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Editorial Note 

Reports on cold fusion have stirred up a lot of activity and emotions in the whole 
scientific community as well as in political and financial circles. Enthusiasm about 
its potential usefulness was felt but also severe criticism has been raised. If in 
such a situation one of the pioneers of modern physics starts to attack the problem 
in a profound theoretical way we feel that it is our duty to give him the opportunity 
to explain his ideas and to present his case to a broad and critical audience. 
We do, however, emphasise that we can take no responsibility for the correctness 
of either the basic assumptions and the validity of the conclusions nor of the 
details of the calculations. We leave the final judgment to our readers. 

Nuclear energy in an atomic lattice. 1 
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Evidence is presented for the assertion that an H-ion in a deuterided lattice encounters 
a relatively narrow Coulomb barrier before fusing to form 3He. 

PACS: 63.90. + t ;  63 .20 . -e  

[-" In this business"] "more  is owing to what we call chance - that is.. .  to the observation 
of events arising from unknown causes than to any. . ,  preconceived theory." 

Joseph Priestley 

Introduction 

In a recent note [1] I suggested that the claim of 
B.S. Ports and M. Fleischmann - to have released 
nuclear fusion energy by electrolyzing heavy water 
(DzO) with a palladium cathode - could be true, 
except that the dominant process would be H D  
(p + d ~ 3He + heat), rather than DD (e.g., 
d +  d ~ 4He + heat). The lattice structure of the deu- 
terided palladium plays a vital role in this hypothesis. 
The presence of the ionic lattice has two effects: 

1. Prior to the act of fusion, the lattice coupling 
diminishes the efficacy of the Coulomb barrier, in a 
way that strongly favors the H D  process over the 
DD process. 

2. After p d fusion begins, the liberated energy is 
transferred to the mult iphonon degrees of freedom 
of the lattice, rather than to a single high energy pho- 
ton. 

The purpose of this paper is to begin the descrip- 
tion of the admittedly crude theoretical considera- 
tions that led to my advocacy of the H D  hypothesis. 
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The ultimate judgement of this hypothesis will come, 
of course, from the outcome of the specific experimen- 
tal tests that is suggests. 

The lattice 

As Albert Einstein knew in 1907 [2], the initial phase 
of a novel investigation can be hindered by an excess 
of realism. I have adopted a working picture of the 
Pd-D metallic lattice that is suggested by the large 
mass disparity between the alloyed elements: 

The Pd-lattice supplies a rigid framework, from 
which is hung the dynamical D-lattice. 

The spatial coordinates and momenta of each of 
the N D-ions (of mass M, and labeled a), are repre- 
sented as a linear superposition of phonon modes 
(labeled ~b): 

r~(t) = ra + ~ P o  lye (t) e i~ '"  + y,~ (t) e-ik,.~o], 
O 

p, (t) = ~ M co~ pe 1 [Yo (t) e ik'~" r'~ - -  y~ (t) e-  ik. "ra], 
(1) 

with 

k, l=x ,  y, z: [Yok, YO'J =0, (2) 

[Yok, Y~'J = 6~,~, 5kl, 

in which the ko, coy are the phonon propagation vec- 
tors and angular frequencies, and 

[ h ]~ 
pc~=[2McooN] . (3) 

The polarization dependence of the phonon spectrum 
is ignored; there are N three-dimensionally isotropic 
modes. The orthonormality and completeness expres- 
sions for those modes are given by 

1 ~ -ik "ra 

L E e -  ik4, ' r,~ elks,-r,~ : ~4~q~' " 
N a  

(4) 

The lattice Hamiltonian, 

HL = Z h co~ y~ "Yo, (5) 

supplies equations of motion that are solved by 

y4,(t)  = e - i C ° * t y ~ ,  y?o(t)=ei°~*ty~. (6) 

HD reaction 

A thermally energetic H-ion, a proton, is in a cell 
of the Pd-D lattice. This is a proton that will eventual- 
ly penetrate through to the immediate vicinity of a 
D-ion, a deuteron, in that cell, thereby forming an 
excited state of 3He. What are the important interac- 
tions in this system? Of course the H-ion is coupled 
electrostatically with the ions outside its own cell and 
with the Pd-ions in that cell, not to mention the en- 
gulfing sea of electrons. These are interactions at the 
atomic level. But this proton also couples, both elec- 
trostatically and through nuclear forces, with the deu- 
teron, in its own cell, with which it will ultimately 
fuse. In a first overview, surely it is the latter interac- 
tions that are central. 

