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Abstract

This paper discusses and explains the time-dependent quantum-mechanical behavior of electron-clouds in 4D/TSC (tetrahedral
symmetric condensate) condensation motion by the Langevin equation, in comparison with steady ground state electron orbits and
their de Broglie wave lengths for the D-atom and D2 molecule. An electron orbit in a “d–e–d–e” quasi-molecular system of a
face of 4D/TSC under time-dependent condensation makes a spiral track, finally reaching the center-of-mass point of the TSC,
with a tail of time-varying effective wave length. The role and merit of the heavy mass electronic quasi-particle expansion theory
(HMEQPET) method for approximating time-dependent TSC trapping potential and relating it to the estimation of time-dependent
Coulomb barrier penetration probabilities of a 4D cluster is explained.
© 2009 ISCMNS. All rights reserved.
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1. Introduction

The formation of 4D/TSC (tetrahedral symmetric condensate) at or around a T-site of a regular PdD lattice under
D-phonon excitation; or on the topological (fractal) nano-scale surface of PdDx; and/or along the interface of metal–
oxide–metal nano-composite, has been proposed as the seed of deuteron-cluster fusion, which produces heat with
helium-4 as 4D fusion ash [1]. The dynamic motion of TSC condensation was quantitatively studied by the quantum-
mechanical stochastic differential equation (Langevin equation) for many-body cluster systems of deuterons and elec-
trons under Platonic symmetry [2–6].

By the ensemble averaging of the Langevin equation with the weight of quantum mechanical wave-functions for
electrons and deuterons, we could further derive a time-dependent one-dimensional Langevin equation for expectation
value 〈Rdd〉, which is nonlinear, but could be solved by the Verlet’s time-step method [2,3]. We showed in our previous
work [4] that only 4D(or H)/TSC, among D2, D+

2 , D+

3 , 4D/TSC and 6D2−/OSC clusters, can condense ultimately to
form a very small charge-neutral entity, with a radius of about 10–20 fm. At the final stage of 4D/TSC condensation in
about 2 × 10−20 s, 4D fusion with two 4He products takes place with almost 100% probability, according to our heavy
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mass electronic quasi-particle expansion theory (HMEQPET) calculation [3,4] for barrier factors and the fusion rate
formula by Fermi’s first golden rule.

This paper presents further discussions and explanations of the time-dependent quantum-mechanical behavior of
electron clouds in 4D/TSC condensation motion, in comparison with steady ground state electron orbits and their de
Broglie wave lengths for the D-atom and D2 molecule. An electron orbit in a “d–e–d–e” quasi-molecular system of a
face of 4D/TSC under time-dependent condensation makes a spiral track, finally reaching the center-of-mass point of
the TSC, with a tail of time-varying effective wave length. Electron kinetic energy at t = 0 is 19 eV, and it continuously
increases during the condensation time (1.4007 fs) reaching finally 57.6 keV at Rdd = 25 fm. The trapping potential
depth of TSC was estimated to be −130.4 keV at Rdd = 25 fm.

The role and merit of the HMEQPET method for approximating time-dependent TSC trapping potential and relating
to the estimation of time-dependent Coulomb barrier penetration probabilities of 4D cluster is explained. HMEQPET
provides a practical method for calculating time-dependent (hence time-averaged) fusion rate under TSC condensation,
based on Fermi’s first golden rule.

2. Condensation motion of 4D/TSC by Langevin equation

The basics of methods with Langevin equations for D-cluster dynamics, especially for D-atom, D2 molecule, D+

2
ion, D+

3 ion, in a 4D/TSC (tetrahedral symmetric condensate) and 6D2−/OSC (octahedral symmetric condensate) are
described in our latest paper [4].

