Progress in Excess Power Production by Laser Triggering

<u>V. Violante¹</u>, M. Bertolotti², E. Castagna², I. Dardik⁵, M.McKubre⁴, S. Moretti ², S.Lesin⁵, C. Sibilia², F.Sarto³, F.Tanzella⁴, T. Zilov ⁵

- (1) ENEA Frascati Research Center Frascati (Italy)
- (2) University of Rome La Sapienza Dpt. Energetica Rome (Italy)
- (3) ENEA Casaccia Research Center Rome (Italy)
- (4) SRI International Menlo Park CA (USA)
- (5) Energetics (USA-Israel)

Index

- Previous results
- New cell concept for isoperibolic calorimetry with trigger
- Modelling & engineering
- Calibration
- Results
- Conclusions

Previous Results

Evolution of the input and output power, last 300 hr under laser irradiation (P-polarization)

Laser on-off effect

Laser 4 experiment

⁴He Production

Improvement of the Cell

Old cell

Average temperature of the electrolyte vs power

Double Structure New Cell for Laser Experiments

New double structure cell

Thermal Analysis

Heat transfer equation

$$div\left(K\ grad(T)\right) + Q = \rho c_p \frac{\partial T}{\partial t} + \rho c_p \left(V_x \frac{\partial T}{\partial x} + V_y \frac{\partial T}{\partial y} + V_z \frac{\partial T}{\partial z}\right)$$

Boundary conditions

$$-K\frac{\partial T}{\partial n} = h(T - T_a)$$

 $-K\frac{\partial T}{\partial n} = h(T - T_a)$ (convective heat exchange mechanism)

Assumptions:

- 3D transient
- isotropic (Kx=Ky=Kz)
- Steady state boundary conditions (thermostatic box) $T_{amb} = cost.(t)$
- Radiative heat exchange negligible

Hydrogen Bubbles at the Cathode

Gas velocity V_{H2} is calculated by means of the current density

Pd foil

Gas flow rate for unit area

$$K = \frac{J \cdot 22, 4 \cdot 1000}{nF} \qquad (cm/s)$$

Total gas flow rate

$$W = \int_0^z L \cdot K \cdot dz = L \cdot K \cdot z \qquad (cm^3/s)$$

Gas velocity

$$V_{gas}(z) = \frac{W}{A} = \frac{W}{L \cdot \delta} = \frac{K \cdot z}{\delta}$$
 (cm/s)

<u>Liquid-Gas Interface Velocity</u>

One fluid is moved by the other having different density and viscosity

Liquid-Gas **Interface**

> The electrolyte interface velocity is calculated by the average gas velocity

$$\left| \frac{V_z^A}{V_z^B} \right|_{x=0} = \frac{\frac{1}{\mu^A} \left(\frac{2\mu^A}{\mu^A + \mu^B} \right)}{\frac{1}{\mu^B} \left(\frac{2\mu^B}{\mu^A + \mu^B} \right)} = 1$$

$$\frac{V_{0z}^{A}}{\overline{V_{z}^{B}}} = \frac{12\mu^{B}}{\mu^{A} + 7\mu^{B}} = 0.093$$

Equations

$$\left| \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right| = 0$$

Motion Equation

$$\frac{1}{r}v_r + \frac{\partial v_r}{\partial r} + \frac{\partial v_z}{\partial z} = 0$$

Continuity equation

Assumptions

axial symmetry

density and viscosity are constant

steady state

negligible effect of pressure and mass

Iterative procedure for velocity field calculation

step1: Equation of motion

solving the equation of motion with the boundary conditions $v_z = V_{0z}$ r=a; $v_z = 0$ r=R

$$v_{z} = -\ln R \cdot \frac{V_{o}}{\ln \left(\frac{a}{R}\right)} + \frac{V_{o} \cdot \ln r}{\ln \left(\frac{a}{R}\right)}$$

Step 2: Continuity equation

by replacing the v_z calculated at step 1 and by solving the continuity equation with the condition of zero flow rate in the radial direction. radial direction

$$C_{1R} = -\frac{1}{4} \frac{K}{\delta} \cdot \frac{a^2 - R^2 + a^2 \ln(R/a)}{[\ln(R/a)]^2}$$

Step 3: Continuity equation

By replacing v, calculated at step 2 and by solving the continuity equation with the condition of zero flow rate in axial direction

$$VV_z(r,z) = -z \cdot K_2 \cdot \ln\left(\frac{r}{R}\right) + C_{1z}$$

$$C_{1z} = \frac{1}{2}K_2 \cdot z \frac{\left(a^2 - R^2 + 2\ln R/a\right)}{a^2 - R}$$

FEM Domain

CAD 2D

Domain estrusion

Mesh and Velocity Field

Mesh 3D

Thermal Analysis

m: 310.0 309.0 k: 308.0 307.0 306.0 h: 305.0 304.0 g: 303.0 e:

max

q: p:

0:

n:

314.9

314.0

313.0

312.0

311.0

302.0 301.0 d: 300.0 c: b: 299.0 a: 298.0 min 297.7

Isotherms axial plane

Temperature profile along 1-2

<u>Cell</u>

Experimental System Set up

Thermostatic bath

Measurement instruments

Thermostatic box

Thermostatic System

Comparison between Experimental Data and Model

Comparison between calibration data and model

Comparison between experimental data and model, with and without fluid-dynamics

Laser 5 Experiment: Calorimetric Results

Excess power during laser triggering (HeNe laser)

Excess energy vs excess power life time

Excess energy vs experiment elapsed time

Conclusions

- The improvement of the calorimeter design allowed to obtain a satisfactory agreement between model and experiment.
- Laser trigger gave significant reproducibility:
 excess power in 4 out of 5 experiments
- The amplitude of the effect is not yet under control even though high loading is almost always achieved.
- Material studies are in progress to identify and control the status of the system producing enhanced values of the signal.