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Abstract—We consider peculiarities of the formation of a coherent correlated state (CCS) of a low-energy
particle under frequency modulation of parameters of a harmonic oscillator that contains this particle by a
broadband nonmonochromatic or asymmetric pulsed action. It is shown that in the case of modulation with
frequency-normalized intensity, the maximum efficiency of CCS formation corresponds to a narrow-band
action, while broadband modulation is optimal for the action with a constant spectral density. As in the case
of monochromatic modulation, the maximum correlation coefficient, |r|max, under the nonmonochromatic
action corresponds to parametric resonance at frequency Ω ≈ 2ω0. Under a pulsed action, the maximum effi-
ciency of CCS formation and, hence, the maximum probability of the tunnel effect, correspond to pulsed
modulation with a short leading edge and a long trailing edge. In particular, under the action of a pulsed mag-
netic field with an amplitude of 10 kOe and the leading edge duration of 2 × 10–7 s on a gas with deuterium
ions, a CCS can be formed with the correlation coefficient |r|max ≈ 0.9998, for which the tunneling effect prob-
ability under the dd interaction at temperature T ≈ 300–500 K increases from Dr = 0 ≈ 10–80 to  ≈
0.1. This process can occur in a gas with particle number density n < ncr ≈ 1017 cm–3. The method of CCS
formation makes it possible to explain the results of an experiment in which substantial isotope changes were
detected when a pulsed electric current and magnetic-field generation occurred.

DOI: 10.1134/S1063776115100222

1. INTRODUCTION

One of the most important problems in applied and
fundamental physics is the occurrence of nuclear reac-
tions (including nuclear fusion) at low energies. This
problem is especially topical due to successful experi-
ments (in particular, those performed in Lugano [1]),
in which fundamental nuclear transformations with a
radical change in the isotope composition of an active
medium were observed under the conditions that were
far from the stringent requirements for thermonuclear
fusion. These processes occur at a low energy and can-
not be explained proceeding from the “conventional”
tunnel effect, which predicts a very low tunneling
probability of D ≤ 10–100.

It should be noted that the tunnel effect is based on
the fruitful idea of wave–particle duality, which was
first represented in the form of the Heisenberg uncer-
tainty relationship δqδp ≥ ℏ/2 and was subsequently
generalized in the form of the Heisenberg–Robertson
uncertainty relationship

 (1)

which makes it possible to determine the limitations
that are imposed on the product of dispersions of two
dynamic variables, A and B. These relationships cor-
respond to the so-called uncorrelated states of the
particle.

Subsequent more specific investigations that were
carried out by Schrödinger [2] and Robertson [3] have
shown that the use of specially formed coherent cor-
related states (CCSs) of particles leads to a modified
Schrödinger–Robertson uncertainty relationship

 (2)

It should be noted that the term CCS as applied to
this uncertainty relationship was used for the first time
in [4].

Subsequent investigations [4–16] showed that the
application of CCSs can lead to significant optimiza-
tion of tunneling probability D|r| → 1 → 1. Here, r is the
correlation coefficient determining the interrelation
between quantities A and B.
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The uncorrelated state corresponds to r = 0, while
the completely correlated state corresponds to |r| = 1.
The effect of CCS for |r| → 1 is characterized by the

correlation effectiveness coefficient G ≡ 1/  [13,
16, 17], which varies in the interval 1 ≤ G < ∞ and deter-
mines the enhancement of fluctuations of A and B.

When A = q, B = p, 〈q〉 = 0, 〈p〉 = 0, and σq = 〈q2〉,
σp = 〈p2〉 relationships (2) have the form

 (3)

This relationship can be used for obtaining a simple
estimate that visually demonstrates the effectiveness of
the application of a CCS for increasing the tunneling
effect probability. If we consider a particle (e.g., a pro-
ton with mass Mp) in an interatomic potential well of
width L ≈  ≈ 10–8 cm, the kinetic energy f luctua-
tion in an uncorrelated state with r = 0 is limited by the
value δTr = 0 = σp/2M ≥ ℏ2/8Ma2 ≈ 0.05 eV. Obviously,
the tunneling probability for such energy is negligibly
low (Dr = 0 → 0).

In the case of CCS formation with the attainable
value of the correlation coefficient 1 – |r| ≈ 10–6, the
fluctuation energy increases sharply to a very large
value δ  = δTr = 0G2 ≥ 25 keV, leading to effec-
tive tunneling.

It should be noted that the above estimates for
energy f luctuation δTr ≠ 0 determine only the lower
threshold. Rigorous quantum-mechanical calculation
of the wavefunction in the classically forbidden region
[8–11] makes it possible to state with confidence that
the value of such a f luctuation can be much higher.
The possibilities of further modification of the uncer-
tainty relationships were considered in [18].