First, one-dimensional Langevin equations for D-clusters with the Rdd (d–d distance) are formulated under the
Platonic symmetry [2] of multi-particle D-cluster systems with deuterons and quantum-mechanical electron centers.
Under the orthogonally coupled Platonic symmetry for a Platonic deuteron system and a Platonic electron system,
dynamic equations for so-many-body system of deuterons and electrons with metal atoms, a simple one-dimensional
Langevin equation for the inter-nuclear d–d distance Rdd can be formulated, as we showed in the previous paper [4].
The Langevin equation of electron-cloud-averaged expectation value of d–d distance Rdd for D-cluster is given by

Nemd
d2 R
dt2 = −

k
R2 − Nf

∂Vs

∂ R
+ f (t). (1)

This is the basic Langevin equation for a Platonic symmetric D-cluster having Ne d–d edges and Nf faces of “d–d–e”
(D+

2 ) or “d–e–d–e” (D2) type. Here, R is the d–d distance and md is the deuteron mass, Vs is the d–d pair trapping
potential of either “d–e–d–e”-type (i = 2) or “d–d–e”-type (i = 1) molecule. The first term on the right side in
Eq. (1) is the total Coulomb force (converted to one-dimensional variable R) of the D-cluster system, and f (t) is the
fluctuation of force for which we introduce a quantum mechanical fluctuation of deuteron positions under condensation
motion. The quantum mechanical effect of electron clouds is incorporated with the second term on the right-hand side
as “friction” in Langevin equation. Parameters for different D-clusters are given in Table 1.

Table 1. Parameters of D-cluster Langevin equation.

Cluster Ne (number of d–d
edges)

K (total
Coulomb force para-
meter, keV pm)

Type of electron
trapping potential on
a surface

Nf (number of
faces)

D2 1 0 i = 2 1
D+

2 1 0 I = 1 1
D+

3 3 6.13 i = 1 6
4D/TSC 6 11.85 i = 2 6
6D2−/OSC 12 29.3 i = 1 24
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By taking the QM ensemble average with d–d pair wave function, assumed as Gaussian distribution of Eq. (5), we
derived the Langevin equation for 4D/TSC as Eq. (2). By taking QM ensemble average of Eq. (3) using Eq. (4), we
obtained Eq. (6) for expectation value 〈Rdd〉. We obtained the time-dependent TSC-cluster trapping potential [4] as
Eq. (7). The balancing to the Platonic symmetry after distortion (deviation from symmetry) works by the third term of
Eq. (7).

6md
d2 Rdd(t)

dt2 = −
11.85

[Rdd(t)]2 − 6
∂Vs2(Rdd(t); 1, 1)

∂ Rdd(t)
+ 〈 f (t)〉 + f ′(t), (2)

f ′(t) = f (t) − 〈 f (t)〉 , (3)

f (t) =

[
−

∂1Ec(Rdd)

∂ Rdd

]
mod [X2(R′

dd; Rdd(t))], (4)

X2(R′
dd; Rdd(t)) =

1
√

2πσ 2
exp[−(R′

dd − Rdd(t))2/(2σ 2)], (5)

6md
d2 〈Rdd〉

dt2 = −
11.85
〈Rdd〉

2 − 6
∂Vs(〈Rdd〉 ; m, Z)

∂ 〈Rdd〉
+ 6.6

〈
(R′

− Rdd)
2

R4
dd

〉
, (6)

VTSC(R′
: Rdd(t)) = −

11.85
Rdd(t)

+ 6Vs(Rdd(t); m, Z) + 2.2

∣∣R′
− Rdd(t)

∣∣3

[Rdd(t)]4 . (7)

A similar Langevin equation and trapping potential were derived for 6D2− ion molecule also. We compared the central
potential curve (at R′

= Rdd) in Fig. 1. We found that 4D(or H)/TSC can condense ultimately to a very small charge
neutral entity and has no stable or ground state. This may be the reason that we do not observe the D4 molecule in
nature. On the contrary, 3D+ molecule and 6D2− molecule have stable and ground states [4].

Equation (6) was numerically solved by the Verlet method [3], with the result shown in Fig. 2.
Time-dependent barrier penetration probabilities (as a function of Rdd, since we have a one-to-one relation between

elapsed time and Rdd(t)) are calculated by HMEQPET method [3] and shown in Table 2.
The fusion rate is calculated by the following Fermi’s golden rule [3,4],

λnd =
2
h̄

〈W 〉 Pnd(r0) = 3.04 × 1021 Pnd(r0) 〈W 〉 . (8)

Table 2. Calculated time-dependent (equivalently Rdd dependent) barrier factors of 4D/TSC condensation
motion.

