
* the other C,s are evaluated as the mean of C,(T) in the tempexa- 

ture range [T,, T, I, and 
* Lo2o and Qd are evaluated at T,. 
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and from the extremely localized (in space) 
production of excess power, can affect the 
relative strengths of conduction and radiation. 

So far we have implicitly assumed that the cell contents 
are at a uniform temperature. Actually, measurements with 
an array of thermistors placed in different cell positions 
have shown that this is not the case. This is due to the fact 
that the enthalpy rate production turns out to be concen- 
trated in small regions (the cathode), producing strong 
temperature gradients inside the cell, thus we must con- 
sider a temperature field T,(t,x), rather than the cell 
temperature T,. We are dealing in fact with an inhomoge- 
neous calorimeter inside which we (usually) record the 
temperature at only one point, say x, (note that we have 
used relatively large calorimeters with a substantial heat 
loss due to conduction, the thermal relaxation time of our 
system is about 2000 s. As FP have stressed, mixing in 
their long thin calorimeter is enhanced and their thermal 
relaxation time is increased to 5000 s; the regime in their 
calorimeter is therefore “well mixed”). What about the 
calorimetry of such a complicated system? The analysis 
carried out in Appendix A shows that such a calorimeter 
can be described by an equation like (26), with an “effec- 
tive mass” and an “effective dissipation coefficient”. In 
other words, an inhomogeneous calorimeter behaves like a 
homogeneous one, but with an equivalent mass and dissi- 
pation coefficient. This means that such parameters depend 
critically on the distribution of the enthalpy sources inside 
the cell, on the history of the run and on the eventual 
excess enthalpy production; there is no way to “calibrate” 
the calorimeter with a previous (or parallel) blank experi- 
ment. 

So, in order to have realistic energy balances, we must 
set up a calorimetric analysis that takes fully into account 
the inhomogeneity of our calorimeter. This analysis must 
of course, be carried out “in real time” and must provide 
us with the values of the dissipation coefficient and of the 
effective equivalent mass of the calorimeter for that partic- 
ular run. This is accomplished by means of the heat 
calibration pulses h(t) in a way that we describe in the 
following section. 

3. Analysis 

From what has just been said, the energy balance of the 
system, which might reveal the possible existence of ex- 
cess power, presupposes a knowledge of the way in which. 
as a function of time, the calorimeter dissipates the energy. 
This fundamental piece of information is acquired through 
well-defined (and known) calibration pulses by which we 
interrogate the system in such a way as to: 

* perturb the system as little as possible (thus leaving 
it in the (quasi-jstationary state at the time of the 
pulse); 

. prolong the interrogation for a time longer than 5~ 
(where T is the time constant of the calorimeter) and 
shorter than I dt)/a(t) / -I, the inverse of the loga- 
rithmic time derivative of the dissipation coefficient. 

Thus our starting point is Eq. (26) 

da7- 
mcpdr(t) +a(t)hT(t) =w(t) +h(t) (30) 

where the left-hand side can be written 

dAT( t) 
mc P - + u( t) AT( t) 

dt 

act’> 
AT(t) exp/ dt’- 1 / 4t’) 

exp- dt’- 
mcp 

mCP 

(3 1) 
Assuming, according to the discussion above, that dur- 

ing the calibration pulse a can be considered constant, by 
introducing the quantity 

__ mcP 
4 (32) a 
which has the dimension of time (and, indeed, is the local 
time constant of the system), the energy balance equation 
can be rewritten in the form 

mG[*T(t) expi] = [nJin(t> +h(r)] expi (33) 

Let us now consider the time interval [ t,,t, + At], 
where At is chosen so as to satisfy, at least to a first 
approximation, the following hypotheses: 

(1) a (and thus 7) is constant; 
(2) the total enthalpy production finflowing external 

power plus unknown excess power) can be de- 
scribed by the expression 

w(t) = w. + \b( t - to) + 6w( t) (34) 
where the fluctuations &w(t) are small and vanish 
upon averaging over time intervals of the order of 
At. 

Clearly, the validity of such hypotheses will have to be 
evaluated by an a posteriori check. 