The existence of correlation can be taken into
account in obtaining qualitative estimates using the

formal substitution ℏ → ℏ* ≡ ℏ/  ≡ Gℏ in the
expression for D [7]. This substitution in some cases
(e.g., for localization of a particle in a parabolic well
[11–13]) corresponds to the approximate formula for
the tunneling probability in subbarrier region L(E) in
the nuclear field of radius R:

 (4)

and is in good agreement with the results of an inde-
pendent rigorous calculation of D(r) based on the cri-
terion |lnD(r) – lnDr ≠ 0(r)|/ |lnD(r)| ≪ 1 for a small ini-
tial value of Dr = 0 ≪ 1 [8].

In [14, 15], the problem of the passage of a narrow
Gaussian wave packet through a model delta barrier
and an actual Coulomb barrier was considered; it was
shown that the tunneling probability in this case coin-
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cides qualitatively with expression (4) and differs in

the replacement of the exponent  on the right-

hand side by quantity .
A physical model that substantiates the possibility

of giant f luctuations of the particle energy in the CCS
and is associated with synchronization of f luctuations
of momentum in the multilevel superposition state was
considered in [11, 12].

It should be noted that the generalized
Schrödinger–Robertson uncertainty relationship and
the CCS concept were successfully used in analysis of
problems not associated with optimization of the tunnel
effect (in particular, in analysis of the model of quan-
tum-mechanical Brownian motion [19] or in analysis of
peculiarities of diffusion of quantum states [20]).

2. GENERAL PROBLEMS AND METHODS OF 
CCS FORMATION IN NONSTATIONARY 

SYSTEMS
Detailed descriptions of the two main regimes of

CCS formation based on the basic model of a har-
monic oscillator were given in [4–13, 16]. The compu-
tation aspect of this model corresponds to the solution
of the time-dependent Schrödinger equation for vari-
ous regimes of periodic or monotonic deformation of
harmonic potential V(q, t) = Mω2(t)q2/2, in the field
of which the particle is located.

The solution of this equation shows that the explicit
form of the correlation coefficient

 (5)

as well as compression factor, k, which determine the
ratio of dispersions of the particle coordinate and
momentum,

 (6)
and the magnitudes of these dispersions

 (7)

can be determined using the complex normalized
solution ε(t) = eφ(t), φ(t) = α(t) + iβ(t) of the equation
of motion of a classical oscillator with a varying fre-
quency:

 (8)

In these relationships, ω(t) is the dimensionless fre-
quency normalized to the characteristic frequency ω0;

t is the dimensionless time (normalized to ); ε(t) is
the dimensionless (normalized to q0 = )
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complex coordinate of the particle; and M is the
reduced mass of the particle.

The substitution of ε(t) = eφ(t) leads to the following
equations for real-valued functions:

 (9)

 (10)

which should use the initial conditions

 (11)

The final expression for the correlation coefficient
can be derived from the formula

 (12)

These relationships were generalized to the case in
which the system under investigation (a nonstationary
harmonic oscillator) is in the mixed state described by
the density matrix [6, 15] or is in the state for which the
action of a random force or the effect of random fre-
quency f luctuations on CCS formation should be
taken into account [10, 16, 17]. Analysis of specific
mechanisms of CCS formation for various regimes of
deformation of the potential well, as well as analysis of
specific manifestation of this state in model and actual
systems, was carried out for a monotonic asymptotic
decrease or increase of the oscillator frequency [8, 9,
17], for a change of this frequency in a limited interval
[13], for a periodic variation of this frequency [9, 11–
13, 17], and in the presence of a random force and fre-
quency f luctuation [10, 16, 17].

In [11, 12], apart from general regularities of CCS for-
mation, the possibility of using these states for optimizing
nuclear reactions at low energy in specific systems and for
interpreting earlier experiments was considered.

General nontrivial features of a nuclear reaction
induced by a particle in a correlated state with a strong
energy f luctuation were considered in [16]. The most
characteristic features are associated with the impossi-
bility of the implementation of endoergic reactions
with the prohibition of reactions with the formation of
a long-lived intermediate state of the nucleus (i.e.,
with a sharp suppression of the channel leading to the
formation of radioactive nuclei). These conclusions
are in good agreement with the results of independent
experiments (e.g., [1]).

It should be noted that CCS formation is a quite
universal phenomenon that can occur not only in typ-
ical experimental conditions (a solid matrix or gas and
almost stationary particles), but also for the motion of
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particles in the channeling regime in crystals with
modulated parameters [21]. This can be used, for
example, for optimizing “accelerator” fusion [22] with
the participation of lattice nuclei that form the channel
walls, as well as particles that were initially accelerated
to a moderate energy or for generating coherent
bremsstrahlung and Cherenkov radiation [23, 24].