Elapsed time (fs) Rdd (pm) P2d (2D barrier factor) P4D (4D barrier factor)
0 74.1 (D2 molecule) 1.00E–85 1.00E–170
1.259 21.8 (dde*(2,2); Cooper pair) 1.30E–46 1.69E–92
1.342 10.3 2.16E–32 4.67E–64
1.3805 4.12 9.38E–21 8.79E–41
1.3920 2.06 6.89E–15 4.75E–29
1.3970 1.03 9.69E–11 9.40E–21
1.39805 0.805 (muon-dd molecule) 1.00E–9 1.00E–18
1.39960 0.412 9.40E–7 2.16E–13
1.40027 0.206 3.35E–5 1.12E–9
1.40047 0.103 1.43E–3 2.05E–6
1.40062 0.0412 1.05E–2 1.12E–4
1.40070 0.0206 (TSC-min) 4.44E–2 1.98E–3
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Here Pnd is the barrier factor for nD-cluster and 〈W 〉 is the averaged value of imaginary part of nuclear optical potential
[3,4]. The extrapolation of 〈W 〉 value to 4D fusion was made [3] by using the scaling law 〈W 〉 ∝ (PEF)5 with PEF-value
which is given in unit of derivative of one pion exchange potential (OPEP) (simple case of Hamada–Johnston potential
[4] for pion exchange model. We estimated the next value of 4D fusion yield per TSC generation,

η4d = 1 − exp
(

−

∫ tc

0
λ4d(t)dt

)
. (9)

Using the time-dependent barrier factors as given in Table 2, we obtained [3] η4d ∼= 1.0. This result means that we
have obtained a simple result that 4D fusion may take place with almost 100% yield per a TSC generation, so that
macroscopic 4D fusion yield is given simply with a TSC generation rate QTSC in the experimental conditions of CMNS.

The ultimate condensation is possible only when the double Platonic symmetry of 4D/TSC is kept in its dynamic
motion. The sufficient increase (super screening) of barrier factor is also only possible insofar as the Platonic symmetric
4D/TSC system is kept. Therefore, there should be always four deuterons in the barrier penetration and fusion process,
so that 4D simultaneous fusion should take place predominantly. The portion of 2D (usual) fusion rate is considered to
be negligible [3].

Typical nuclear products of 4D fusion are predicted to be two 23.8 MeV α-particles, although the final state
interaction of 8Be* is too complex to be studied yet [5,6].

Main trapping potential of 4D/TSC and 6D/OSC
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Figure 1. Comparison of cluster trapping potential between 4D/TSC and 6D2−/OSC. TSC condenses ultimately to very small Rdd value (ends at
Rdd−min = about 20 fm), while OSC converges at Rdd = about 40 pm (corresponding to the ground state).
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Figure 2. Numerical solution of Eq. (6) by the Verlet method [3]. Time is reversed starting from the condensation time 1.4007 fs.

3. Time-dependent QM behavior of electron clouds

We consider now the dynamic condensation motion of TSC in the view of the Heisenberg uncertainty principle (HUP).
In the starting condition of 4D/TSC (t = 0), d–d distance Rdd was estimated to be the same value (74.1 pm) as that of a

R de

Eke = 57.6 keV

VTSC-min = –130 keV

Ekd-d = 13.68 keV

At Rdd = 0.025 pm (25 fm)

(e2/Re
2) = (meve

2/Re) = (2Eke/Re)

+d+d

Electron torus

d-d axis

R
e

Rdd

Rde= Rdd/2

Eke = 1.44/Rdd : [keV] by R in pm

Figure 3. Semi-classical model of “d–e–d–e” EQPET molecule as a face of 4D/TSC (left), and estimated electron kinetic energy at Rdd = 25 fm
(right). Time-dependence of mean electron kinetic energy can be estimated, by assuming the adiabatic quasi-steady state of “d–e–d–e” system in
every small time-step.
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Figure 4. Time-dependent behavior of effective electron wave length: (a) D2 molecule, (b) “d–e–d–e” EQPET molecule of 4D/TSC.