Let us suppose also that the system is perturbed by a 
constant heat pulse between the time I, and t,, so that we 
may write 

h(t) =h[e(t-t,) -qt-t,)] (35) 

where t, and t, may not both belong to the interval 
I I,, , r,, + A ?I- 

If the above hypotheses hold, for t E [to,to + At], Eq. 
(26) becomes 

=(,,:,+*(t-to)+h[8(t-t,)-0(t-tJ]}expf 

(36) 
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and can be easily integrated to give 

aAT( r) - aAT( to) exp - - 
7 

( - )[ 
t - to 

= w 0 k-r l-exp-- 
7 I 

+bqr-t,) 

[ 

r - r, 
+ hO( t - t,)e( te - r) 1 - exp - - 

7 1 
+hO(r-r,) [ I - t, t - t, 

exp- - - exp- - 
7 T I 

(37) 

Several types of analysis are now possible [7]. One of 
the simplest, that we shall adopt in this paper, is the 
following: 

* choose as q, the time of the switching on or off of 
the calibration pulse, and for At the period (usually 
6 h) in which the calibration power is kept constant; 

* in a time interval [to + 37,t, + 471 fit the data with a 
straight line 

[AT(r)-AT(t,)]fi,=c+d(t-r,) (38) 

From Eq. (37), expanding the exponentials around the 
point t, = t, + $ (the midpoint of the interval used for 
the fit), we get 

AT(r) - AT( to) 

,u 69.5 
\ 
2 69 

I 68.5 

k” 68 

67 3 

57 

66.5 

66 

65.5 

65 

t 
30 

29.5 fi (,,,,/,, , ,, !,,,,,,,,,,/ ,,/,,, I ,,,,,: 

0 ‘a000 zaaac 30000 40000 50000 60000 70000 60000 90000 

Time/s 

Fig. 3. Temperature above bath and input power vs. time for a typical 

one-day sample of run 2. The calibration pulse has an intensity h = 1.23 

W and a period of 12 h. 

(we have also checked that the first correction to this 
formula is completely negligible). 

By equating the coefficients of the straight line in Eq. 
(39) with the parameters of the fit (the value of A?(r,) can 
be extracted from the data), we easily obtain for the 
dissipation coefficient a [where a(t) denotes the average 
value of a at the time of the switching (on or off) of the 
heater] 

h 
a(t) = _) (401 

= ; + TA~( to) - :T (1 - zexp- i) 
. I 

; +A?@,) - exp- + 

xx0 mco 50000 60000 70000 80000 9~0~0 

Fig. 2. Temperature above bath and input power vs. time for a typical 

one-day sample of the blank run. The calibration pulse has an intensity 

h=1.30Wandaperiodof12h. 
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Fig. 4. Temperature above bath and input power vs. time for a typical 

one-day sample of run 3. The calibration pulse has an intensity h = 1.59 

W and a period of 12 h. 
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0.l slll.s,,a’, ~~“,~,‘~~,~‘,~~~“‘~ 
0 5 10 I5 20 25 30 

time period 

Fig. 5. The calculated dissipation coefficient m for the blank cell. 
Every point corresponds to a period of 6 h and during this period (1 is 
assumed constant. 

The standard procedures of the fitting will then also deter- 
mine the experimental uncertainty that affects the evalua- 
tion of a( t). We also obtain the value of G 

+=ua(t> d- 4: --I exp - $ 

-r (1-;exp-5) 1 (41) 

that we use as an internal consistency check of this proce- 
dure. 

The numerical analysis starts with the value of T (which 
is an input for the fit procedure) that corresponds to a 
dissipation coefficient which gives (approximately) no ex- 
cess power. From this first set of values of u( t) we obtain 

04 i - 

0 5 IO 15 20 2s 30 3s time’kri 

Fig. 6. As Fig. 5 for run 2. 

0.7 

i 
I 

0 1 4 6 8 IO 12 14 timet&rio 

Fig. 7. As Fig. 5 for run 3. 

a new value of T; we then iterate this procedure until 
consistency is reached, i.e. until the values of CZ( t) and T 
satisfy Eq. (32). By inserting the function a(t) - which is 
a slowly varying function of time - in Eq. (26), we 
evaluate the energy balance of the cell and obtain the 
function w,(r). 

In this paper we show the results obtained by applying 
the method just described to three different runs, with two 
different calorimeters (that we call “cell A” and “cell 
B”): 

(1) a “blank” run (Pt cathode polarized in D,O) in cell 
A, eight days long; 

(2) a “black” run (Pd cathode polarized in D,O) in cell 
A, eleven days long; 

J 
02 

i 
.3’...’ ““. (...‘,,.I 

120 l-l0 164 180 200 220 210 2.50 280 300 
time/h 

Fig. 8. Excess power vs. time for the blank cell. The typical error for this 
run is about 0.7 W. 