An interesting aspect of optimization of the CCS
method for increasing the potential barrier transpar-
ency was considered in [25], which was devoted to the
nontrivial effect of temperature on the tunnel effect.

The possibility of the application of CCSs in bio-
physical processes was considered in [26, 27].

The analysis performed here shows the prospects
and potentially high effectiveness of application of
CCSs for nuclear fusion at high energies.

At the same time, it is obvious that all regimes of
CCS formation considered earlier (except natural pro-
cesses of formation of microcracks in metal hydrides
during hydrogen loading [13] and “healing” of micro-
inhomogeneities that emerge during the metabolism
and growth of biological objects [26, 27]) presume the
application of methods of action on the system that are
difficult to implement in an experiment.

In particular, in an analysis of the method of con-
trollable harmonic action, an idealized case of strictly
monochromatic modulation of potential well parame-
ters was used. Obviously, the actual action is always
characterized by a finite spectral width. It should be
recalled that the idea of CCS formation is based on the
establishment of strictly definite phase relationships
between different superposition eigenstates of the par-
ticle in the potential well, which necessitates analysis
of the spectrum of this action. This circumstance
becomes especially important due to the fact that CCS
formation in some cases is characterized by a long
duration (τc ≫ , ) [9]. Therefore, it is impossi-
ble to estimate a priori the effect of nonmonochroma-
ticity on the CCS parameters (τc and the maximum
attainable value of |r|max) and on the resultant effective-
ness of CCS application for increasing transparency of
the barrier for a specific nuclear interaction without
performing the appropriate analysis.

Another clarification concerns the method of CCS
formation during a monotonic (not oscillating) varia-
tion of the potential well parameters. Previously, two
limiting scenarios of such a variation (unidirectional
increase or analogous decrease in the frequency of a
nonstationary oscillator) were considered, which in
the case of an actual potential well corresponded, for
example, to a monotonic decrease or increase in its
width, and in the case of the action of an external mag-
netic field, to an increase or decrease in the amplitude
of this field. In all these cases, the initial and final
states of the system (oscillator size, microcrack size, L,
and external magnetic-field strength, H) were sub-
stantially different. If we take the fact into account that

−ω 1
0

−Ω 1
0



562

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 4  2015

VYSOTSKII, VYSOTSKYY

the formation of a CCS with a large correlation coeffi-
cient under such a monotonic perturbation is possible
only when these states are considerably different [8, 9,
12, 13], this ultimately corresponded to nonoptimal
experimental conditions (e.g., fracture of the system
during cracking of metal hydrides) or necessitated the
prolonged action of a very strong magnetic field prior to
its monotonic variation or after its termination, etc.
Obviously, in some cases (for example, under the action
of an external magnetic field), a better scenario of CCS
formation is that in which the external “reversible”
action corresponds to a pulse that first rapidly trans-
forms the system into an intermediate state and then
returns it to the initial state. An analogous situation cor-
responds, for example, to the passage through the
medium of a shock wave, such that the interatomic dis-
tance decreases at its leading edge (this actually corre-
sponds to compression of the oscillator) and the system
returns to the initial state at the trailing edge of the wave.
Since the phase relationships in the quantum superpo-
sition state are different for different regimes of defor-
mation of the potential well, the familiar results that
were obtained for unidirectional modulation of the
potential-well parameters cannot obviously be general-
ized to the case of alteration of processes with different
directions and require separate analysis.

The questions that were mentioned above will be
considered below using relationships (5)–(9) on the
basis of specific laws of modulation of frequency ω(t).

3. THE FEATURES OF CCS FORMATION DUE 
TO A NONMONOCHROMATIC EXTERNAL 

ACTION
Let us consider the dynamics and limiting charac-

teristics of CCS formation in two different versions of
broadband modulation of the parameters of a nonsta-
tionary harmonic oscillator.

(a) Modulation due to the action with the structure
that corresponds to a Gaussian-type function with a
normalized integrated intensity, which is varied with
the spectral density

 (13a)

central frequency Ω, and frequency band ΔΩ. This
function corresponds to the modulation of frequency
of the nonstationary oscillator

 (14a)

 (15a)

(b) Modulation due to an action that is character-
ized by a uniform spectrum with central frequency Ω,
frequency band ΔΩ, and the fixed spectral density

 (13b)

This function corresponds to the modulation of the
oscillator frequency

 (14b)

 (15b)

It was shown in our earlier publications [11, 17] that
the maximum rate of CCS formation in the case of a
monochromatic action on the oscillator (for ΔΩ = 0)
corresponds to two frequencies, viz., direct resonance
with frequency Ω = ω0 and parametric resonance with
a frequency close to Ω ≈ 2ω0 (Fig. 1). Therefore, it is
most interesting to analyze the effect of nonmono-
chromaticity of the modulation process on CCS for-
mation in the vicinity of these frequencies.