Let the Coulomb and nuclear interactions be unit- 
ed in a potential energy V, a function of the displace- 
ment between r, the position vector of the proton 
(which is of mass m and carries momentum p), and 
the position vector of that particular deuteron in the 
D-lattice. The lattice interaction-representation, 
which employs the explicit time dependences of (6), 
will be adopted, and the equilibrium position of the 
deuteron is chosen as the spatial origin. Thus, the 
abbreviated Hamiltonian of this system is 

H = 2 m +  V ( r -  ~po(e-i°~*tyo + ei'°*~y~)). 
0 

(7) 

Phonon vacuum amplitude 

A simple, but not irrelevant situation is that of no 
initial or final phonons. To solve the Schr6dinger 
equation (in the lattice interaction-representation), 
one decomposes the wave function, 

where @o refers to the persistence of the phonon vacu- 
um symbolized by >o. It helps to single out the pho- 
non vacuum term in H, as indicated by 

p 2  

H = F m +  o< V>o + ( V -  o< V>o). (9) 

Then one has 

ih ~-~o=(-~+o<V>o)~lo+o<(V-o<V>o)~l, 
(lO) 

and 
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2 
ih ~ I~1 ---- ( ~ +  O< V 2>0) ~tl 

+ ( V - o <  V>o) 0 1 -  >o o< (V-o<  V>o) ~'1 

+ ( V - o <  V>o) ~o>o. (i1) 

Now, be it a compact notation, or be it the basis 
of an approximation, one can write the ~1 equation 
in terms of an effective Hamiltonian, h, as 

(ih ~--~-h)~9~=(V- o<V>o)~o>o, (12) 

and arrive at (e ~ + 0) 

i dt, e_~(t_O(h_, 0 Ol(t)=/- ~ i . 

x (V-o<  V >0)(t') ~bo (t')>o. (13) 

The resulting equation for ~o, 

i h ~--~ ~b o = (H ~I~ + H ~2)) tpo, (14) 

has 

=~m + o< V>o (15) H (I) 

and 

H(2),, ' q,_ i i at' (V--o< V>o)(t)e -~(t-c)(h-i~) 
ti'O~ I - - ~  -0o O< 

x (V-o<  V>o) (t')>o 0o(t'). (16) 

The next steps are facilitated by writing 

(dq) V(r) =J ~ V(q) e ~q'r, (17) 

or 

V(r-- Epe (e- i°~*tye + ei~°*ty;)) 

= l V(q) e ~q'r 

x exp [ - ~  q-~p~(e-'~*ty¢ + e'~*~y~)l, (18) 

which can also be presented as 

i (dq) i (~-z~ h~ g- V(q) e ~q .r 

x 1J exp [ - -~  pe q. (e-i'~*tyo + ei~°~y~)]. (19) 

o< V >o 

Inasmuch as N should be a very large number, with 
the implied smallness of p~ of (3), it suffices to retain 
only the initial terms in the expansion of the individ- 
ual exponentials that appear in (19): 

1 [e-i~,t~r _t_,~ico t,T?~ 1- -~peq ' t  :~m,, ~ :~j 

2h 2 

+ 2q.y~ q.y¢ + q2]. (20) 

The phonon vacuum state is characterized by 

y+>o=0, o<y$=0. (21) 

