

ENERGY RESEARCH CENTER LLC

Advanced Isoperibolic Calorimetry in Brillouin's Reactor

Francis Tanzella, Robert Godes, Robert George

2019 LANR/CF Colloquium at MIT Cambridge, MA USA March 23, 2019

Outline

- Earlier results
- Existing reactor tube designs and pulse stimulation methods
- Isoperibol (IPB) calorimeter and existing methods
- Recent results from IPB reactor/calorimeter
- Mass flow calorimetry in IPB reactor
 - New calibration methods
 - Preliminary results
- Acknowledgements

Summary of Earlier Results

- Over 300 experiments performed on up to 100 reactor tubes
- Excess power seen in Ni/H₂ gas phase system
- Excess power has been shown to be reproducible and transportable
- Pulsed axial pulses gave excess power in this system
- Excess power depends on pulse voltage and power
- Experimental conditions and results are consistent with CEC hypothesis
- ➤ Changing pulse parameters yield 0 100% excess power which allows for switching power production on and off
- Very dependent on material chemistry and morphology

Brillouin's 4th Generation H₂ Hot Reactor Tube

- One example of a spray-coated tube some have more or fewer layers
- Metal and ceramic coatings are porous
- Pulse sent through outer Ni layer returns through inner Cu layer
- Fast rise-time pulse current is primarily at Ni-Al₂O₃ interface (skin-effect)

Brillouin's IPB Reactor CoresStimulation and Measurement

Brillouin's IPB Reactor/Calorimeter Computer Interface

Brillouin's 4th-Generation H₂ Hot Tube Reactor (Isoperibol_{ic})

- Heater inside tube or outside steel block
- Thermocouple inside tube
- Ni-coated reactor tube
- Core sheath inside steel block
- 2 T_{inner} sensors in steel block
- Ceramic insulation with Ar flush
- Al shell with 2 T_{outer} sensors
- Constant T flowing H₂O
- Pulses injected/returned at #15
- Ar flush outside reactor

Brillouin's Isoperibolic (IPB) Reactor

- Static ~9atm H₂ gas on high-surface-area Ni coating
- Reactor tube temperature varied from 200° to 600°C
- Outer block temperature
 - Constant temperature with high flow-rate chilled H₂O for heat flow calorimeter mode
 - Low flow-rate chilled H₂O for mass flow calorimeter mode
- Pulse power controlled at generator board
 - Fixed pulse widths and amplitudes
 - Pulse repetition rate changes to ramp input power
 - Actual pulse power imparted to reactor tube is measured directly
- Facility to control pulse or heater power
 - Constant reactor tube temperature
 - Constant inner block temperature

Brillouin's IPB Reactor: Heat Flow Operation

- Calibration: Using automated sequence and low-voltage pulses (LVP)
 - Two hour steps
 - Add heat to maintain 200° to 300°C
 - Adjust repetition rate for control pulse power at different heater power
- Stimulation: Using automated sequence and high-voltage pulses (HVP)
 - > 5 minute steps
 - No heater necessary due to increased pulse power
- Measure and record 57 parameters every 10 seconds
 - Heater, pulse generator, and actual pulse powers
 - ➤ All temperatures, H₂O flow rates, and pressures
 - ➤ H₂ and O₂ concentration outside reactor
- Compare calculated output power with high-voltage versus low-voltage pulses

Brillouin's IPB Reactor: Heat Flow Calorimetry

Model used for Dynamic Stimulation Calorimetry

- 1) Each coefficient can be binomial
- 2) All binomial coefficients are found by fitting to LVP calibration data
- 3) Coefficients determine what percentage of input power is influencing reactor tube
- 4) Output power is calculated by applying those coefficients to outputs measured with HVP stimulation
- 5) Coefficient of performance (COP) = calculated power divided by input power influencing tube
- 6) This requires 100 hours of calibration and up to 40 hours of excitation, but allows testing of 12 parameter variations per hour versus one or two in the steady-state method.

Instantaneous COP during dynamic stimulation

COP during 4 hours at maximum stimulation

Recent results using dynamic stimulation

■ Electrical Power In ■ Heat Out ■ COP (Power Out / In)

Recent results using dynamic stimulation

- Calibrations: Using heaters and/or DC power along Ni coating
 - Ten-hour steps
 - > Add heat to maintain 200° to 300°C using heater inside reactor tube
 - Add heat to maintain 200° to 300°C using heaters outside block
 - Apply DC joule heating power steps along Ni coating
 - Calculate efficiency using mass flow calorimetry (MFC) on outer block
- Stimulation: Using same automated sequence as dynamic stimulation (HVP)
 - More efficient pulse generator board increases % of power reaching tube
 - Replaced termination resistor with transmission line to allow more pulse power into tube
- Measure and record same 57 parameters every 10 seconds
- Use DC joule heating calorimeter efficiency and measured MFC power to calculate actual output power
- Subtract PCB MFC power and transmission line MFC power from power supply power to determine reactor tube input power

Brillouin's IPB Reactor/Calorimeter Computer Interface

Calibration using heater inside reactor tube

Calibration using heater inside reactor tube

IPB1-80: Water Mass Flow Calorimetry in H2

Calibration using DC joule heating along Ni coating

Calibration using DC joule heating along Ni coating

Brillouin IPB Results Summary and Future Work

- LENR reactions stimulated by electrical pulses on coated Ni powders
- Experiments in static H₂ gas at 200 600°C
 - Comparison between low voltage and high voltage pulse power
- Isoperibolic calorimeter operated in heat flow or mass flow mode
- Over 500 experiments performed on 100 different Ni-coated cores in six different reactors
- COPs from 1.0 to 2.6 measured increasing with pulse power
- Core composition/metallurgy and pulse generation still being optimized
- Mass Flow Calorimetry to meet "see it from across the room" analysis
 - 100% efficient on inner block heater
 - > 70% efficient on tube's internal heater
 - 60% efficient on DC joule heating

Acknowledgements

Special thanks to: Mike McKubre for the calorimeter design; as well as Roger Herrera, Jin Liu, Mike Beaver, and Dave Correia

ERC LLC gratefully acknowledges funding of this work from the Anthropocene Institute

Thank You