3.1. The Dynamics of CCS Formation
under Nonmonochromatic Modulation

of the Potential Well at Resonance Frequency Ω = ω0
by a Function with Normalized Integrated Intensity

Let us consider CCS formation under the modula-
tion of the potential-well parameters, which corre-
sponds to spectral density (13a) and a time-dependent
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Fig. 1. The dependence of time-averaged correlation coef-
ficient 〈|r(t, Ω)|〉t on the ratio of frequency Ω of periodic
modulation of potential well parameters to initial fre-
quency ω0 of particle oscillations in this well.
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frequency of the classical oscillations of a particle in
this well:

 (16)

This modulation can be due, for example, to peri-
odic variations of the well width

 (17)
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Analysis of CCS formation was carried out using

relationships (9)–(12) and (14a) for a relatively small
modulation index |g| = 0.1 analogously to earlier calcu-
lations for a monochromatic action [9, 11, 12].

Figure 2 shows the results of calculation of the
dynamics of CCS formation under various types of
nonmonochromatic modulation of the potential well
(|ΔΩ|/Ω = 0.001, 0.002, 0.003, 0.005, 0.01) at fre-
quency Ω = ω0. These results show that the values of

− ΔΩ= + ω
2( /2) 2

max max 0( ) (0){1 sin( ) } .tV t V g t e

Fig. 2. The time dependence of the correlation coefficient for various monochromaticities of modulation of potential well parameters
at resonance frequency Ω = ω0. For values of |ΔΩ|/Ω ≤ 0.003 that correspond to |r(t)|max → 1, only the domain in which |r(t)| → 1 is
represented.
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Fig. 3. The time dependence of the correlation coefficient for various spectral widths of modulation of the potential well param-
eters by Gaussian function (13a) with normalized integrated intensity in parametric resonance at frequency Ω = 2ω0.
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|r|max and, hence 〈|r(t)|〉t, rapidly decrease with increas-
ing |ΔΩ|. In particular, the solution for |r|max at ΔΩ = 0
and t ≥ 2 × 103/ω0 corresponds to a very large correla-

tion effectiveness coefficient Gmax ≡ 1/  ≥ 103,
while for |ΔΩ|/Ω = 0.002 and the same value of time,
we have Gmax ≈ 50, and for |ΔΩ|/Ω = 0.01, the decrease
in this value is Gmax ≈ 2. This means a very rapid
decrease in quantities |r|max and Gmax is quite expected
if we proceed from a very small half-width of a narrow
resonance in the dependence of 〈|r(t, Ω|〉t on frequency
Ω shown in Fig. 1, as well as a sharp decrease in the
spectral density of modulation (13a) upon an increase
in the spectral width |ΔΩ|.

3.2. Peculiarities in CCS Formation under 
Nonmonochromatic Modulation of the Potential Well

at the Parametric Resonance Frequency Ω = 2ω0

3.2.1. The dynamics of CCS formation under fre-
quency modulation by a function with normalized inte-
grated intensity. Let us consider the effect of non-
monochromaticity of the modulation of the potential
well parameters by a Gaussian function with a normal-
ized integrated (and variable spectral) intensity on
CCS formation in parametric resonance at Ω = 2ω0,
which corresponds to nonstationary oscillator fre-
quency (13b)

 (19)

which is characterized by the perturbation spectrum in
the form of normalized Gaussian distribution (13a)
with a peak at Ω = 2ω0.
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Figure 3 shows the results of calculation of the cor-
relation coefficient for the following modulation
parameters: |ΔΩ|/Ω = 0, 0.01, 0.03, 0.05, 0.1, 0.2 for
the same value of frequency modulation index |g| = 0.1.
This results show that the efficiency of CCS formation
with large values of |r|max and Gmax under modulation of
the potential well parameters at parametric resonance
frequency Ω = 2ω0 remains very high even under non-
monochromatic modulation. In particular, the modu-
lation with |ΔΩ|/Ω = 0.01 makes it possible to form a

CCS with Gmax ≡ 1/  ≥ 103 by instant t ≥
102/ω0, which is several orders of magnitude better
than in the case of analogous modulation at frequency
Ω = ω0.