15 c 
i 

0i. ..,....I..-,,. .1....,, c . j  L-. “. 
25 50 7.5 100 125 150 175 200 225 250 

time/h 

Fig. 9. Excess power vs. time for run 2. The typical error for this run is 
about 2.0 W. 

(3) a “black” run (Pd cathode polarized in D,O) in cell 
B, four days long. 

Figs. 2, 3 and 4 show some typical experimental data 
(temperature and input power vs. time) for the three exper- 
iments. while Figs. 5, 6 and 7 show the values of the 
dissipation coefficient LI( t) obtained with the method de- 
scribed above. We observe that the values of u(t) for the 
first two runs are noticeably different. though the cell and 
the bath are the same. We believe that there are two 
possible origins of such an unexpected fact: 

the appearance of new dissipation processes associ- 
ated with the physical mechanisms responsible for 
the production of excess heat; 

t 

IO 
i 

Oi 
180 ml 220 310 

time>? 

Fig. 10. Excess power vs. time for run 3. The typical error for this run is 
about 2.0 W. 

-I r 
120 I-IO 160 180 200 220 240 260 280 

time/h 
300 

Fig. I 1. Efficiency, defined as E = W, / W,, vs. time for the blank run. 

. the inhomogeneity of the calorimeter that may make 
the dissipation coefficient depend strongly on x,, 
the point at which the cell temperature is recorded. 

Finally, Figs. 8, 9 and 10 show the excess power for the 
three experiments, as obtained from the energy balance, 
and Figs. 1 I, 12 and 13 show the efficiencies in the three 
experiments, defined as the ratio between the excess power 
and the input power. The quoted errors for the excess 
power are due to: 

(i) the unavoidable errors that affect the experimental 
data of the various quantities that enter EZq. (26); 

(ii) the errors in the determination of the dissipation 
coefficient, which are mostly due to the statistical 

Fig. 12. As Fig 

150 175 200 225 250 
tune/h 

I for run 2. 
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Fig. 13. As Fig. I I for run 3. 

uncertainties in the determination of the fit parame- 
ters. 

4. Conclusions 

The data we have analysed in this paper are just a small 
subset (and not a particularly significant one> of a set of 
data collected while experimenting on the modified FP- 
cells, alluded to in the Introduction. The reason why we 
have decided to publish them is two-fold: first to show that 
a reliable and accurate (isoperibolic) calorimetry can be 
carried out on cells where an unknown and time dependent 
enthalpy source, such as that expected from CF processes, 
is at work: second, to draw attention to the fact that other, 
more traditional calorimetries may well turn out to be 
inadequate. The reason for this is the non-negligible 
changes induced in the calorimeters by the large excess 
enthalpy produced in our ‘black” cells. A comparison of 
Fig. 5 with Figs. 6 and 7 eloquently underscores this latter 
point, especially when we recall that the data of Figs. 5 
and 6 refer to the same physical cell, the only difference 
being the cathode (Pt for Fig. 5 and Pd for Fig. 6). 

However, in spite of these capricious changes, the graph 
in Fig. 8 does show that no excess enthalpy is found where 
none is expected, with an accuracy of 0.7 W and this over 
a period of six days, where all kinds of “bugs” could have 
made their appearance should our analysis be fundamen- 
tally flawed (as the strange results of Figs. 6 and 7 would 
make some of the more traditional calorimetrists believe). 
Supported by such impeccable results (which also give us 
an accurate estimate of the size of the experimental uncer- 
tainties) we may now draw some conclusions as to the 
effectiveness in producing excess enthalpy of the new 
electrostatic configurations that we have tested in the 

“black” runs 2 and 3 (see Figs. 9 and 10). 
If we consider that in our analysis we have completely 

neglected the enthalpy losses in the gas flows from the 
cells (which we know are non-negligible due to their 
crucial role in the modification of the cell dissipation 
coefficient a), and therefore that our estimated excess 
enthalpy w,(t) is only a lower bound, we come to the 
following conclusions. 