D2 molecule. At this starting point, mean electron kinetic energy of one “d–e–d–e” face EQPET molecule out of TSC
six faces was 17.6 eV (19 eV by semi-classical model). During the non-linear condensation of TSC, as the parameters
given in Table 2 show, the size of “d–e–d–e” EQPET molecule as a face of 4D/TSC decreases from Rdd = 74.1 pm at
t = 0 to Rdd = 20.6 fm at t = 1.4007 fs. In the view of HUP, the electron wave length should decrease accordingly
to the decrement of Rdd. At around t = 1.4007 fs, the mean kinetic energy of the electron for a “d–e–d–e” EQPET
molecule was estimated [3] to be 57.6 keV. A semi-classical model of “d–e–d–e” EQPET molecule is shown in Fig. 3.
This semi-classical model reflects the original Langevin equation for the D2 molecule, before the quantum-mechanical
ensemble averaging is done, as given by,

md
d2 Rdd

dt2 = −(4
√

2 − 2)
e2

R2
dd

+
2mev

2
e

(Ree/2)
−

∂Vs2(Rdd; 1, 1)

∂ Rdd
+ f (t). (10)

Here we consider the averaged force-balance between the first term and the second term on the right-hand side of Eq.
(10), with ensemble averaging by weight of “adiabatic electron wave function” of modified 1S wave function with
decreased de Broglie wave length during every small time step interval.

Considering the relations, λ̄ = h̄/mv of de Broglie wave length and (kineticenergy) = (1/2)mv2, we understand
that the effective quantum mechanical wave length of a trapped electron in TSC has decreased dramatically in the
1.4007 fs condensation time. The estimated trapping potential depth of TSC at around t = 1.4007 fs was −130.4 keV.
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Feature of QM electron cloud

(b) D2 molecule (stable): 2D = (2+2 )-1/2[ 100(rA1) 100(rB2) + 100(rA2) 100(rB1)] s(S1,S2)

Bohr orbit of D (H)

Deuteron
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(c) 4D/TSC (life time about 60 fs)
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Figure 5. Quantum-mechanical feature of electron clouds for (a) D-atom, (b) D2 molecule and (c) 4D/TSC (t = 0).

This state is understood as an adiabatic state in a very short time interval (about 10−20 s) to trap such high kinetic energy
(57.6 keV) electrons in very deep (−130.4 keV) trapping potential, to fulfill the HUP condition. By the way, the mean
kinetic energy of relative d–d motion was estimated [3] to be 13.68 keV in this adiabatic state, which also diminishes
the relative deuteron wave length trapped in the adiabatic TSC potential. In this way, very short Rdd (in other words,
super screening of mutual Coulomb repulsion) is realized in the dynamic TSC condensation in very fast condensation
time (tc = 1.4007 fs) to give, however, a very large 4D simultaneous fusion rate [3,4].

We know that the ground state of the electron orbital (sphere) of D (or H) atom is the Bohr radius (RB = 52.9 pm).
The mean kinetic energy of 1S electron is 13.6 eV, the de Broglie wave length of which is 332 pm. And we know
2π RB = 332 pm to satisfy the continuation of 1S electron wave function by one turn around central deuteron. No
other states with a shorter or longer wave length can satisfy the condition of a smooth continuation of wave function,
as ground state, for which we must keep the condition that mean centrifugal force equals mean centripetal force.

By the way, quantum mechanical feature of electron clouds are illustrated in Fig. 5, for D-atom, D2 molecule and
4D/TSC (t = 0), respectively.

In contrast to the ground state electron orbital, the electron orbit in a “d–e–d–e” quasi-molecular system makes
a spiral track to the center-of-mass point of the TSC, as discussed above. The role and merit of HMEQPET (heavy
mass electronic quasi-particle expansion theory) method for approximating time-dependent TSC trapping potential and
relating to the estimation of time-dependent Coulomb barrier penetration probabilities of 4D cluster is explained in
Section 4.