Figure 4 shows the results of calculation of the
modulation efficiency at frequencies Ω = ω0 and Ω =
2ω0 (as well as at frequencies Ω = 1.95ω0 and Ω =
2.05ω0 for control) at |g| = 0.1 for CCS formation,
based on the dependence of the time-averaged cor-
relation coefficient

 (20)

on the relative monochromaticity of potential well
modulation. These results were obtained for averaging
of the running value of |r(t)| over the time interval t2 =
4000/ω0 ≥ t ≥ t1 = 3950/ω0.

These results visually demonstrate the advantages
of using parametric modulation at frequency Ω = 2ω0,
which ensures the formation of highly effective CCS
even under the broadband action with a low spectral
density on the potential well.

3.2.2. Dynamics of CCS formation with frequency
modulation of the parameters of a nonstationary oscil-
lator by external action with a fixed spectral density and
a variable frequency band. Let us consider another lim-
iting case when a CCS is formed via the modulation of
the potential well parameters due to the action that is
characterized by a uniform spectrum with central fre-
quency Ω = 2ω0, with variable spectral width (fre-
quency band) ΔΩ, and with fixed spectral density

 (21)

Here, 1/ΔΩ0 is the basic characteristic of the mod-
ulation spectrum. The dependence of the action that is
characterized by such a spectrum was obtained above
and is described by relationships (13b)–(15b). This
function corresponds to the following form of the
oscillator frequency modulation:
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Fig. 4. Dependences of the time-averaged correlation
coefficient 〈|r(t, Ω)|〉t on the relative width of the spectrum
of the potential well modulation by the Gaussian function
(13a) with normalized integrated intensity for various
modulation frequencies.
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Fig. 5. The time dependence of the correlation coefficient for various band widths ΔΩ in the spectrum of the external action with
fixed spectral density 1/Δω0 for various modulation parameters g in the case of parametric resonance at frequency Ω = 2ω0.
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 (22)

Figure 5 shows the results of numerical simulation
of CCS formation using Eqs. (9)–(12) and frequency
modulation (21), (22) of the nonstationary oscillator
parameters by an external tunable action for various
values of modulation parameter g in the case of para-
metric resonance at frequency Ω = 2ω0. These results
show that an increase in the modulation parameter g
leads to a larger final value of |r|max. An increase in the
spectral width ΔΩ of the modulating action at a con-
stant spectral density leads to a more rapid increase in
the correlation coefficient to its limiting (depending
on the given value of g) value |r|max, which is approxi-
mately equal to 0.998 for g = 2 and 0.972 for g = 0.5.

The former conclusion appears to be quite
expected and obvious, while the latter conclusion is
paradoxical and at first glance contradicts the results
that were obtained earlier in Section 3.2.1 and pre-
sented in Fig. 3. According to these results, an increase
in spectral width |ΔΩ| normalized in the intensity of
modulating action leads to a sharp decrease in the final
value of |r|max. However, this apparent contradiction
can easily be explained by the fact that in the case of a
modulating action with a constant spectral intensity,
an increase in |ΔΩ| leads to an increase in the com-
bined frequency modulation parameter g|ΔΩ|/Ω ≡
gb|ΔΩ|/ΔΩ0  in relationship (22), while modulation
in the form of normalized Gaussian distribution (13a)
with the center at Ω = 2ω0 and with a variable |ΔΩ|
does not affect this amplitude. Accordingly, the spec-
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tral intensity in the case of normalized action with
increasing |ΔΩ| decreases, while with non-normalized
action it remains constant (21) and equal to Fb(ω) =
1/ΔΩ0. If we take the fact into account that the rate of
increase in |r|max and 〈|r(t)|〉t increases very sharply with
an increasing frequency modulation parameter, this
fully explains the apparent contradiction.

4. CCS FORMATION UNDER A PULSED 
IRREVERSIBLE MODULATING ACTION

ON THE POTENTIAL WELL
In this section, we consider the peculiarities of

CCS formation under a reversible variation of param-
eters of a nonstationary harmonic oscillator in which
the particle that is under investigation is located; this
variation corresponds to pulsed modulation of the
oscillator frequency ω(t) with various durations and
different structures of the leading and trailing edges. It
is convenient to analyze such a process using the
expressions

 (23)

Here, F(t) is the normalized frequency modulation
function and Γ(α + 1) is the gamma function. The
expression for F(t) shows that the duration of leading
edge of the frequency modulation is Δt = α/ω0. The
explicit form of function F(t) is shown in Fig. 6 for var-
ious values of parameter α. Small values of parameter
α ≪ 1 correspond to a sharp decrease in the duration
of the leading edge of function F(t) and an increase in
the amplitude. The condition α > 1 corresponds to a
nearly symmetric pulse with smoothly varying edges.