Accordingly, the vacuum expectation value of (20) is 

1-  P~ qZ=exp [ -  p~ ] 
2h 2 [ 2h 2 q2j 

[ q2 1 1 ] (22) 
= exp 4M N h~b " 

Incidentally, although this derivation has been based 
on the smallness of 1/N, the final exponential form 
is generally valid. The product of all such exponentials 
introduces 

1 E I = / 1 _ \  , (23) 
N 4, hc%-\hCO/L 

the average of (he))-1 over the lattice spectrum. Thus, 
the vacuum expectation value of V, as it appears in 
the Hamiltonian of (7), is 

o < V > o = ,  (dq) i [ q 2 ( ~ ) ]  V(q) ehqrexp - - ~ -  L . ( 2 4 )  

An alternative version, 
3 

o< V >o = f(dR) ~ e -~-(Rm)2 V(r - R), (25) 

exhibits the characteristic length 

:hi 1 / 1 \  l 
A [2M \hO~/LJ' (26) 

in terms of which the Gaussian factor of (24) reads 

These two representations supply complementary 
descriptions, which become particularly transparent 
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for large and small values of r (on the scale set by 
A), provided there is no undue sensitivity to r in E 
Thus, for r>>A, the oscillatory structure evident in 
(24) effectively restrains q-values to q~h/A, which, 
according to (24), shows that the lattice is without 
influence. At the opposite limit, r ~ A, the restriction 
enforced by (27): q <~ h/A, states that exp [(i/h) q. r] ~ 1; 
o< V >o becomes independent of r. It is not surprising 
that the implications of these coordinate extremes re- 
quire only a glance at the coordinate representation 
(25). 

The situation of unscreened Coulomb repulsion, 

e 2 h 2 
V~=--, V~(q) = 4~re 2 - -  (28) 

r q2, 

illustrates these general remarks. Either representa- 
tion will do, but (25) is more intuitive in asking for 
the potential of a Gaussian charge distribution: 

e 2 ( 2 f  ~/A 
o< V~>o = ~  - I dx e-~X~ 

0 

_~r>>A: e2/r 
- [ r  ~ A: (2/7r) a/2 (eZ/A). (29) 

It is worth noting that, at r = A, one is already within 
15% of the limiting value for r ~ A. 
The insertion of the deuteron mass for M, and 

of a nominal value of 0.1 eV for the inverse of 
((ho~)-1)L, supplies a nominal value for A of (26), 

A - 10 -9 cm, (30) 

and for the limiting value of o< V~>o, 

( 2 ~  e2 ~-0 1 keV. (31) 
\~] A " 

It is advisable now to look back at (20) and recog- 
nize that, if instead of the phonon vacuum, one selects 
phonon states of definite, or, indeed, average number 
ne, in the sense that 

(Y~k Yet), = 6kz n O, (32) 

the effect in (24) will be the replacement 

\ hc~ /~" (33) 

This will increase the value of A, and diminish that 
of e2/A. 

Virtual phonons 

Prior to the fusion act, only thermal energy is avail- 
able to the H-ion and to the D-lattice. Nevertheless, 
there is a significant effect of the coupling between 
them that is contained in H (z) of (16). 

I revert to the phonon vacuum state and consider, 
first, V(t')>o, as given in (19), except that the integra- 
tion variable will be called q', to go with the time 
variable t'. The expansion of an individual mode ex- 
ponential, given in (20), now acts on a vacuum eigen- 
vector only to the right. Accordingly, it acquires an 
additional term, compared to the initial entry of (22): 

i • ' P~ q,2 
1 - ~ Pe q'" el°~*t y ; _  2 h  ~ . (34) 

On combining the mode factors, and removing 
the 0< V>0 contribution, one gets 

(dq') . . . . .  ~¢.r' 
( v -  o< v >o1 (t') >o = (2 V e 

exp i , 

[ q ' 2 / l \ ]  
x exp [ - ~ - ~  ~g;/L] > o. (35) 