Similar to the D-atom case, the ground state electron wave function of a D2 molecule has a steady ground state
torus (ring) orbit of two centers of electron clouds [4]. The mean kinetic energy of centrifugal electron motion around
the center-of-mass point (middle point of d–d distance) was calculated to be 17.6 eV (19 eV by semi-classical model
in Fig. 3), the de Broglie wave length of which is 234 pm and equals 2π RB/1.4142 to satisfy the smooth continuation
of electron wave function along the torus orbit around the center-of-mass point. The dynamic motion of “d-e–d–e”
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Figure 6. Time variation of mean electron kinetic energy (EKE) and its wave length (EWL) during the 4D/TSC condensation motion in 1.4007 fs
condensation time.

four-body system by Langevin equation [Eq. (10)] is illustrated in Fig. 4a. When starting with an arbitrary electron
wave length (or momentum), the center of electron cloud follows a spiral orbit to converge finally to the steady torus
(ring or circle) orbit with 234 pm one turn length which equals to the ground state effective electron wave length of a
D2 molecule. When we have the strong constraint of TSC trapping potential, the center of the electron cloud follows a
spiral orbit time-dependently (Fig. 4b) without a converging ground state. The calculated mean (eigen) energy-values
of the D2 molecule are Egs (ground state system energy) = −35.1 eV, Ec (mean Coulomb energy) = −70.3 eV, Ed−d
(mean relative deuteron energy) = 2.7 eV and Eke (mean electron kinetic energy) = 35.2 eV for two electrons (17.6 eV
per electron) [3].

As a result, the centrifugal electron motion in a “d–e–d–e” face follows a spiral curve converging to the central
focal point as illustrated in Fig. 4b. If we do not have the strong centripetal Coulombic condensation force by the first
term of Eq. (1) right side, for 4D/TSC, the “d–e–d–e” EQPET molecule must go back and converge to the ground state
orbit of D2 molecule, as shown in Fig. 4a.
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Figure 7. Mean rotation time of electron cloud center under 4D/TSC condensation motion (left) and expanded feature of electron spiral motion
(right).

4D/TSC has no steady ground state and the effective electron wave length of a “d–e–d–e” face varies from time to
time as illustrated in Figs. 4b and 6.

The spiral motion of the electron center under 4D/TSC condensation is illustrated with expanded scale (right figure),
compared with the estimation of mean rotation number of electron in each discrete change of Rdd steps, in Fig. 7.

The electron center rotates about six times in each step of Rdd changes in Fig. 7. This means the time-dependent
electron wave function distributes with a “long” tail along the spiral orbit. This situation does not contradict the
Heisenberg uncertainty principle, as a steady ground state does not exist and particles are non-linearly moving.

4. HMEQPET method for fusion rate quantification

The Langevin equation of the expectation value for 4D/TSC and its time-dependent trapping potential are given by Eqs.
(6) and (7), respectively. The TSC trapping potential at the final stage (TSC-min) of condensation is shown in Fig. 8.

The depth of the trapping potential is −130.4 keV. The calculated relative kinetic energy of d–d pair is 13.68 keV.
In approximation, this potential can be regarded as an adiabatic potential having the d–d pair “quasi-ground state” with
Egs = 13.68 keV trapped in 130.4 keV deep potential for a very short time-interval of 10−20 s. In every time step of
the numerical calculation (by the Verlet method [3]), we can draw the approximate adiabatic potential which changes
continuously with the change of time.

The kinetic energy of particle is given by E = (1
/

2)mv2. The de Broglie wave length is given byλ̄ = h̄/mv.
Mean electron kinetic energy increases in a “d–e–d–e” face during condensation motion as shown in Fig. 6. An
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Figure 8. TSC trapping potential at the final stage (TSC-min) of condensation motion by Langevin equation.

electron wave length with increased kinetic energy (or momentum) can be replaced with heavy mass fermion to keep
the same “d–e–d–e” size. The HMEQPET method is based on this idea.