The dynamics of CCS formation (of variation of cor-
relation coefficient |r(t)| of the particle) in a parabolic
potential well were calculated using Eqs. (9)–(12) and
frequency modulation function (23). Figure 7 show the
results of calculation of |r(t)| for different values of modu-
lation index g = 100, 50, 10 and various leading edge
durations Δt = α/ω0 of reversible pulsed action (23).

It can be seen that the rate of variation of |r(t)| and
limiting values |r(t)|max depend on g as well as Δt so that
the largest values of |r(t)|max correspond to a large value
of g and small Δt. These results also show that for a
long leading edge duration, the resultant values of
|r(t)|max are small, even for a large value of g. This fol-
lows directly, in particular, from comparison of the
curves in the lower row in Fig. 7. These curves show
that for a large value of α = ω0Δt = 5, the maximum
correlation coefficient and correlation effectiveness
coefficient change insignificantly and remain small

(|r(t)|max ≈ 0.3–0.5 and Gmax ≡ 1/  ≈ 1.05–1.15)
even for a considerable variation of g = 10–100. It
should be noted for comparison that for a small lead-
ing edge duration (for α = ω0Δt = 0.01) and the same
value of g = 100, these coefficients increase to values
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Fig. 6. The structure of the pulsed normalized frequency-
modulation function of parameters of a nonstationary har-
monic oscillator F(t) = (ω0t /Γ(α + 1) for various
values of the parameter α and leading edge duration Δt =
α/ω0.
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|r(t)|max ≈ 0.9995–0.9998 and Gmax ≡ 1/  ≈ 32–
50, which is sufficient for increasing the transparency of
potential barrier by a factor of D|r| = 0.9995–0.9998/D|r| = 0 ≈
1050–10100.

Our calculations indicate that effective CCS for-
mation process can occur only in the case of a short

− 2
max1 r edge of the pulse that simulates the oscillator fre-

quency provided that the duration of this edge is much
smaller than the period of the initial oscillator fre-
quency ω0. This conclusion fully confirms the results
that were obtained earlier [9, 11, 12, 17] for a rapid
monotonic “switching on” or “switching off” of the
perturbation of frequency ω(t), which corresponds to

Fig. 7. The general form (upper line) and detailed structure of the time dependence of correlation coefficient |r(t)| for various

modulation indices g and various leading edge durations α = ω0Δt of a reversible pulsed action F(t) = (ω0t /Γ(α + 1) on
the potential well parameters.

1.0
0.8
0.6
0.4

0.04

|r(t)|

0.2

0 0.08
g = 100, α = 0.01

0.12
ω0t

1.0000
0.9998
0.9996
0.9994

0.04

|r(t)|

0.9992

0 0.08

g = 100, α = 0.01

0.12
ω0t

1.000
0.998
0.996
0.994

0.04

|r(t)|

0.992

0 0.08

g = 50, α = 0.01

0.12
ω0t

1.00
0.98
0.96
0.94

0.5

|r(t)|

0.92

0 1.51.0

g = 10, α = 0.01

2.0 2.5 3.0
ω0t

1.0
0.8
0.6
0.4

0.5

|r(t)|

0.2

0 1.51.0

g = 100, α = 5

2.0 2.5 3.0
ω0t

1.0
0.8
0.6
0.4

|r(t)|

0.2

0
g = 100, α = 0.1

ω0t

1.0000
0.9998
0.9996
0.9994

|r(t)|

0.9992

0

g = 100, α = 0.1

ω0t

1.000
0.998
0.996
0.994

0.05

|r(t)|

0.992

0 0.10 0.15

g = 50, α = 0.1

0.250.300.20

0.05 0.10 0.15 0.250.300.20

0.05 0.10 0.15 0.250.300.20

ω0t

1.00
0.98
0.96
0.94

0.5

|r(t)|

0.92

0 1.51.0

g = 10, α = 0.1

2.0 2.5 3.0
ω0t

1.0
0.8
0.6
0.4

0.5

|r(t)|

0.2

0 1.51.0

g = 50, α = 5

2.0 2.5 3.0
ω0t

1.0
0.8
0.6
0.4

0.4 0.60.2

|r(t)|

0.2

0 0.8

g = 100, α = 1.0

1.21.0 1.4

0.4 0.60.2 0.8 1.21.0 1.4

0.4 0.60.2 0.8 1.21.0 1.4

ω0t

1.00
0.98
0.96
0.94

|r(t)|

0.92

0

g = 100, α = 1.0

ω0t
1.00
0.98
0.96
0.94

|r(t)|

0.92

0

g = 50, α = 1.0

ω0t

1.0
0.8
0.6
0.4

0.5

|r(t)|

0.2

0 1.51.0

g = 10, α = 1.0

2.0 2.5 3.0
ω0t

1.0
0.8
0.6
0.4

0.5

|r(t)|

0.2

0 1.51.0

g = 10, α = 5

2.0 2.5 3.0
ω0t

α −ω0) te



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 4  2015

THE FORMATION OF CORRELATED STATES AND OPTIMIZATION 569

the short leading or trailing edge for a constant (in fact,
infinitely long) trailing or leading edge, respectively.