(a) In run 2 we have reached a lower bound for the 
excess enthalpy of about w, = 2.5 W. Considering 
that the volume of the Pd cathode is V, = 8.15 X 
10m3 cm3, this means that in this run the specific 
excess power is 

p2 2 3 kW cm-3 (42) 

(b) As for run 3, taking w, = 30 W and V, = 8.35 X 
10e3 cm3, we obtain 

p3 2 3.6 kW cmp3 (43) 

Such high power densities may seem quite exceptional, but 
in fact in other experiments (to be published) power 
densities ten to twenty times larger have been achieved. 
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Appendix A: Inhomogeneous calorimetry 

Let us consider a calorimeter, consisting of a volume V 
of liquid electrolyte, bounded by the surface S (the cell). 
Let us suppose that inside the electrolyte V there is some 
localized enthalpy source (i.e. the cathode); the volume of 
these sources is negligible, while their boundary is A, so 
that 

aV=sUA (‘41) 

We can write the rate of enthalpy transfer from these 
sources to the calorimeter as 

w,(r) = - ,/;i( x,r) nd’cr (A21 

where j(x, t> is the heat flow and n the unit vector 
pointing outwards from the cell surface. 

Let T(x,t) be the temperature field inside the cell and 
h(x,t) the energy density. If q(x,t) is the power density 
produced by the sources inside the calorimeter (i.e. elec- 
trolysis) and pcdAT/dr(x,t) is the power density stored 
in the system as enthalpy, the continuity equation reads 

E( x,t) - div j( x,t> = 0 (A31 
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where 

g( x,r) = q( XJ) - pc,T( x,r) (Ad) 

By integrating the continuity equation, we have 

Ld3x;(x,r) - I;$x;r).n d’a=O 

The term 

(‘45) 

w(r) = /, d3xy( x,t) - /,i( x,r) . n d*a (A61 

can be recognized as the total power released to the cell by 
all the sources, while 

wdlss( t) = l,j’ XJ) n d*a (A7) 

is nothing but the heat rate from the cell to the water bath. 
i.e. the dissipated power. In this way, the integrated conti- 
nuity equation reads 

/ 

dAT 
d3xpc - 

V 
p dr ( x,r> = w( ‘1 - “hiss(‘) 

In terms of the “mean temperature” 

m(r) = ;h d3xAT( x,t) 

and writing, as usual 
-- 

wdiss( r) = a(hT)hT( r) 

Eq. (A8) becomes 

dhT 

(A9) 

(A’01 

t72cpdr ( r) = w(r) - a(hT)nT( r) (A”) 

which just looks like the balance equation for a homoge- 
neous calorimeter and closely resembles Eq. (26). * 

What can we say about Eq. (Al 1) if our thermistor 
records the value of the inhomogeneous temperature field 
at only one point, say x, [let AT,(r) = AT(x,,r)]? 

In general, we do not know how the “mean tempera- 
ture” hflr) depends on the temperature field AT(x. r), 
on the point x0, on the geometry of the sources, and so on. 

Let us write 
- 
AT(r) =f[ x,.r.AT,] = h,[ r,AT,]AT,( r) 

then Eq. (Al 1) becomes 

(A12) 

~~~o~T,l 
ttlCp ar (r) =w(r) -u(AT)A,AT,(r) (‘413) 

’ In fact, if the calorimeter is a homogeneous one 

AT( x,t) = q I) vx t v 

and Eq. (A I I) reduces to Eq. (26). 

i.e. 

Xi, aAT, aA To 
--AT,+&-- 
aAT, at ar 

= w(r) - u( AT)h,AT,( r) 

If we define 

aA0 
I 

aAT, 
fit, =m ‘0 + EAT, -AT, .- 

at 

we finally arrive at 

aA To 
m c - = w(r) - u,AT,( r) 

’ p ar 

which is the key-point of our analysis. 

Appendix B: Nomenclature 

C p.D,O 

c p.D,O.gas 

C 
P.D: 

C 
P.0: 

L D20 

a 

heat capacitance of liquid D,O 
heat capacitance of D,O vapour 
heat capacitance of D, 
heat capacitance of Oz 
latent heat of evaporation of D,O 
energy for the dissociation of one mole of 

w 
Faraday constant 
cell current 
reservoir temperature of the refilling system 
bath temperature 
cell temperature 
cell over bath temperature, AT = T, - Tb 
time derivative of AT 
molar content of the cell 
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