From Fig. 3, the mean kinetic energy of an electron in a “d–e–d–e” face is 57.6 keV at Rdd = 25 fm. A TSC
at t = 0 has mean electron kinetic energy about 18 eV, the equivalent mass of the “heavy” fermion is estimated to
be

√
57.6 × 1000/18 = 56.57 times the electron mass, which is virtual and not the mass of heavy electron in metal

physics. The depth of dde*(56.57,2) potential is about −4.8 keV and comparable to the trapping potential of a muonic
d–d molecule (see Tables 3 and 2).

Since the depth of 4D/TSC trapping potential at Rdd= 25 fm was –130.4 keV, we must assume a much heavier
fermion to quantitatively approximate the TSC trapping potential by EQPET dde*(m,Z) potential [1].

We used a Gaussian wave function for d–d pair in Langevin equations. As discussed [3], we cannot use a Gaussian
wave function for the estimation of the Coulomb barrier penetration probability (barrier factor), because the tail of
the Gaussian function is not accurate enough. Instead, we can use trapping potentials of dde*(m,2) EQPET molecule
and Gamow integrals. The assumed quasi-particle state is a heavy Cooper pair e*(m,2) of two “heavy” electrons in a
“d–e–d–e” system.

If there exists a one-to-one relation between m and 〈Rdd〉(t), we can replace all time-dependent TSC trapping
potentials with Vs(Rdd(t);m,2) potentials of HMEQPET, by continuously adopting a real number of m.

Typical parameters of calculated Vs(Rdd(t);m,2) potentials are shown in Table 3. From this table, we derive the
following empirical laws:

b0(m, 2) = 0.206Rgs(m, 2), (11)
m = 9000/b0(m, 2). (12)
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(1)

(3)
(4)

(2)

Figure 9. Brief illustration of 4D/TSC condensation motion, in four steps.

Here b0 and Rgs values are given in fm units. Muonic dd-molecule has Rgs = 805 fm, and m = 54 me of HMEQPET
potential corresponds to it. The final stage of TSC potential corresponds to m = 2000 me.

Calculated barrier factors by HMEQPET method are already given in Table 2. Finally, we again illustrate the
4D/TSC condensation motion in Fig. 9.

Table 3. Calculated HMEQPET potentials and their parameters. Egs–Vs−min gives mean relative kinetic
energy of a trapped d–d pair

Molecule b0 (pm) Rmin (pm) Vs−min(keV) Ed−d (keV) Rgs (pm) Egs (keV)
D2 22 70 –0.03782 0.00268 76.69 –0.03514
dde* (2,2) 4.5 19.3 –0.1804 0.01013 21.82 –0.17027
dde*(5.2) 1.9 7.6 –0 4509 0.0208 8.72 –0.43007
dde* (10,2) 0 90 3.8 –0.9019 0.0418 4.36 –0.86012
dde* (20,2) 0.45 1.9 –1.8039 0.0837 2.18 –1.7202
dde*(50,2) 0.18 0.76 –4.5097 0.2094 0.873 –4.3003
dde*(100,2) 0.09 0.38 –9.0194 0.4196 0.436 –8.5998
dde* (200,2) 0.045 0.19 –18.039 0.843 0.218 –17.196
dde* (500,2) 0.018 0.076 –45.097 2.135 0.0873 –42.968
dde*(1000,2) 0.009 0.038 –90.194 4.336 0.0436 –85.858
dde* (2000,2) 0.0045 0.019 –180.39 8.984 0.0218 –171.406
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5. Conclusions

Further explanation of the 4D/TSC condensation motion by quantum-mechanical stochastic differential equations
(Langevin equations) has been given in this paper. The electron orbit in a “d–e–d–e” quasi-molecular system of a face
of 4D/TSC under time-dependent condensation makes a spiral track finally reaching the center-of-mass point of the
TSC, with a tail of time-varying effective wave length. There is found no contradiction with the Heisenberg uncertainty
principle.

The role and merit of HMEQPET (heavy mass electronic quasi-particle expansion theory) method for approximating
the time-dependent TSC trapping potential and relating to the estimation of time-dependent Coulomb barrier penetration
probabilities of 4D cluster is explained.

Dynamics analyses by Langevin equations for D- (or H-) clusters are useful tools to quantitatively estimate the
time-dependence of expectation values and trapping potentials, as well as time-dependent fusion rates.
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