It should be noted that since the duration of the
trailing edge with the pulse-modulation frequency
changes insignificantly upon a strong change in the
duration of the leading edge Δt = α/ω0 (see Fig. 6), the
effect of the trailing edge characteristics of the pulsed
frequency modulation on CCS formation and on the
change in |r(t)| upon such a pulsed action remains
unclear. To clarify this effect, we analyzed the CCS
formation process with a pulsed variation of frequency

 (24)

using the symmetric function F(t) with variable and
identical leading and trailing edges. The results of the
calculations show that CCS formation in this case is an
extremely ineffective process and |r(t)|max ≈ 0 for any
value of Δt. This result is due to the fact that upon
symmetric variation of resultant function F(t), phase
variations of the superposition states of the particle,
which are formed on the leading edge, are compen-
sated completely on the trailing edge.

5. CONCLUSIONS
Our results indicate that CCS formation can be

effective when nonmonochromatic (or even in the
form of a wide frequency band) modulation of the
parameters of a nonstationary harmonic oscillator is
used provided that the spectral density of this modula-
tion is high. A better case corresponds to narrow-band
quasi-monochromatic modulation of frequency of
this oscillator. The amplitude of this modulation,
which should be large enough, plays the leading role in
this case. For monochromatic modulation, a change
in the parameters of the oscillator at parametric reso-
nance frequency Ω ≈ 2ω0 (or in the limits of the band
near this resonance) is found to be much more effec-
tive than for analogous modulation in the frequency
range in the vicinity of “direct” resonance at fre-
quency Ω = ω0.

These results substantially supplement the recom-
mendations that were obtained earlier [9, 11, 12, 17]
using monochromatic resonant pumping for fre-
quency modulation of the oscillator that contains the
given particle. These recommendations also consider-
ably supplement the results that were described in [10]
for a quite idealized delta-correlated f luctuation of
parameters that determine the characteristics of fre-
quency modulation.

The second (of those considered above) method of
CCS formation by short-term pulsed modulation of
the oscillator frequency (23) has not been investigated
earlier. The results that were obtained above indicate
that the best result with such a modulation corre-
sponds to the action of asymmetric pulses with a short
leading edge and a long trailing edge (or vice versa).
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This method can be used for optimizing a nuclear
interaction at low particle energy in a simple experi-
mental setup. One of the easiest ways to obtain such a
modulation is associated with cyclotron resonance in
a varying magnetic field.

It is well known that the Schrödinger equation for a
charged particle of mass M and charge q in a magnetic
field of strength H is analogous to the equation for a
harmonic oscillator with the same wavefunctions,
equidistant energy spectrum En = nℏω, n = 1, 2, …,
and frequency ω = qH/Mc. In this case, the applica-
tion of the variable magnetic field

 (25)
corresponds to the case with a nonstationary har-
monic oscillator with frequency (23)

Let us estimate the conditions in which the appli-
cation of such a pulsed magnetic field leads to the for-
mation of an effective CCS. The results that are pre-
sented in Fig. 7 show that for a rapid formation of a
CCS with |r(t)|max ≈ 0.9998 and Gmax ≈ 50, it is neces-
sary that the leading edge duration of the magnetic-
field pulse be shorter than Δt = α/ω0 = 0.01/ω0, and
the amplitude value of this field be

 (26)

If we proceed from the quite realistic assumption
that a pulsed magnetic field with amplitude Hmax(Δt) ≈
10 kOe can easily be obtained in an experiment, we
find that ω0 ≈ 5 × 104 Hz and Δt ≈ 2 × 10–7 s for a gas
(plasma) of particles with mass Md and charge q = e
like that for a deuteron. The duration of the trailing
edge in this case is τ ≈ 5/ω0 ≈ 10–4 s. Such improved
(with a smaller value of Δt and a higher value of
Hmax(Δt)) magnetic-field pulses can easily be obtained
using the corresponding magnetic-field pulses (see,
for example, [28]).

For such parameters, the transparency of the tun-
nel barrier (e.g., for the dd fusion reaction) increases
from the value of Dr = 0 ≈ 10–80, which is “conven-
tional” for low temperatures, to  ≈ 0.1.