The adjoint version, referring to time t, is 

(dq) i 
o<(V-  o< V>o) ( t)=t  (2~ ~ V*(q) e -~q'r 

x [exp {h  ~Pe  q'e-~'~r Y,~}-- I ] 

q2 1 
x exp[-~--~(~-~i)/].  (36) 

On adopting the explicit assumption that the effec- 
tive Hamiltonian h does not contain phonon vari- 
ables, one meets a phonon vacuum expectation value 
that is epitomized by the single mode term 

1 --itaot 1 1 ~ ei~0~t' t 3> 

2 
4 - P e ~  ~ re - im~( t - t ' )  

= 1 +  q'q' 1 1 e_iO,,(t_r)" (37) 
2M N ho  e 

These individual mode factors combine into 

J 

=exp[q~.~e-i°~(t-t'))L]. 
kZlU \no) 

(38) 



By specializing to an energy eigenstate of energy ei- 
genvalue E, so that 

. , .  ! - -e (~-r )  , . .  

oft ) = e~ q% (t), (39) 

one can extract an expression for the H (2) of (16), 
in which one introduces the relative time variable 

z = t--  t', (40) 

namely, 

1 co (dq) (dq') 
H(2)=~-~  ! dz~ (2rch) 3 (27ch) 3 V*(q) V(q') 

i i i 2 
X e-hqre  -gz(h-E-ie)ehq''r exp[-- - -q-- - - - /  1 \ ] 

[ 4M \boo~L] 

[ q'a/l\l x 
exp [ - 4 M  \h-C~')/LJ" (41) 

A power series expansion of the z-dependent ex- 
ponential factor corresponds to considering succes- 
sive numbers of phonons. The simplest situation oc- 
curs for r >> A, where 

q, q' ~ h/A, (42) 

or, equivalently [see (26)], 

q2 q,2 4 / 1  \-1,__. 
(43) 

2M'  2M \hco/L " 

This limits the expansion to the single phonon contri- 
bution, 

• ' 1 ' 1 ~q'q / - i~ \  
exP[q~*(s--e-io~;LZm \rico / L j l - - l = ~ i G e  L"  (44) 

Along the same lines as (43), but possibly some- 
what more stringent, is the assumption that the h- 
spectrum for the state exp[(i/h)q'.r] Oo(r) differs so 
little from E that only the phonon energy hco need 
be considered. This yields 

H(z),. ~- _[~ ~ ( d q )  V , .  , e_~q.rq]tq) 

• ~[~ ~(dq') ! ,. 1 V(q') e~ q rq,j 

1 1 2 1 1 
2 M ( ( ~ ) ) L = - ( V V ) 2 2 ~ ( ~ - £ )  L. (45) 
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One can, of course, arrive at this limiting form in 
a more elementary way, where it appears as 

(46) 

In the example of the unscreened Coulomb poten- 
tial, (45) reads 

H (2) __ - - -  
r hZ/Me 2 L 

(47) 

or, equivalently, 

A4e4 4 / A ] 4 /  _ \ ( ~ 1  1 2 
H ( 2 )  (48) 

2h z \ r ]  \C021Lk(1/CO)Z] ' 

where one recognizes the Bohr energy associated with 
mass M. 

If, fi la Einstein, the lattice spectrum were assumed 
to be sharply peaked at a single frequency, the prod- 
uct of the two lattice averages would be unity. At 
the opposite limit - a spectral density proportional 
to co 2 - this product is no more than 4/3. 

The Bohr radius associated with mass M that ap- 
pears in (47) is ~ 10 -12 cm for the deuteron mass. 
Accordingly [see (30)] 

2A 1 3 
hZ/~e2~ O, (49) 

and one can present the outcome as 

H (2) {IOA~ 3 
r >  A: e ~ - k - - ~ }  . (50) 

Here, at least, is a suggestion that, already at distances 
as large as 10A,-~ 10 .8 cm, the energy of attraction, 
H (2), begins to reduce significantly the Coulomb ener- 
gy of repulsion. 
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