For heavier ions with mass M = kMd, we have ω0 ≈
(5 × 104/k) Hz and Δt ≈ 2 × 10–7k s. Upon an increase
in Hmax(Δt) and the corresponding decrease in Δt =
α/ω0, the values of |r |max and Gmax rapidly increase,
which paves the way for implementation of highly
effective nuclear reactions with the participation of
heavy nuclei.

It is interesting to analyze the effect of the number
density and temperature of the gas (plasma) in which
such a process takes place on the “pulsed” method of
CCS formation that was considered above. Obviously,
the collision of the charged particle under investiga-
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tion with other atoms and ions corresponds to a ran-
dom force that acts on a nonstationary oscillator. This
problem was considered earlier on the basis of relevant
stochastic equations for various types of frequency
modulation of an oscillator (high-frequency resonant
modulation with Ω = ω0, 2ω0 [9], low-frequency non-
resonant modulation with Ω ≪ ω0 [16], and mono-
tonic modulation in the case of the formation of
microcracks in metal hydrides [13]). As applied to the
“pulsed” method that is considered here, we can
obtain simple estimates based on the natural assump-
tions according to which phase relationships for CCS
formation are not violated if the mean time 1/σnν
between two collisions of particles in the gas (plasma)
is much longer than the time of CCS formation. It fol-
lows from Fig. 7 that in the optimal case (from those
considered here) with parameters g = 100 and α =
0.01, this time is τc ≈ α/ω0 = Δt. We assume for esti-
mates that ν ≈  is the mean velocity of parti-
cles in the gas and σ ≈ 3 × 10–16 cm2 is the total elastic
scattering cross section at a low energy. Ultimately, we
find that the above scenario of CCS formation can be
realized if the number density of deuterium atoms
(ions) for Hmax(Δt) ≈ 10 kOe and temperature T =
300 K is lower than ncr ≈ 1017 cm–3. Upon an increase
in Hmax(Δt), the value of ncr increases, while in a gas
(plasma) of heavier atoms, it decreases.

Comparison of the results for ncr with the data that
were obtained in [16], where CCS formation via low-
frequency nonresonant frequency modulation at the
frequency Ω = 10–4ω0 was considered for an analogous
gas (plasma) with allowance for collisions, shows that
when such a pulsed frequency modulation is used, the
critical number density, ncr, of the gas is several orders
of magnitude higher, which substantially optimizes
the experimental conditions and does not require a
high vacuum. This difference can easily be explained
taking the fact into account that for low-frequency
modulation [16], the minimum time of CCS forma-
tion (τc ≈ 0.01/Ω = 102/ω0 is 104 times longer than τc ≈
α/ω0 = Δt, which, accordingly, leads to much more
stringent requirements on the admissible critical den-
sity, ncr, as compared to those in [16].

The results that characterize CCS formation for a
very significant increase in the potential barrier trans-
parency and, hence, for “giant” acceleration of
nuclear reactions at a low energy (temperature) can be
used to explain the results of experiments in which
anomalous nuclear processes were observed.

In particular, our results can be used for clarifying
the mechanism of fundamental nuclear and isotope
transformations [28–31] during the collapse of a small
target as a result of the action of a high-current pulsed
electron beam that generates strong magnetic-field
pulses with a duration of approximately 10–8 s and a
much shorter leading edge duration, Δt.

/kT M

These results are applicable to the data that were
obtained in [32], where it was shown that in switches
in which commutation of high currents (1–50 kA) is
performed in high-current industrial mains under a
high voltage (up to 5 kV), a substantial change in the
isotope composition of structural material from which
these switches are made is observed after long service
period. In particular, the scale of isotope transforma-
tions in Fe and Ti was 3–5%. It is important that in all
tested devices in which isotope anomalies were
detected, an electric (plasma) arc appeared at the
instant of the interruption of the high current; self-
compression for such an arc in the pinch effect inevi-
tably leads to the generation of a high-intensity mag-
netic-field pulse.

In experiments [33], significant isotope changes (at
a level of 5–7%) were detected during the explosion of
wires and foils immersed in a liquid, through which
submillisecond high-current pulses with a total energy
of 20–30 kJ were passed. Nuclear transformations
with analogous effectiveness were also observed in
experiments [34] in which a considerable decrease in
the Zn concentration was detected upon the passage of
high-power submicrosecond current pulses through
an aqueous solution of ZnSO4 salt.

The characteristic change in the electric current in
these experiments led to the generation of magnetic-
field pulses with structures and parameters that
approximately correspond to the above requirements
for CCS formation and for a radical increase in tun-
neling probability.
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